

Intro to Python® for Computer Science and Data Science

Learning to Program with AI, Big Data and the Cloud

by Paul Deitel & Harvey Deitel

[image: Intro to Python® for Computer Science and Data Science]

Deitel® Series Page

How To Program Series

Android™ How to Program, 3/E

C++ How to Program, 10/E

C How to Program, 8/E

Java™ How to Program, Early Objects Version, 11/E

Java™ How to Program, Late Objects Version, 11/E

Internet & World Wide Web How to Program, 5/E

Visual Basic® 2012 How to Program, 6/E

Visual C#® How to Program, 6/E

REVEL™ Interactive Multimedia

REVEL™ for Deitel Java™

VitalSource Web Books

http://bit.ly/DeitelOnVitalSource

Android™ How to Program, 2/E and 3/E

C++ How to Program, 9/E and 10/E

Java™ How to Program, 10/E and 11/E

Simply C++: An App-Driven Tutorial Approach

Simply Visual Basic® 2010: An App-Driven Approach, 4/E

Visual Basic® 2012 How to Program, 6/E

Visual C#® How to Program, 6/E

Visual C#® 2012 How to Program, 5/E

Deitel® Developer Series

Android™ 6 for Programmers: An App-Driven Approach, 3/E

C for Programmers with an Introduction to C11

C++11 for Programmers

C# 6 for Programmers

Java™ for Programmers, 4/E

JavaScript for Programmers

Swift™ for Programmers

LiveLessons Video Training

http://deitel.com/books/LiveLessons/

Android™ 6 App Development Fundamentals, 3/E

C++ Fundamentals

Java SE 8™ Fundamentals, 2/E

Java SE 9™ Fundamentals, 3/E

C# 6 Fundamentals

C# 2012 Fundamentals

JavaScript Fundamentals

Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more, please join the Deitel communities on

	Facebook®—http://facebook.com/DeitelFan

	Twitter®—@deitel

	LinkedIn®—http://linkedin.com/company/deitel-&-associates

	YouTube™—http://youtube.com/DeitelTV

	Instagram®—http://instagram.com/DeitelFan

and register for the free Deitel® Buzz Online e-mail newsletter at:

http://www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:

deitel@deitel.com

For information on programming-languages corporate training seminars offered by Deitel & Associates, Inc. worldwide, write to deitel@deitel.com or visit:

http://www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:

http://www.deitel.com

http://www.pearson.com/deitel

Intro to Python® for Computer Science and Data Science

Senior Vice President, Courseware Portfolio Management: Marcia J. Horton

Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge

Executive Higher Ed Portfolio Management: Tracy Johnson (Dunkelberger)

Portfolio Management Assistant: Meghan Jacoby

Managing Content Producer: Scott Disanno

Content Producer: Carole Snyder

Rights and Permissions Manager: Ben Ferrini

Inventory Manager: Bruce Boundy

Product Marketing Manager: Yvonne Vannatta

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Cover Designer: Paul Deitel, Harvey Deitel, Chuti Prasertsith

Cover Art: ©Denel/Shutterstock

Copyright ©2020 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit http://www.pearsoned.com/permissions.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The authors and publisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Deitel and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Library of Congress Cataloging-in-Publication Data On file

[image: pearson logo]

ISBN-10: 0-13-540467-3

ISBN-13: 978-0-13-540467-6

Intro to Python® for Computer Science and Data Science

Learning to Program with AI, Big Data and the Cloud

Paul Deitel

Harvey Deitel

In Memory of Marvin Minsky,

a founding father of artificial intelligence

It was a privilege to be your student in two artificial-intelligence graduate courses at M.I.T. You inspired your students to think beyond limits.

Harvey Deitel

Contents

	Preface xix

	Before You Begin xlv

	1 Introduction to Computers and Python 1

	1.1 Introduction 2

	1.2 Hardware and Software 3

	1.2.1 Moore’s Law 4

	1.2.2 Computer Organization 4

	1.3 Data Hierarchy 6

	1.4 Machine Languages, Assembly Languages and High-Level Languages 9

	1.5 Introduction to Object Technology 10

	1.6 Operating Systems 13

	1.7 Python 16

	1.8 It’s the Libraries! 18

	1.8.1 Python Standard Library 18

	1.8.2 Data-Science Libraries 18

	1.9 Other Popular Programming Languages 20

	1.10 Test-Drive: Using IPython and Jupyter Notebooks 21

	1.10.1 Using IPython Interactive Mode as a Calculator 21

	1.10.2 Executing a Python Program Using the IPython Interpreter 23

	1.10.3 Writing and Executing Code in a Jupyter Notebook 24

	1.11 Internet and World Wide Web 29

	1.11.1 Internet: A Network of Networks 29

	1.11.2 World Wide Web: Making the Internet User-Friendly 30

	1.11.3 The Cloud 30

	1.11.4 Internet of Things 31

	1.12 Software Technologies 32

	1.13 How Big Is Big Data? 33

	1.13.1 Big Data Analytics 38

	1.13.2 Data Science and Big Data Are Making a Difference: Use Cases 39

	1.14 Intro to Data Science: Case Study—A Big-Data Mobile Application 40

	2 Introduction to Python Programming 49

	2.1 Introduction 50

	2.2 Variables and Assignment Statements 50

	2.3 Arithmetic 52

	2.4 Function print and an Intro to Single- and Double-Quoted Strings 56

	2.5 Triple-Quoted Strings 58

	2.6 Getting Input from the User 59

	2.7 Decision Making: The if Statement and Comparison Operators 61

	2.8 Objects and Dynamic Typing 66

	2.9 Intro to Data Science: Basic Descriptive Statistics 68

	2.10 Wrap-Up 70

	3 Control Statements and Program Development 73

	3.1 Introduction 74

	3.2 Algorithms 74

	3.3 Pseudocode 75

	3.4 Control Statements 75

	3.5 if Statement 78

	3.6 if…else and if…elif…else Statements 80

	3.7 while Statement 85

	3.8 for Statement 86

	3.8.1 Iterables, Lists and Iterators 88

	3.8.2 Built-In range Function 88

	3.9 Augmented Assignments 89

	3.10 Program Development: Sequence-Controlled Repetition 90

	3.10.1 Requirements Statement 90

	3.10.2 Pseudocode for the Algorithm 90

	3.10.3 Coding the Algorithm in Python 91

	3.10.4 Introduction to Formatted Strings 92

	3.11 Program Development: Sentinel-Controlled Repetition 93

	3.12 Program Development: Nested Control Statements 97

	3.13 Built-In Function range: A Deeper Look 101

	3.14 Using Type Decimal for Monetary Amounts 102

	3.15 break and continue Statements 105

	3.16 Boolean Operators and, or and not 106

	3.17 Intro to Data Science: Measures of Central Tendency—Mean, Median and Mode 109

	3.18 Wrap-Up 111

	4 Functions 119

	4.1 Introduction 120

	4.2 Defining Functions 120

	4.3 Functions with Multiple Parameters 123

	4.4 Random-Number Generation 125

	4.5 Case Study: A Game of Chance 128

	4.6 Python Standard Library 131

	4.7 math Module Functions 132

	4.8 Using IPython Tab Completion for Discovery 133

	4.9 Default Parameter Values 135

	4.10 Keyword Arguments 136

	4.11 Arbitrary Argument Lists 136

	4.12 Methods: Functions That Belong to Objects 138

	4.13 Scope Rules 138

	4.14 import: A Deeper Look 140

	4.15 Passing Arguments to Functions: A Deeper Look 142

	4.16 Function-Call Stack 145

	4.17 Functional-Style Programming 146

	4.18 Intro to Data Science: Measures of Dispersion 148

	4.19 Wrap-Up 150

	5 Sequences: Lists and Tuples 155

	5.1 Introduction 156

	5.2 Lists 156

	5.3 Tuples 161

	5.4 Unpacking Sequences 163

	5.5 Sequence Slicing 166

	5.6 del Statement 169

	5.7 Passing Lists to Functions 171

	5.8 Sorting Lists 172

	5.9 Searching Sequences 174

	5.10 Other List Methods 176

	5.11 Simulating Stacks with Lists 178

	5.12 List Comprehensions 179

	5.13 Generator Expressions 181

	5.14 Filter, Map and Reduce 182

	5.15 Other Sequence Processing Functions 185

	5.16 Two-Dimensional Lists 187

	5.17 Intro to Data Science: Simulation and Static Visualizations 191

	5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls 191

	5.17.2 Visualizing Die-Roll Frequencies and Percentages 193

	5.18 Wrap-Up 199

	6 Dictionaries and Sets 209

	6.1 Introduction 210

	6.2 Dictionaries 210

	6.2.1 Creating a Dictionary 210

	6.2.2 Iterating through a Dictionary 212

	6.2.3 Basic Dictionary Operations 212

	6.2.4 Dictionary Methods keys and values 214

	6.2.5 Dictionary Comparisons 216

	6.2.6 Example: Dictionary of Student Grades 217

	6.2.7 Example: Word Counts 218

	6.2.8 Dictionary Method update 220

	6.2.9 Dictionary Comprehensions 220

	6.3 Sets 221

	6.3.1 Comparing Sets 223

	6.3.2 Mathematical Set Operations 225

	6.3.3 Mutable Set Operators and Methods 226

	6.3.4 Set Comprehensions 228

	6.4 Intro to Data Science: Dynamic Visualizations 228

	6.4.1 How Dynamic Visualization Works 228

	6.4.2 Implementing a Dynamic Visualization 231

	6.5 Wrap-Up 234

	7 Array-Oriented Programming with NumPy 239

	7.1 Introduction 240

	7.2 Creating arrays from Existing Data 241

	7.3 array Attributes 242

	7.4 Filling arrays with Specific Values 244

	7.5 Creating arrays from Ranges 244

	7.6 List vs. array Performance: Introducing %timeit 246

	7.7 array Operators 248

	7.8 NumPy Calculation Methods 250

	7.9 Universal Functions 252

	7.10 Indexing and Slicing 254

	7.11 Views: Shallow Copies 256

	7.12 Deep Copies 258

	7.13 Reshaping and Transposing 259

	7.14 Intro to Data Science: pandas Series and DataFrames 262

	7.14.1 pandas Series 262

	7.14.2 DataFrames 267

	7.15 Wrap-Up 275

	8 Strings: A Deeper Look 283

	8.1 Introduction 284

	8.2 Formatting Strings 285

	8.2.1 Presentation Types 285

	8.2.2 Field Widths and Alignment 286

	8.2.3 Numeric Formatting 287

	8.2.4 String’s format Method 288

	8.3 Concatenating and Repeating Strings 289

	8.4 Stripping Whitespace from Strings 290

	8.5 Changing Character Case 291

	8.6 Comparison Operators for Strings 292

	8.7 Searching for Substrings 292

	8.8 Replacing Substrings 294

	8.9 Splitting and Joining Strings 294

	8.10 Characters and Character-Testing Methods 297

	8.11 Raw Strings 298

	8.12 Introduction to Regular Expressions 299

	8.12.1 re Module and Function fullmatch 300

	8.12.2 Replacing Substrings and Splitting Strings 303

	8.12.3 Other Search Functions; Accessing Matches 304

	8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 307

	8.14 Wrap-Up 312

	9 Files and Exceptions 319

	9.1 Introduction 320

	9.2 Files 321

	9.3 Text-File Processing 321

	9.3.1 Writing to a Text File: Introducing the with Statement 322

	9.3.2 Reading Data from a Text File 323

	9.4 Updating Text Files 325

	9.5 Serialization with JSON 327

	9.6 Focus on Security: pickle Serialization and Deserialization 330

	9.7 Additional Notes Regarding Files 330

	9.8 Handling Exceptions 331

	9.8.1 Division by Zero and Invalid Input 332

	9.8.2 try Statements 332

	9.8.3 Catching Multiple Exceptions in One except Clause 335

	9.8.4 What Exceptions Does a Function or Method Raise? 336

	9.8.5 What Code Should Be Placed in a try Suite? 336

	9.9 finally Clause 336

	9.10 Explicitly Raising an Exception 339

	9.11 (Optional) Stack Unwinding and Tracebacks 339

	9.12 Intro to Data Science: Working with CSV Files 342

	9.12.1 Python Standard Library Module csv 342

	9.12.2 Reading CSV Files into Pandas DataFrames 344

	9.12.3 Reading the Titanic Disaster Dataset 346

	9.12.4 Simple Data Analysis with the Titanic Disaster Dataset 347

	9.12.5 Passenger Age Histogram 348

	9.13 Wrap-Up 349

	10 Object-Oriented Programming 355

	10.1 Introduction 356

	10.2 Custom Class Account 358

	10.2.1 Test-Driving Class Account 358

	10.2.2 Account Class Definition 360

	10.2.3 Composition: Object References as Members of Classes 361

	10.3 Controlling Access to Attributes 363

	10.4 Properties for Data Access 364

	10.4.1 Test-Driving Class Time 364

	10.4.2 Class Time Definition 366

	10.4.3 Class Time Definition Design Notes 370

	10.5 Simulating “Private” Attributes 371

	10.6 Case Study: Card Shuffling and Dealing Simulation 373

	10.6.1 Test-Driving Classes Card and DeckOfCards 373

	10.6.2 Class Card—Introducing Class Attributes 375

	10.6.3 Class DeckOfCards 377

	10.6.4 Displaying Card Images with Matplotlib 378

	10.7 Inheritance: Base Classes and Subclasses 382

	10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 384

	10.8.1 Base Class CommissionEmployee 384

	10.8.2 Subclass SalariedCommissionEmployee 387

	10.8.3 Processing CommissionEmployees and 	SalariedCommissionEmployees Polymorphically 391

	10.8.4 A Note About Object-Based and Object-Oriented Programming 391

	10.9 Duck Typing and Polymorphism 392

	10.10 Operator Overloading 393

	10.10.1 Test-Driving Class Complex 394

	10.10.2 Class Complex Definition 395

	10.11 Exception Class Hierarchy and Custom Exceptions 397

	10.12 Named Tuples 399

	10.13 A Brief Intro to Python 3.7’s New Data Classes 400

	10.13.1 Creating a Card Data Class 401

	10.13.2 Using the Card Data Class 403

	10.13.3 Data Class Advantages over Named Tuples 405

	10.13.4 Data Class Advantages over Traditional Classes 406

	10.14 Unit Testing with Docstrings and doctest 406

	10.15 Namespaces and Scopes 411

	10.16 Intro to Data Science: Time Series and Simple Linear Regression 414

	10.17 Wrap-Up 423

	11 Computer Science Thinking: Recursion, 	Searching, Sorting and Big O 431

	11.1 Introduction 432

	11.2 Factorials 433

	11.3 Recursive Factorial Example 433

	11.4 Recursive Fibonacci Series Example 436

	11.5 Recursion vs. Iteration 439

	11.6 Searching and Sorting 440

	11.7 Linear Search 440

	11.8 Efficiency of Algorithms: Big O 442

	11.9 Binary Search 444

	11.9.1 Binary Search Implementation 445

	11.9.2 Big O of the Binary Search 447

	11.10 Sorting Algorithms 448

	11.11 Selection Sort 448

	11.11.1 Selection Sort Implementation 449

	11.11.2 Utility Function print_pass 450

	11.11.3 Big O of the Selection Sort 451

	11.12 Insertion Sort 451

	11.12.1 Insertion Sort Implementation 452

	11.12.2 Big O of the Insertion Sort 453

	11.13 Merge Sort 454

	11.13.1 Merge Sort Implementation 454

	11.13.2 Big O of the Merge Sort 459

	11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms 459

	11.15 Visualizing Algorithms 460

	11.15.1 Generator Functions 462

	11.15.2 Implementing the Selection Sort Animation 463

	11.16 Wrap-Up 468

	12 Natural Language Processing (NLP) 477

	12.1 Introduction 478

	12.2 TextBlob 479

	12.2.1 Create a TextBlob 481

	12.2.2 Tokenizing Text into Sentences and Words 482

	12.2.3 Parts-of-Speech Tagging 482

	12.2.4 Extracting Noun Phrases 483

	12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer 484

	12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer 486

	12.2.7 Language Detection and Translation 487

	12.2.8 Inflection: Pluralization and Singularization 489

	12.2.9 Spell Checking and Correction 489

	12.2.10 Normalization: Stemming and Lemmatization 490

	12.2.11 Word Frequencies 491

	12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet 492

	12.2.13 Deleting Stop Words 494

	12.2.14 n-grams 496

	12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 497

	12.3.1 Visualizing Word Frequencies with Pandas 497

	12.3.2 Visualizing Word Frequencies with Word Clouds 500

	12.4 Readability Assessment with Textatistic 503

	12.5 Named Entity Recognition with spaCy 505

	12.6 Similarity Detection with spaCy 507

	12.7 Other NLP Libraries and Tools 509

	12.8 Machine Learning and Deep Learning Natural Language Applications 509

	12.9 Natural Language Datasets 510

	12.10 Wrap-Up 510

	13 Data Mining Twitter 515

	13.1 Introduction 516

	13.2 Overview of the Twitter APIs 518

	13.3 Creating a Twitter Account 519

	13.4 Getting Twitter Credentials—Creating an App 520

	13.5 What’s in a Tweet? 521

	13.6 Tweepy 525

	13.7 Authenticating with Twitter Via Tweepy 525

	13.8 Getting Information About a Twitter Account 527

	13.9 Introduction to Tweepy Cursors: Getting an Account’s 	Followers and Friends 529

	13.9.1 Determining an Account’s Followers 529

	13.9.2 Determining Whom an Account Follows 532

	13.9.3 Getting a User’s Recent Tweets 532

	13.10 Searching Recent Tweets 534

	13.11 Spotting Trends: Twitter Trends API 536

	13.11.1 Places with Trending Topics 536

	13.11.2 Getting a List of Trending Topics 537

	13.11.3 Create a Word Cloud from Trending Topics 539

	13.12 Cleaning/Preprocessing Tweets for Analysis 541

	13.13 Twitter Streaming API 542

	13.13.1 Creating a Subclass of StreamListener 543

	13.13.2 Initiating Stream Processing 545

	13.14 Tweet Sentiment Analysis 547

	13.15 Geocoding and Mapping 551

	13.15.1 Getting and Mapping the Tweets 552

	13.15.2 Utility Functions in tweetutilities.py 556

	13.15.3 Class LocationListener 558

	13.16 Ways to Store Tweets 559

	13.17 Twitter and Time Series 560

	13.18 Wrap-Up 560

	14 IBM Watson and Cognitive Computing 565

	14.1 Introduction: IBM Watson and Cognitive Computing 566

	14.2 IBM Cloud Account and Cloud Console 568

	14.3 Watson Services 568

	14.4 Additional Services and Tools 572

	14.5 Watson Developer Cloud Python SDK 573

	14.6 Case Study: Traveler’s Companion Translation App 574

	14.6.1 Before You Run the App 575

	14.6.2 Test-Driving the App 576

	14.6.3 SimpleLanguageTranslator.py Script Walkthrough 577

	14.7 Watson Resources 587

	14.8 Wrap-Up 589

	15 Machine Learning: Classification, Regression and Clustering 593

	15.1 Introduction to Machine Learning 594

	15.1.1 Scikit-Learn 595

	15.1.2 Types of Machine Learning 596

	15.1.3 Datasets Bundled with Scikit-Learn 598

	15.1.4 Steps in a Typical Data Science Study 599

	15.2 Case Study: Classification with k-Nearest Neighbors and the 	Digits Dataset, Part 1 599

	15.2.1 k-Nearest Neighbors Algorithm 601

	15.2.2 Loading the Dataset 602

	15.2.3 Visualizing the Data 606

	15.2.4 Splitting the Data for Training and Testing 608

	15.2.5 Creating the Model 609

	15.2.6 Training the Model 610

	15.2.7 Predicting Digit Classes 610

	15.3 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 2 612

	15.3.1 Metrics for Model Accuracy 612

	15.3.2 K-Fold Cross-Validation 616

	15.3.3 Running Multiple Models to Find the Best One 617

	15.3.4 Hyperparameter Tuning 619

	15.4 Case Study: Time Series and Simple Linear Regression 620

	15.5 Case Study: Multiple Linear Regression with the California 	Housing Dataset 625

	15.5.1 Loading the Dataset 626

	15.5.2 Exploring the Data with Pandas 628

	15.5.3 Visualizing the Features 630

	15.5.4 Splitting the Data for Training and Testing 634

	15.5.5 Training the Model 634

	15.5.6 Testing the Model 635

	15.5.7 Visualizing the Expected vs. Predicted Prices 636

	15.5.8 Regression Model Metrics 637

	15.5.9 Choosing the Best Model 638

	15.6 Case Study: Unsupervised Machine Learning, Part 1—Dimensionality Reduction 639

	15.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering 642

	15.7.1 Loading the Iris Dataset 644

	15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas 646

	15.7.3 Visualizing the Dataset with a Seaborn pairplot 647

	15.7.4 Using a KMeans Estimator 650

	15.7.5 Dimensionality Reduction with Principal Component Analysis 652

	15.7.6 Choosing the Best Clustering Estimator 655

	15.8 Wrap-Up 656

	16 Deep Learning 665

	16.1 Introduction 666

	16.1.1 Deep Learning Applications 668

	16.1.2 Deep Learning Demos 669

	16.1.3 Keras Resources 669

	16.2 Keras Built-In Datasets 669

	16.3 Custom Anaconda Environments 670

	16.4 Neural Networks 672

	16.5 Tensors 674

	16.6 Convolutional Neural Networks for Vision; Multi-Classification 	with the MNIST Dataset 676

	16.6.1 Loading the MNIST Dataset 677

	16.6.2 Data Exploration 678

	16.6.3 Data Preparation 680

	16.6.4 Creating the Neural Network 682

	16.6.5 Training and Evaluating the Model 691

	16.6.6 Saving and Loading a Model 696

	16.7 Visualizing Neural Network Training with TensorBoard 697

	16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 700

	16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis with the IMDb Dataset 701

	16.9.1 Loading the IMDb Movie Reviews Dataset 702

	16.9.2 Data Exploration 703

	16.9.3 Data Preparation 705

	16.9.4 Creating the Neural Network 706

	16.9.5 Training and Evaluating the Model 709

	16.10 Tuning Deep Learning Models 710

	16.11 Convnet Models Pretrained on ImageNet 711

	16.12 Reinforcement Learning 712

	16.12.1 Deep Q-Learning 713

	16.12.2 OpenAI Gym 713

	16.13 Wrap-Up 714

	17 Big Data: Hadoop, Spark, NoSQL and IoT 723

	17.1 Introduction 724

	17.2 Relational Databases and Structured Query Language (SQL) 728

	17.2.1 A books Database 730

	17.2.2 SELECT Queries 734

	17.2.3 WHERE Clause 734

	17.2.4 ORDER BY Clause 736

	17.2.5 Merging Data from Multiple Tables: INNER JOIN 737

	17.2.6 INSERT INTO Statement 738

	17.2.7 UPDATE Statement 739

	17.2.8 DELETE FROM Statement 739

	17.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 741

	17.3.1 NoSQL Key–Value Databases 741

	17.3.2 NoSQL Document Databases 742

	17.3.3 NoSQL Columnar Databases 742

	17.3.4 NoSQL Graph Databases 743

	17.3.5 NewSQL Databases 743

	17.4 Case Study: A MongoDB JSON Document Database 744

	17.4.1 Creating the MongoDB Atlas Cluster 745

	17.4.2 Streaming Tweets into MongoDB 746

	17.5 Hadoop 755

	17.5.1 Hadoop Overview 755

	17.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce 758

	17.5.3 Creating an Apache Hadoop Cluster in Microsoft 	Azure HDInsight 758

	17.5.4 Hadoop Streaming 760

	17.5.5 Implementing the Mapper 760

	17.5.6 Implementing the Reducer 761

	17.5.7 Preparing to Run the MapReduce Example 762

	17.5.8 Running the MapReduce Job 763

	17.6 Spark 766

	17.6.1 Spark Overview 766

	17.6.2 Docker and the Jupyter Docker Stacks 767

	17.6.3 Word Count with Spark 770

	17.6.4 Spark Word Count on Microsoft Azure 773

	17.7 Spark Streaming: Counting Twitter Hashtags Using the 	pyspark-notebook Docker Stack 777

	17.7.1 Streaming Tweets to a Socket 777

	17.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL 780

	17.8 Internet of Things and Dashboards 786

	17.8.1 Publish and Subscribe 788

	17.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard 	Dashboard 788

	17.8.3 Simulating an Internet-Connected Thermostat in Python 790

	17.8.4 Creating the Dashboard with Freeboard.io 792

	17.8.5 Creating a Python PubNub Subscriber 794

	17.9 Wrap-Up 798

	Index 805

Preface

“There’s gold in them thar hills!”1
1. Source unknown, frequently misattributed to Mark Twain.

For many decades, some powerful trends have been in place. Computer hardware has rapidly been getting faster, cheaper and smaller. Internet bandwidth (that is, its information carrying capacity) has rapidly been getting larger and cheaper. And quality computer software has become ever more abundant and essentially free or nearly free through the “open source” movement. Soon, the “Internet of Things” will connect tens of billions of devices of every imaginable type. These will generate enormous volumes of data at rapidly increasing speeds and quantities.

Not so many years ago, if people had told us that we’d write a college-level introductory programming textbook with words like “Big Data” and “Cloud” in the title and a graphic of a multicolored elephant (emblematic of “big”) on the cover, our reaction might have been, “Huh?” And, if they’d told us we’d include AI (for artificial intelligence) in the title, we might have said, “Really? Isn’t that pretty advanced stuff for novice programmers?”

If people had said, we’d include “Data Science” in the title, we might have responded, “Isn’t data already included in the domain of ‘Computer Science’? Why would we need a separate academic discipline for it?” Well, in programming today, the latest innovations are “all about the data”—data science, data analytics, big data, relational databases (SQL), and NoSQL and NewSQL databases.

So, here we are! Welcome to Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and the Cloud.

In this book, you’ll learn hands-on with today’s most compelling, leading-edge computing technologies—and, as you’ll see, with an easily tunable mix of computer science and data science appropriate for introductory courses in those and related disciplines. And, you’ll program in Python—one of the world’s most popular languages and the fastest growing among them. In this Preface, we present the “soul of the book.”

Professional programmers often quickly discover that they like Python. They appreciate its expressive power, readability, conciseness and interactivity. They like the world of open-source software development that’s generating an ever-growing base of reusable software for an enormous range of application areas.

Whether you’re an instructor, a novice student or an experienced professional programmer, this book has much to offer you. Python is an excellent first programming language for novices and is equally appropriate for developing industrial-strength applications. For the novice, the early chapters establish a solid programming foundation.

We hope you’ll find Intro to Python for Computer Science and Data Science educational, entertaining and challenging. It has been a joy to work on this project.

Python for Computer Science and Data Science Education

Many top U.S. universities have switched to Python as their language of choice for teaching introductory computer science, with “eight of the top 10 CS departments (80%), and 27 of the top 39 (69%)” using Python.2 It’s now particularly popular for educational and scientific computing,3 and it recently surpassed R as the most popular data science programming language.4,5,6
2. Guo, Philip., “Python Is Now the Most Popular Introductory Teaching Language at Top U.S. Universities,” ACM, July 07, 2014, https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext.
3. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
4. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html.
5. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/.
6. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.

Modular Architecture

We anticipate that the computer science undergraduate curriculum will evolve to include a data science component—this book is designed to facilitate that and to meet the needs of introductory data science courses with a Python programming component.

The book’s modular architecture (please see the Table of Contents graphic on the book’s first page) helps us meet the diverse needs of computer science, data science and related audiences. Instructors can adapt it conveniently to a wide range of courses offered to students drawn from many majors.

Chapters 1–11 cover traditional introductory computer science programming topics. Chapters 1–10 each include an optional brief Intro to Data Science section introducing artificial intelligence, basic descriptive statistics, measures of central tendency and dispersion, simulation, static and dynamic visualization, working with CSV files, pandas for data exploration and data wrangling, time series and simple linear regression. These help you prepare for the data science, AI, big data and cloud case studies in Chapters 12–17, which present opportunities for you to use real-world datasets in complete case studies.

After covering Python Chapters 1–5 and a few key parts of Chapters 6–7, you’ll be able to handle significant portions of the data science, AI and big data case studies in Chapters 12–17, which are appropriate for all contemporary programming courses:

	Computer science courses will likely work through more of Chapters 1–11 and fewer of the Intro to Data Science sections in Chapters 1–10. CS instructors will want to cover some or all of the case-study Chapters 12–17.

	Data science courses will likely work through fewer of Chapters 1–11, most or all of the Intro to Data Science sections in Chapters 1–10, and most or all of the case-study Chapters 12–17.

The “Chapter Dependencies” section of this Preface will help instructors plan their syllabi in the context of the book’s unique architecture.

Chapters 12–17 are loaded with cool, powerful, contemporary content. They present hands-on implementation case studies on topics such as supervised machine learning, unsupervised machine learning, deep learning, reinforcement learning (in the exercises), natural language processing, data mining Twitter, cognitive computing with IBM’s Watson, big data and more. Along the way, you’ll acquire a broad literacy of data science terms and concepts, ranging from briefly defining terms to using concepts in small, medium and large programs. Browsing the book’s detailed index will give you a sense of the breadth of coverage.

Audiences for the Book

The modular architecture makes this book appropriate for several audiences:

	All standard Python computer science and related majors. First and foremost, our book is a solid contemporary Python CS 1 entry. The computing curriculum recommendations from the ACM/IEEE list five types of computing programs: Computer Engineering, Computer Science, Information Systems, Information Technology and Software Engineering.7 The book is appropriate for each of these.
7. https://www.acm.org/education/curricula-recommendations.

	Undergraduate courses for data science majors—Our book is useful in many data science courses. It follows the curriculum recommendations for integration of all the key areas in all courses, as appropriate for intro courses. In the proposed data science curriculum, the book can be the primary textbook for the first computer science course or the first data science course, then be used as a Python reference throughout the upper curriculum.

	Service courses for students who are not computer science or data science majors.

	Graduate courses in data science—The book can be used as the primary textbook in the first course, then as a Python reference in other graduate-level data science courses.

	Two-year colleges—These schools will increasingly offer courses that prepare students for data science programs in the four-year colleges—the book is an appropriate option for that purpose.

	High schools—Just as they began teaching computer classes in response to strong interest, many are already teaching Python programming and data science classes.8 According to a recent article on LinkedIn, “data science should be taught in high school,” where the “curriculum should mirror the types of careers that our children will go into, focused directly on where jobs and technology are going.”9 We believe that data science could soon become a popular college advanced-placement course and that eventually there will be a data science AP exam.
8. http://datascience.la/introduction-to-data-science-for-high-school-students/.
9. https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-croucher/.

	Professional industry training courses.

Key Features

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)

	Keep it simple—In every aspect of the book and its instructor and student supplements, we strive for simplicity and clarity. For example, when we present natural language processing, we use the simple and intuitive TextBlob library rather than the more complex NLTK. In general, when multiple libraries could be used to perform similar tasks, we use the simplest one.

	Keep it small—Most of the book’s 538 examples are small—often just a few lines of code, with immediate interactive IPython feedback. We use large examples as appropriate in approximately 40 larger scripts and complete case studies.

	Keep it topical—We read scores of recent Python-programming and data science textbooks and professional books. In all we browsed, read or watched about 15,000 current articles, research papers, white papers, videos, blog posts, forum posts and documentation pieces. This enabled us to “take the pulse” of the Python, computer science, data science, AI, big data and cloud communities to create 1566 up-to-the-minute examples, exercises and projects (EEPs).

IPython’s Immediate-Feedback, Explore, Discover and Experiment Pedagogy

	The ideal way to learn from this book is to read it and run the code examples in parallel. Throughout the book, we use the IPython interpreter, which provides a friendly, immediate-feedback, interactive mode for quickly exploring, discovering and experimenting with Python and its extensive libraries.

	Most of the code is presented in small, interactive IPython sessions (which we call IIs). For each code snippet you write, IPython immediately reads it, evaluates it and prints the results. This instant feedback keeps your attention, boosts learning, facilitates rapid prototyping and speeds the software-development process.

	Our books always emphasize the live-code teaching approach, focusing on complete, working programs with sample inputs and outputs. IPython’s “magic” is that it turns snippets into live code that “comes alive” as you enter each line. This promotes learning and encourages experimentation.

	IPython is a great way to learn the error messages associated with common errors. We’ll intentionally make errors to show you what happens. When we say something is an error, try it to see what happens.

	We use this same immediate-feedback philosophy in the book’s 557 Self-Check Exercises (ideal for “flipped classrooms”—we’ll soon say more about that phenomenon) and many of the 471 end-of-chapter exercises and projects.

Python Programming Fundamentals

	First and foremost, this is an introductory Python textbook. We provide rich coverage of Python and general programming fundamentals.

	We discuss Python’s programming models—procedural programming, functional-style programming and object-oriented programming.

	We emphasize problem-solving and algorithm development.

	We use best practices to prepare students for industry.

	Functional-style programming is used throughout the book as appropriate. A chart in Chapter 4 lists most of Python’s key functional-style programming capabilities and the chapters in which we initially cover many of them.

538 Examples, and 471 Exercises and Projects (EEPs)

	Students use a hands-on applied approach to learn from a broad selection of real-world examples, exercises and projects (EEPs) drawn from computer science, data science and many other fields.

	The 538 examples range from individual code snippets to complete computer science, data science, artificial intelligence and big data case studies.

	The 471 exercises and projects naturally extend the chapter examples. Each chapter concludes with a substantial set of exercises covering a wide variety of topics. This helps instructors tailor their courses to the unique requirements of their audiences and to vary course assignments each semester.

	The EEPs give you an engaging, challenging and entertaining introduction to Python programming, including hands-on AI, computer science and data science.

	Students attack exciting and entertaining challenges with AI, big data and cloud technologies like natural language processing, data mining Twitter, machine learning, deep learning, Hadoop, MapReduce, Spark, IBM Watson, key data science libraries (NumPy, pandas, SciPy, NLTK, TextBlob, spaCy, BeautifulSoup, Textatistic, Tweepy, Scikit-learn, Keras), key visualization libraries (Matplotlib, Seaborn, Folium) and more.

	Our EEPs encourage you to think into the future. We had the following idea as we wrote this Preface—although it’s not in the text, many similar thought-provoking projects are: With deep learning, the Internet of Things and large numbers of TV cameras trained on sporting events, it will become possible to keep automatic statistics, review the details of every play and resolve instant-replay reviews immediately. So, fans won’t have to endure the bad calls and delays common in today’s sporting events. Here’s a thought—we can use these technologies to eliminate referees. Why not? We’re increasingly entrusting our lives to other deep-learning-based technologies like robotic surgeons and self-driving cars!

	The project exercises encourage you to go deeper into what you’ve learned and research technologies we have not covered. Projects are often larger in scope and may require significant Internet research and implementation effort.

	In the instructor supplements, we provide solutions to many exercises, including most in the core Python Chapters 1–11. Solutions are available only to instructors—see the section “Instructor Supplements on Pearson’s Instructor Resource Center” later in this Preface for details. We do not provide solutions to the project and research exercises.

	We encourage you to look at lots of demos and free open-source code examples (available on sites such as GitHub) for inspiration on additional class projects, term projects, directed-study projects, capstone-course projects and thesis research.

557 Self-Check Exercises and Answers

	Most sections end with an average of three Self-Check Exercises.

	Fill-in-the-blank, true/false and discussion Self Checks enable you to test your understanding of the concepts you just studied.

	IPython interactive Self Checks give you a chance to try out and reinforce the programming techniques you just learned.

	For rapid learning, answers immediately follow all Self-Check Exercises.

Avoid Heavy Math in Favor of English Explanations

	Data science topics can be highly mathematical. This book will be used in first computer science and data science courses where students may not have deep mathematical backgrounds, so we avoid heavy math, leaving it to upper-level courses.

	We capture the conceptual essence of the mathematics and put it to work in our examples, exercises and projects. We do this by using Python libraries such as statistics, NumPy, SciPy, pandas and many others, which hide the mathematical complexity. So, it’s straightforward for students to get many of the benefits of mathematical techniques like linear regression without having to know the mathematics behind them. In the machine-learning and deep-learning examples, we focus on creating objects that do the math for you “behind the scenes.” This is one of the keys to object-based programming. It’s like driving a car safely to your destination without knowing all the math, engineering and science that goes into building engines, transmissions, power steering and anti-skid braking systems.

Visualizations

	67 full-color static, dynamic, animated and interactive two-dimensional and three-dimensional visualizations (charts, graphs, pictures, animations etc.) help you understand concepts.

	We focus on high-level visualizations produced by Matplotlib, Seaborn, pandas and Folium (for interactive maps).

	We use visualizations as a pedagogic tool. For example, we make the law of large numbers “come alive” in a dynamic die-rolling simulation and bar chart. As the number of rolls increases, you’ll see each face’s percentage of the total rolls gradually approach 16.667% (1/6th) and the sizes of the bars representing the percentages equalize.

	You need to get to know your data. One way is simply to look at the raw data. For even modest amounts of data, you could rapidly get lost in the detail. Visualizations are especially crucial in big data for data exploration and communicating reproducible research results, where the data items can number in the millions, billions or more. A common saying is that a picture is worth a thousand words10—in big data, a visualization could be worth billions or more items in a database.
10. https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words.

	Sometimes, you need to “fly 40,000 feet above the data” to see it “in the large.” Descriptive statistics help but can be misleading. Anscombe’s quartet, which you’ll investigate in the exercises, demonstrates through visualizations that significantly different datasets can have nearly identical descriptive statistics.

	We show the visualization and animation code so you can implement your own. We also provide the animations in source-code files and as Jupyter Notebooks, so you can conveniently customize the code and animation parameters, re-execute the animations and see the effects of the changes.

	Many exercises ask you to create your own visualizations.

Data Experiences

	The undergraduate data science curriculum proposal says “Data experiences need to play a central role in all courses.”11
11. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930 (p. 18).

	In the book’s examples, exercises and projects (EEPs), you’ll work with many real-world datasets and data sources. There’s a wide variety of free open datasets available online for you to experiment with. Some of the sites we reference list hundreds or thousands of datasets. We encourage you to explore these.

	We collected hundreds of syllabi, tracked down instructor dataset preferences and researched the most popular datasets for supervised machine learning, unsupervised machine learning and deep learning studies. Many of the libraries you’ll use come bundled with popular datasets for experimentation.

	You’ll learn the steps required to obtain data and prepare it for analysis, analyze that data using many techniques, tune your models and communicate your results effectively, especially through visualization.

Thinking Like a Developer

	You’ll work with a developer focus, using such popular sites as GitHub and StackOverflow, and doing lots of Internet research. Our Intro to Data Science sections and case studies in Chapters 12–17 provide rich data experiences.

	GitHub is an excellent venue for finding open-source code to incorporate into your projects (and to contribute your code to the open-source community). It’s also a crucial element of the software developer’s arsenal with version control tools that help teams of developers manage open-source (and private) projects.

	We encourage you to study developers’ code on sites like GitHub.

	To get ready for career work in computer science and data science, you’ll use an extraordinary range of free and open-source Python and data science libraries, free and open real-world datasets from government, industry and academia, and free, free-trial and freemium offerings of software and cloud services.

Hands-On Cloud Computing

	Much of big data analytics occurs in the cloud, where it’s easy to scale dynamically the amount of hardware and software your applications need. You’ll work with various cloud-based services (some directly and some indirectly), including Twitter, Google Translate, IBM Watson, Microsoft Azure, OpenMapQuest, geopy, Dweet.io and PubNub. You’ll explore more in the exercises and projects.

	We encourage you to use free, free trial or freemium services from various cloud vendors. We prefer those that don’t require a credit card because you don’t want to risk accidentally running up big bills. If you decide to use a service that requires a credit card, ensure that the tier you’re using for free will not automatically jump to a paid tier.

Database, Big Data and Big Data Infrastructure

	According to IBM (Nov. 2016), 90% of the world’s data was created in the last two years.12 Evidence indicates that the speed of data creation is accelerating.
12. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.

	According to a March 2016 AnalyticsWeek article, within five years there will be over 50 billion devices connected to the Internet and by 2020 we’ll be producing 1.7 megabytes of new data every second for every person on the planet!13
13. https://analyticsweek.com/content/big-data-facts/.

	We include an optional treatment of relational databases and SQL with SQLite.

	Databases are critical big data infrastructure for storing and manipulating the massive amounts of data you’ll process. Relational databases process structured data—they’re not geared to the unstructured and semi-structured data in big data applications. So, as big data evolved, NoSQL and NewSQL databases were created to handle such data efficiently. We include a NoSQL and NewSQL overview and a hands-on case study with a MongoDB JSON document database.

	We include a solid treatment of big data hardware and software infrastructure in Chapter 17, “Big Data: Hadoop, Spark, NoSQL and IoT (Internet of Things).”

Artificial Intelligence Case Studies

	Why doesn’t this book have an artificial intelligence chapter? After all, AI is on the cover. In the case study Chapters 12–16, we present artificial intelligence topics (a key intersection between computer science and data science), including natural language processing, data mining Twitter to perform sentiment analysis, cognitive computing with IBM Watson, supervised machine learning, unsupervised machine learning, deep learning and reinforcement learning (in the exercises). Chapter 17 presents the big data hardware and software infrastructure that enables computer scientists and data scientists to implement leading-edge AI-based solutions.

Computer Science

	The Python fundamentals treatment in Chapters 1–10 will get you thinking like a computer scientist. Chapter 11, “Computer Science Thinking: Recursion, Searching, Sorting and Big O,” gives you a more advanced perspective—these are classic computer science topics. Chapter 11 emphasizes performance issues.

Built-In Collections: Lists, Tuples, Sets, Dictionaries

	There’s little reason today for most application developers to build custom data structures. This is a subject for CS2 courses—our scope is strictly CS1 and the corresponding data science course(s). The book features a solid two-chapter treatment of Python’s built-in data structures—lists, tuples, dictionaries and sets—with which most data-structuring tasks can be accomplished.

Array-Oriented Programming with NumPy Arrays and Pandas Series/DataFrames

	We take an innovative approach in this book by focusing on three key data structures from open-source libraries—NumPy arrays, pandas Series and pandas DataFrames. These libraries are used extensively in data science, computer science, artificial intelligence and big data. NumPy offers as much as two orders of magnitude higher performance than built-in Python lists.

	We include in Chapter 7 a rich treatment of NumPy arrays. Many libraries, such as pandas, are built on NumPy. The Intro to Data Science sections in Chapters 7–9 introduce pandas Series and DataFrames, which along with NumPy arrays are then used throughout the remaining chapters.

File Processing and Serialization

	Chapter 9 presents text-file processing, then demonstrates how to serialize objects using the popular JSON (JavaScript Object Notation) format. JSON is a commonly used data-interchange format that you’ll frequently see used in the data science chapters—often with libraries that hide the JSON details for simplicity.

	Many data science libraries provide built-in file-processing capabilities for loading datasets into your Python programs. In addition to plain text files, we process files in the popular CSV (comma-separated values) format using the Python Standard Library’s csv module and capabilities of the pandas data science library.

Object-Based Programming

	In all the Python code we studied during our research for this book, we rarely encountered custom classes. These are common in the powerful libraries used by Python programmers.

	We emphasize using the enormous number of valuable classes that the Python open-source community has packaged into industry standard class libraries. You’ll focus on knowing what libraries are out there, choosing the ones you’ll need for your app, creating objects from existing classes (usually in one or two lines of code) and making them “jump, dance and sing.” This is called object-based programming—it enables you to build impressive applications concisely, which is a significant part of Python’s appeal.

	With this approach, you’ll be able to use machine learning, deep learning, reinforcement learning (in the exercises) and other AI technologies to solve a wide range of intriguing problems, including cognitive computing challenges like speech recognition and computer vision. In the past, with just an introductory programming course, you never would have been able to tackle such tasks.

Object-Oriented Programming

	For computer science students, developing custom classes is a crucial object-oriented programming skill, along with inheritance, polymorphism and duck typing. We discuss these in Chapter 10.

	The object-oriented programming treatment is modular, so instructors can present basic or intermediate coverage.

	Chapter 10 includes a discussion of unit testing with doctest and a fun card-shuffling-and-dealing simulation.

	The six data science, AI, big data and cloud chapters require only a few straightforward custom class definitions. Instructors who do not wish to cover Chapter 10 can have students simply mimic our class definitions.

Privacy

	In the exercises, you’ll research ever-stricter privacy laws such as HIPAA (Health Insurance Portability and Accountability Act) in the United States and GDPR (General Data Protection Regulation) for the European Union. A key aspect of privacy is protecting users’ personally identifiable information (PII), and a key challenge with big data is that it’s easy to cross-reference facts about individuals among databases. We mention privacy issues in several places throughout the book.

Security

	Security is crucial to privacy. We deal with some Python-specific security issues.

	AI and big data present unique privacy, security and ethical challenges. In the exercises, students will research the OWASP Python Security Project (http://www.pythonsecurity.org/), anomaly detection, blockchain (the technology behind cryptocurrencies like BitCoin and Ethereum) and more.

Ethics

	Ethics conundrum: Suppose big data analytics with AI predicts that a person with no criminal record has a significant chance of committing a serious crime. Should that person be arrested? In the exercises, you’ll research this and other ethical issues, including deep fakes (AI-generated images and videos that appear to be real), bias in machine learning and CRISPR gene editing. Students also investigate privacy and ethical issues surrounding AIs and intelligent assistants, such as IBM Watson, Amazon Alexa, Apple Siri, Google Assistant and Microsoft Cortana. For example, just recently, a judge ordered Amazon to turn over Alexa recordings for use in a criminal case.14
14. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/.

Reproducibility

	In the sciences in general, and data science in particular, there’s a need to reproduce the results of experiments and studies, and to communicate those results effectively. Jupyter Notebooks are a preferred means for doing this.

	We provide you with a Jupyter Notebooks experience to help meet the reproducibility recommendations of the data science undergraduate curriculum proposal.

	We discuss reproducibility throughout the book in the context of programming techniques and software such as Jupyter Notebooks and Docker.

Transparency

	The data science curriculum proposal mentions data transparency. One aspect of data transparency is the availability of data. Many governments and other organization now adhere to open-data principles, enabling anyone to access their data.15 We point you to a wide range of datasets that are made available by such entities.
15. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx (page 56).

	Other aspects of data transparency include determining that data is correct and knowing its origin (think, for example, of “fake news”). Many of the datasets we use are bundled with key libraries we present, such as Scikit-learn for machine learning and Keras for deep learning. We also point you to various curated dataset repositories such as the University of California Irvine (UCI) Machine Learning Repository (with 450+ datasets)16 and Carnegie Mellon University’s StatLib Datasets Archive (with 100+ datasets).17
16. https://archive.ics.uci.edu/ml/datasets.html.
17. http://lib.stat.cmu.edu/datasets/.

Performance

	We use the timeit profiling tool in several examples and exercises to compare the performance of different approaches to performing the same tasks. Other performance-related discussions include generator expressions, NumPy arrays vs. Python lists, performance of machine-learning and deep-learning models, and Hadoop and Spark distributed-computing performance.

Big Data and Parallelism

	Computer applications have generally been good at doing one thing at a time. Today’s more sophisticated applications need to be able to do many things in parallel. The human brain is believed to have the equivalent of 100 billion parallel processors.18 For years we’ve written about parallelism at the program level, which is complex and error-prone.
18. https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-parallel-processes-running-in-the-brain/.

	In this book, rather than writing your own parallelization code, you’ll let libraries like Keras running over TensorFlow, and big data tools like Hadoop and Spark parallelize operations for you. In this big data/AI era, the sheer processing requirements of massive data apps demand taking advantage of true parallelism provided by multicore processors, graphics processing units (GPUs), tensor processing units (TPUs) and huge clusters of computers in the cloud. Some big data tasks could have thousands of processors working in parallel to analyze massive amounts of data in reasonable time. Sequentializing such processing is typically not an option, because it would take too long.

Chapter Dependencies

If you’re an instructor planning your course syllabus or a professional deciding which chapters to read, this section will help you make the best decisions. Please read the one-page Table of Contents on the first page of the book—this will quickly familiarize you with the book’s unique architecture. Teaching or reading the chapters in order is easiest. However, much of the content in the Intro to Data Science sections at the ends of Chapters 1–10 and the case studies in Chapters 12–17 requires only Chapters 1–5 and small portions of Chapters 6–10 as discussed below.

Part 1: Python Fundamentals Quickstart

We recommend that all courses cover Python Chapters 1–5:

	Chapter 1, Introduction to Computers and Python, introduces concepts that lay the groundwork for the Python programming in Chapters 2–11 and the big data, artificial-intelligence and cloud-based case studies in Chapters 12–17. The chapter also includes test-drives of IPython and Jupyter Notebooks.

	Chapter 2, Introduction to Python Programming, presents Python programming fundamentals with code examples illustrating key language features.

	Chapter 3, Control Statements and Program Development, presents Python’s control statements, focuses on problem-solving and algorithm development, and introduces basic list processing.

	Chapter 4, Functions, introduces program construction using existing functions and custom functions as building blocks, presents simulation techniques with random-number generation and introduces tuple fundamentals.

	Chapter 5, Sequences: Lists and Tuples, presents Python’s built-in list and tuple collections in more detail and begins our introduction to functional-style programming.

Part 2: Python Data Structures, Strings and Files19
19. We could have included Chapter 5 in Part 2. We placed it in Part 1 because that’s the group of chapters all courses should cover.

The following summarizes inter-chapter dependencies for Python Chapters 6–9 and assumes that you’ve read Chapters 1–5.

	Chapter 6, Dictionaries and Sets—The Intro to Data Science section is not dependent on Chapter 6’s contents.

	Chapter 7, Array-Oriented Programming with NumPy—The Intro to Data Science section requires dictionaries (Chapter 6) and arrays (Chapter 7).

	Chapter 8, Strings: A Deeper Look—The Intro to Data Science section requires raw strings and regular expressions (Sections 8.11–8.12), and pandas Series and DataFrame features from Section 7.14’s Intro to Data Science.

	Chapter 9, Files and Exceptions—For JSON serialization, it’s useful to understand dictionary fundamentals (Section 6.2). Also, the Intro to Data Science section requires the built-in open function and the with statement (Section 9.3), and pandas DataFrame features from Section 7.14’s Intro to Data Science.

Part 3: Python High-End Topics

The following summarizes inter-chapter dependencies for Python Chapters 10–11 and assumes that you’ve read Chapters 1–5.

	Chapter 10, Object-Oriented Programming—The Intro to Data Science requires pandas DataFrame features from the Intro to Data Science Section 7.14. Instructors wanting to cover only classes and objects can present Sections 10.1–10.6. Instructors wanting to cover more advanced topics like inheritance, polymorphism and duck typing, can present Sections 10.7–10.9. Sections 10.10–10.15 provide additional advanced perspectives.

	Chapter 11, Computer Science Thinking: Recursion, Searching, Sorting and Big O—Requires creating and accessing the elements of arrays (Chapter 7), the %timeit magic (Section 7.6), string method join (Section 8.9) and Matplotlib FuncAnimation from Section 6.4’s Intro to Data Science.

Part 4: AI, Cloud and Big Data Case Studies

The following summary of inter-chapter dependencies for Chapters 12–17 assumes that you’ve read Chapters 1–5. Most of Chapters 12–17 also require dictionary fundamentals from Section 6.2.

	Chapter 12, Natural Language Processing (NLP), uses pandas DataFrame features from Section 7.14’s Intro to Data Science.

	Chapter 13, Data Mining Twitter, uses pandas DataFrame features from Section 7.14’s Intro to Data Science, string method join (Section 8.9), JSON fundamentals (Section 9.5), TextBlob (Section 12.2) and Word clouds (Section 12.3). Several examples require defining a class via inheritance (Chapter 10), but readers can simply mimic the class definitions we provide without reading Chapter 10.

	Chapter 14, IBM Watson and Cognitive Computing, uses built-in function open and the with statement (Section 9.3).

	Chapter 15, Machine Learning: Classification, Regression and Clustering, uses NumPy array fundamentals and method unique (Chapter 7), pandas DataFrame features from Section 7.14’s Intro to Data Science and Matplotlib function subplots (Section 10.6).

	Chapter 16, Deep Learning, requires NumPy array fundamentals (Chapter 7), string method join (Section 8.9), general machine-learning concepts from Chapter 15 and features from Chapter 15’s Case Study: Classification with k-Nearest Neighbors and the Digits Dataset.

	Chapter 17, Big Data: Hadoop, Spark, NoSQL and IoT, uses string method split (Section 6.2.7), Matplotlib FuncAnimation from Section 6.4’s Intro to Data Science, pandas Series and DataFrame features from Section 7.14’s Intro to Data Science, string method join (Section 8.9), the json module (Section 9.5), NLTK stop words (Section 12.2.13) and from Chapter 13 Twitter authentication, Tweepy’s StreamListener class for streaming tweets, and the geopy and folium libraries. A few examples require defining a class via inheritance (Chapter 10), but readers can simply mimic the class definitions we provide without reading Chapter 10.

Computing and Data Science Curricula

We read the following ACM/IEEE CS-and-related curriculum documents in preparation for writing this book:

	Computer Science Curricula 2013,20
20. ACM/IEEE (Assoc. Comput. Mach./Inst. Electr. Electron. Eng.). 2013. Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science (New York: ACM), http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf.

	CC2020: A Vision on Computing Curricula,21
21. A. Clear, A. Parrish, G. van der Veer and M. Zhang “CC2020: A Vision on Computing Curricula,” https://dl.acm.org/citation.cfm?id=3017690.

	Information Technology Curricula 2017,22
22. Information Technology Curricula 2017, http://www.acm.org/binaries/content/assets/education/it2017.pdf.

	Cybersecurity Curricula 2017,23
23. Cybersecurity Curricula 2017, https://cybered.hosting.acm.org/wp-content/uploads/2018/02/newcover_csec2017.pdf.

and the 2016 data science initiative “Curriculum Guidelines for Undergraduate Programs in Data Science”24 from the faculty group sponsored by the NSF and the Institute for Advanced Study.
24. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930.

Computing Curricula

	According to “CC2020: A Vision on Computing Curricula,” the curriculum “needs to be reviewed and updated to include the new and emerging areas of computing such as cybersecurity and data science.”25
25. http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf.

	Data science includes key topics (besides general-purpose programming) such as machine learning, deep learning, natural language processing, speech synthesis and recognition and others that are classic artificial intelligence (AI)—and hence CS topics as well.

Data Science Curriculum

	Graduate-level data science is well established and the undergraduate level is growing rapidly to meet strong industry demand. Our hands-on, nonmathematical, project-oriented, programming-intensive approach facilitates moving data science into the undergraduate curriculum, based on the proposed new curriculum.

	There already are lots of undergraduate data science and data analytics programs, but they’re not uniform. That was part of the motivation for the 25 faculty members on the data science curriculum committee to get together in 2016 and develop the proposed 10-course undergraduate major in data science, “Curriculum Guidelines for Undergraduate Programs in Data Science.”

	The curriculum committee says that “many of the courses traditionally found in computer science, statistics, and mathematics offerings should be redesigned for the data science major in the interests of efficiency and the potential synergy that integrated courses would offer.”26
26. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930 (pp. 16–17).

	The committee recommends integrating these areas with computational and statistical thinking in all courses, and indicates that new textbooks will be essential27—this book is designed with the committee’s recommendations in mind.
27. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930 (pp. 16–17).

	Python has rapidly become one of the world’s most popular general-purpose programming languages. For schools that want to cover only one language in their data science major, it’s reasonable that Python be that language.

Data Science Overlaps with Computer Science28
28. This section is intended primarily for data science instructors. Given that the emerging 2020 Computing Curricula for computer science and related disciplines is likely to include some key data science topics, this section includes important information for computer science instructors as well.

The undergraduate data science curriculum proposal includes algorithm development, programming, computational thinking, data structures, database, mathematics, statistical thinking, machine learning, data science and more—a significant overlap with computer science, especially given that the data science courses include some key AI topics. Even though ours is a Python programming textbook, it touches each of these areas (except for heavy mathematics) from the recommended data science 10-course curriculum, as we efficiently work data science into various examples, exercises, projects and full-implementation case studies.

Key Points from the Data Science Curriculum Proposal

In this section, we call out some key points from the data science undergraduate curriculum proposal29 or its detailed course descriptions appendix.30 We worked hard to incorporate these and many other objectives:
29. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930.
30. “Appendix—Detailed Courses for a Proposed Data Science Major,” http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf.

	learn programming fundamentals commonly presented in computer science courses, including working with data structures.

	be able to solve problems by creating algorithms.

	work with procedural, functional and object-oriented programming.

	receive an integrated presentation of computational and statistical thinking, including exploring concepts via simulations.

	use development environments (we use IPython and Jupyter Notebooks).

	work with real-world data in practical case studies and projects in every course.

	obtain, explore and transform (wrangle) data for analysis.

	create static, dynamic and interactive data visualizations.

	communicate reproducible results.

	work with existing software and cloud-based tools.

	work with statistical and machine-learning models.

	work with high-performance tools (Hadoop, Spark, MapReduce and NoSQL).

	focus on data’s ethics, security, privacy, reproducibility and transparency issues.

Jobs Requiring Data Science Skills

In 2011, McKinsey Global Institute produced their report, “Big data: The next frontier for innovation, competition and productivity.” In it, they said, “The United States alone faces a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 million managers and analysts to analyze big data and make decisions based on their findings.”31 This continues to be the case. The August 2018 “LinkedIn Workforce Report” says the United States has a shortage of over 150,000 people with data science skills.32 A 2017 report from IBM, Burning Glass Technologies and the Business-Higher Education Forum, says that by 2020 in the United States there will be hundreds of thousands of new jobs requiring data science skills.33
31. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx (page 3).
32. https://economicgraph.linkedin.com/resources/linkedin-workforce-report-august-2018.
33. https://www.burning-glass.com/wp-content/uploads/The_Quant_Crunch.pdf (page 3).

Jupyter Notebooks

For your convenience, we provide the book’s examples in Python source code (.py) files for use with the command-line IPython interpreter and as Jupyter Notebooks (.ipynb) files that you can load into your web browser and execute. You can use whichever method of executing code examples you prefer.

Jupyter Notebooks is a free, open-source project that enables authors to combine text, graphics, audio, video, and interactive coding functionality for entering, editing, executing, debugging, and modifying code quickly and conveniently in a web browser. According to the article, “What Is Jupyter?”:

Jupyter has become a standard for scientific research and data analysis. It packages computation and argument together, letting you build “computational narratives”; … and it simplifies the problem of distributing working software to teammates and associates.34
34. https://www.oreilly.com/ideas/what-is-jupyter.

In our experience, it’s a wonderful learning environment and rapid prototyping tool for novices and experienced developers alike. For this reason, we use Jupyter Notebooks rather than a traditional integrated development environment (IDE), such as Eclipse, Visual Studio, PyCharm or Spyder. Academics and professionals already use Jupyter extensively for sharing research results. Jupyter Notebooks support is provided through the traditional open-source community mechanisms35 (see “Getting Your Questions Answered” later in this Preface).
35. https://jupyter.org/community.

We believe Jupyter Notebooks are a compelling way to teach and learn Python and that most instructors will choose to use Jupyter. The notebooks include:

	examples,

	Self Check exercises,

	all end-of-chapter exercises containing code, such as “What does this code do?” and “What’s wrong with this code?” exercises.

	Visualizations and animations, which are a crucial part of the book’s pedagogy. We provide the code in Jupyter Notebooks so students can conveniently reproduce our results.

See the Before You Begin section that follows this Preface for software installation details and see the test-drives in Section 1.10 for information on running the book’s examples.

Collaboration and Sharing Results

Working in teams and communicating research results are both emphasized in the proposed undergraduate data science curriculum36 and are important for students moving into data-analytics positions in industry, government or academia:
36. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930 (pp. 18–19).

	The notebooks you create are easy to share among team members simply by copying the files or via GitHub.

	Research results, including code and insights, can be shared as static web pages via tools like nbviewer (https://nbviewer.jupyter.org) and GitHub—both automatically render notebooks as web pages.

Reproducibility: A Strong Case for Jupyter Notebooks

In data science, and in the sciences in general, experiments and studies should be reproducible. This has been written about in the literature for many years, including

	Donald Knuth’s 1992 computer science publication—Literate Programming.37
37. Knuth, D., “Literate Programming” (PDF), The Computer Journal, British Computer Society, 1992.

	The article “Language-Agnostic Reproducible Data Analysis Using Literate Programming,”38 which says, “Lir (literate, reproducible computing) is based on the idea of literate programming as proposed by Donald Knuth.”
38. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164023.

Essentially, reproducibility captures the complete environment used to produce results—hardware, software, communications, algorithms (especially code), data and the data’s provenance (origin and lineage).

The undergraduate data science curriculum proposal mentions reproducibility as a goal in four places. The article “50 Years of Data Science” says, “teaching students to work reproducibly enables easier and deeper evaluation of their work; having them reproduce parts of analyses by others allows them to learn skills like Exploratory Data Analysis that are commonly practiced but not yet systematically taught; and training them to work reproducibly will make their post-graduation work more reliable.”39
39. “50 Years of Data Science,” http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf, p. 33.

Docker

In Chapter 17, we’ll introduce Docker—a tool for packaging software into containers that bundle everything required to execute that software conveniently, reproducibly and portably across platforms. Some software packages we use in Chapter 17 require complicated setup and configuration. For many of these, you can download free preexisting Docker containers. These enable you to avoid complex installation issues and execute software locally on your desktop or notebook computers, making Docker a great way to help you get started with new technologies quickly and conveniently.

Docker also helps with reproducibility. You can create custom Docker containers that are configured with the versions of every piece of software and every library you used in your study. This would enable others to recreate the environment you used, then reproduce your work, and will help you reproduce your own results. In Chapter 17, you’ll use Docker to download and execute a container that’s preconfigured for you to code and run big data Spark applications using Jupyter Notebooks.

Class Tested

While the book was under development, one of our academic reviewers—Dr. Alison Sanchez, Assistant Professor in Economics, University of San Diego—class tested it in a new course, “Business Analytics Strategy.” She commented: “Wonderful for first-time Python learners from all educational backgrounds and majors. My business analytics students had little to no coding experience when they began the course. In addition to loving the material, it was easy for them to follow along with the example exercises and by the end of the course were able to mine and analyze Twitter data using techniques learned from the book. The chapters are clearly written with detailed explanations of the example code—which makes it easy for students without a computer science background to understand. The modular structure, wide range of contemporary data science topics, and companion Jupyter notebooks make this a fantastic resource for instructors and students of a variety of Data Science, Business Analytics and Computer Science courses.”

“Flipped Classroom”

Many instructors are now using “flipped classrooms.”40,41 Students learn the content on their own before coming to class (typically via video lectures), and class time is used for tasks such as hands-on coding, working in groups and discussions. Our book and supplements are appropriate for flipped classrooms:
40. https://en.wikipedia.org/wiki/Flipped_classroom.
41. https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-videos.

	We provide extensive VideoNotes in which co-author Paul Deitel teaches the concepts in the core Python chapters. See “Student and Instructor Supplements” later in this Preface for details on accessing the videos.

	Some students learn best by 	—and video is not hands-on. One of the most compelling features of the book is its interactive approach with 538 Python code examples—many with just one or a few snippets—and 557 Self Check exercises with answers. These enable students to learn in small pieces with immediate feedback—perfect for active self-paced learning. Students can easily modify the “hot” code and see the effects of their changes.

	Our Jupyter Notebooks supplements provide a convenient mechanism for students to work with the code.

	We provide 471 exercises and projects, which students can work on at home and/or in class. Many of these are appropriate for group projects.

	We provide lots of probing questions on ethics, privacy, security and more in the exercises and projects. These are appropriate for in-class discussions and group work.

Special Feature: IBM Watson Analytics and Cognitive Computing

Early in our research for this book, we recognized the rapidly growing interest in IBM’s Watson. We investigated competitive services and found Watson’s “no credit card required” policy for its “free tiers” to be among the most friendly for our readers.

IBM Watson is a cognitive-computing platform being employed across a wide range of real-world scenarios. Cognitive-computing systems simulate the pattern-recognition and decision-making capabilities of the human brain to “learn” as they consume more data.42,43,44 We include a significant hands-on Watson treatment. We use the free Watson Developer Cloud: Python SDK, which provides application programming interfaces (APIs) that enable you to interact with Watson’s services programmatically. Watson is fun to use and a great platform for letting your creative juices flow. You’ll demo or use the following Watson APIs: Conversation, Discovery, Language Translator, Natural Language Classifier, Natural Language Understanding, Personality Insights, Speech to Text, Text to Speech, Tone Analyzer and Visual Recognition.
42. http://whatis.techtarget.com/definition/cognitive-computing.
43. https://en.wikipedia.org/wiki/Cognitive_computing.
44. https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing.

Watson’s Lite Tier Services and Watson Case Study

IBM encourages learning and experimentation by providing free lite tiers for many of their APIs.45 In Chapter 14, you’ll try demos of many Watson services.46 Then, you’ll use the lite tiers of Watson’s Text to Speech, Speech to Text and Translate services to implement a “traveler’s assistant” translation app. You’ll speak a question in English, then the app will transcribe your speech to English text, translate the text to Spanish and speak the Spanish text. Next, you’ll speak a Spanish response (in case you don’t speak Spanish, we provide an audio file you can use). Then, the app will quickly transcribe the speech to Spanish text, translate the text to English and speak the English response. Cool stuff!
45. Always check the latest terms on IBM’s website, as the terms and services may change.
46. https://console.bluemix.net/catalog/.

Teaching Approach

Intro to Python for Computer Science and Data Science contains a rich collection of examples, exercises and projects drawn from many fields. Students solve interesting, real-world problems working with real-world datasets. The book concentrates on the principles of good software engineering and stresses program clarity.

Using Fonts for Emphasis

We place the key terms and the index’s page reference for each defining occurrence in bold text for easier reference. We place on-screen components in the bold Helvetica font (for example, the File menu) and use the Lucida font for Python code (for example, x = 5).

Syntax Coloring

The book is in full color. For readability, we syntax color all the code. Our syntax-coloring conventions are as follows:

comments appear in green

keywords appear in dark blue

constants and literal values appear in light blue

errors appear in red

all other code appears in black

Objectives and Outline

Each chapter begins with objectives that tell you what to expect and give you an opportunity, after reading the chapter, to determine whether it has met the intended goals. The chapter outline enables students to approach the material in top-down fashion.

538 Examples

The book’s 538 examples contain approximately 4000 lines of code. This is a relatively small amount of code for a book this size and is due to the fact that Python is such an expressive language. Also, our coding style is to use powerful class libraries to do most of the work wherever possible.

160 Tables/Illustrations/Visualizations

Abundant tables, line drawings, and visualizations are included. The visualizations are in color and include some 2D and 3D, some static and dynamic and some interactive.

Programming Wisdom

We integrate into the discussions programming wisdom from the authors’ combined nine decades of programming and teaching experience, including:

	Good programming practices and preferred Python idioms that help you produce clearer, more understandable and more maintainable programs.

	Common programming errors to reduce the likelihood that you’ll make them.

	Error-prevention tips with suggestions for exposing bugs and removing them from your programs. Many of these tips describe techniques for preventing bugs from getting into your programs in the first place.

	Performance tips that highlight opportunities to make your programs run faster or minimize the amount of memory they occupy.

	Software engineering observations that highlight architectural and design issues for proper software construction, especially for larger systems.

Wrap-Up

Chapters 2–17 end with Wrap-Up sections summarizing what you’ve learned.

Index

We have included an extensive index. The defining occurrences of key terms are highlighted with a bold page number.

Software Used in the Book

All the software you’ll need for this book is available for Windows, macOS and Linux and is free for download from the Internet. We wrote the book’s examples using the free Anaconda Python distribution. It includes most of the Python, visualization and data science libraries you’ll need, as well as Python, the IPython interpreter, Jupyter Notebooks and Spyder, considered one of the best Python data science integrated development environments (IDEs)—we use only IPython and Jupyter Notebooks for program development in the book. The Before You Begin section discusses installing Anaconda and other items you’ll need for working with our examples.

Python Documentation

You’ll find the following documentation especially helpful as you work through the book:

	The Python Standard Library:

https://docs.python.org/3/library/index.html

	The Python Language Reference:

https://docs.python.org/3/reference/index.html

	Python documentation list:

https://docs.python.org/3/

Getting Your Questions Answered

Online forums enable you to interact with other Python programmers and get your Python questions answered. Popular Python and general programming forums include:

	python-forum.io

	StackOverflow.com

	https://www.dreamincode.net/forums/forum/29-python/

Also, many vendors provide forums for their tools and libraries. Most of the libraries you’ll use in this book are managed and maintained at github.com. Some library maintainers provide support through the Issues tab on a given library’s GitHub page. If you cannot find an answer to your questions online, please see our web page for the book at

http://www.deitel.com47
47. Our website is undergoing a major upgrade. If you do not find something you need, please write to us directly at deitel@deitel.com.

Getting Jupyter Help

Jupyter Notebooks support is provided through:

	Project Jupyter Google Group:

https://groups.google.com/forum/#!forum/jupyter

	Jupyter real-time chat room:

https://gitter.im/jupyter/jupyter

	GitHub

https://github.com/jupyter/help

	StackOverflow:

https://stackoverflow.com/questions/tagged/jupyter

	Jupyter for Education Google Group (for instructors teaching with Jupyter):

https://groups.google.com/forum/#!forum/jupyter-education

Student and Instructor Supplements

The following supplements are available to students and instructors.

Code Examples and Getting Started Videos

To get the most out of the presentation, you should execute each code example in parallel with reading the corresponding discussion. On the book’s web page at

http://www.deitel.com

we provide:

	Downloadable Python source code (.py files) and Jupyter Notebooks (.ipynb files) for the book’s code examples, for code-based Self-Check Exercises and for end-of-chapter exercises that have code as part of the exercise description.

	Getting Started videos showing how to use the code examples with IPython and Jupyter Notebooks. We also introduce these tools in Section 1.10.

	Blog posts and book updates.

For download instructions, see the Before You Begin section that follows this Preface.

Companion Website

The book’s Companion Website at

https://www.pearson.com/deitel

contains the same code downloads described above in “Code Examples and Getting Started Videos” as well as extensive VideoNotes in which co-author Paul Deitel explains most of the examples in the book’s core Python chapters.

New copies of this book come with a Companion Website access code on the book’s inside front cover. If the access code is already visible or there isn’t one, you purchased a used book or an edition that does not come with an access code. In this case, you can purchase access directly from the Companion Website.

Instructor Supplements on Pearson’s Instructor Resource Center

The following supplements are available to qualified instructors only through Pearson Education’s IRC (Instructor Resource Center) at http://www.pearsonhighered.com/irc:

	PowerPoint slides.

	Instructor Solutions Manual with solutions to many of the exercises. Solutions are not provided for “project” and “research” exercises—many of which are substantial and appropriate for term projects, directed-study projects, capstone-course projects and thesis topics. Before assigning a particular exercise for homework, instructors should check the IRC to be sure the solution is available.

	Test Item File with multiple-choice, short-answer questions and answers. These are easy to use in automated assessment tools.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center which contains the book’s instructor supplements, including exercise solutions. Access is strictly limited to college instructors teaching from the book. Instructors may obtain access through their Pearson representatives. If you’re not a registered faculty member, contact your Pearson representative or visit

https://www.pearson.com/replocator

Instructor Examination Copies

Instructors can request an examination copy of the book from their Pearson representative:

https://www.pearson.com/replocator

Keeping in Touch with the Authors

For answers to questions, syllabus assistance or to report an error, send an e-mail to us at

deitel@deitel.com

or interact with us via social media:

	Facebook® (http://www.deitel.com/deitelfan)

	Twitter® (@deitel)

	LinkedIn® (http://linkedin.com/company/deitel-&-associates)

	YouTube® (http://youtube.com/DeitelTV)

Acknowledgments

We’d like to thank Barbara Deitel for long hours devoted to Internet research on this project. We’re fortunate to have worked with the dedicated team of publishing professionals at Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson (Executive Portfolio Manager, Higher Ed Courseware, Computer Science)—she challenged us at every step of the process to “get it right.” Carole Snyder managed the book’s production and interacted with Pearson’s permissions team, promptly clearing our graphics and citations. We selected the cover art, and Chuti Prasertsith designed the cover.

We wish to acknowledge the efforts of our academic and professional reviewers. Meghan Jacoby and Patricia Byron-Kimball recruited the reviewers and managed the review process. Adhering to a tight schedule, the reviewers scrutinized our work, providing countless suggestions for improving the accuracy, completeness and timeliness of the presentation.

Reviewers

	Proposal Reviewers

Dr. Irene Bruno, Associate Professor in the Department of Information Sciences and Technology, George Mason University

Lance Bryant, Associate Professor, Department of Mathematics, Shippensburg University

Daniel Chen, Data Scientist, Lander Analytics

Garrett Dancik, Associate Professor of Computer Science/Bioinformatics Department of Computer Science, Eastern Connecticut State University

Dr. Marsha Davis, Department Chair of Mathematical Sciences, Eastern Connecticut State University

Roland DePratti, Adjunct Professor of Computer Science, Eastern Connecticut State University

Shyamal Mitra, Senior Lecturer, Computer Science, University of Texas at Austin

Dr. Mark Pauley, Senior Research Fellow, Bioinformatics, School of Interdisciplinary Informatics, University of Nebraska at Omaha

Sean Raleigh, Associate Professor of Mathematics, Chair of Data Science, Westminster College

Alison Sanchez, Assistant Professor in Economics, University of San Diego

	Dr. Harvey Siy, Associate Professor of Computer Science, Information Science and Technology, University of Nebraska at Omaha

Jamie Whitacre, Independent Data Science Consultant

Book Reviewers

Daniel Chen, Data Scientist, Lander Analytics

Garrett Dancik, Associate Professor of Computer Science/Bioinformatics, Eastern Connecticut State University

Pranshu Gupta, Assistant Professor, Computer Science, DeSales University

David Koop, Assistant Professor, Data Science Program Co-Director, U-Mass Dartmouth

Ramon Mata-Toledo, Professor, Computer Science, James Madison University

Shyamal Mitra, Senior Lecturer, Computer Science, University of Texas at Austin

Alison Sanchez, Assistant Professor in Economics, University of San Diego

José Antonio González Seco, IT Consultant

Jamie Whitacre, Independent Data Science Consultant

Elizabeth Wickes, Lecturer, School of Information Sciences, University of Illinois

A Special Thank You

Our thanks to Prof. Alison Sanchez for class-testing the book prepublication in her new “Business Analytics Strategy” class at the University of San Diego. She reviewed the lengthy proposal, adopting the book sight unseen and signed on as a full-book reviewer in parallel with using the book in her class. Her guidance (and courage) throughout the entire book-development process are sincerely appreciated.

Well, there you have it! As you read the book, we’d appreciate your comments, criticisms, corrections and suggestions for improvement. Please send all correspondence to:

deitel@deitel.com

We’ll respond promptly.

Welcome again to the exciting open-source world of Python programming. We hope you enjoy this look at leading-edge computer-applications development with Python, IPython, Jupyter Notebooks, AI, big data and the cloud. We wish you great success!

Paul and Harvey Deitel

About the Authors

Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an MIT graduate with 38 years of experience in computing. Paul is one of the world’s most experienced programming-languages trainers, having taught professional courses to software developers since 1992. He has delivered hundreds of programming courses to industry clients internationally, including Cisco, IBM, Siemens, Sun Microsystems (now Oracle), Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, Nortel Networks, Puma, iRobot and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling programming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc., has 58 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University—he studied computing in each of these programs before they spun off Computer Science programs. He has extensive college teaching experience, including earning tenure and serving as the Chairman of the Computer Science Department at Boston College before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications have earned international recognition, with more than 100 translations published in Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming courses to academic, corporate, government and military clients.

About Deitel® & Associates, Inc.

Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally recognized authoring and corporate training organization, specializing in computer programming languages, object technology, mobile app development and Internet and web software technology. The company’s training clients include some of the world’s largest companies, government agencies, branches of the military, and academic institutions. The company offers instructor-led training courses delivered at client sites worldwide on major programming languages and platforms.

Through its 44-year publishing partnership with Pearson/Prentice Hall, Deitel & Associates, Inc., publishes leading-edge programming textbooks and professional books in print and e-book formats, LiveLessons video courses, Safari-Live online seminars and Revel™ interactive multimedia courses. To contact Deitel & Associates, Inc. and the authors, or to request a proposal on-site, instructor-led training, write to:

deitel@deitel.com

To learn more about Deitel on-site corporate training, visit

http://www.deitel.com/training

Individuals wishing to purchase Deitel books can do so at

https://www.amazon.com

Bulk orders by corporations, the government, the military and academic institutions should be placed directly with Pearson. For more information, visit

https://www.informit.com/store/sales.aspx

Before You Begin

This section contains information you should review before using this book. We’ll post updates at: http://www.deitel.com.

Font and Naming Conventions

We show Python code and commands and file and folder names in a sans-serif font, and on-screen components, such as menu names, in a bold sans-serif font. We use italics for emphasis and bold occasionally for strong emphasis.

Getting the Code Examples

You can download the examples.zip file containing the book’s examples from our Intro to Python for Computer Science and Data Science web page at:

http://www.deitel.com

Click the Download Examples link to save the file to your local computer. Most web browsers place the file in your user account’s Downloads folder. The examples are also available from Pearson’s Companion Website for the book at:

https://pearson.com/deitel

When the download completes, locate it on your system, and extract its examples folder into your user account’s Documents folder:

	Windows: C:\Users\YourAccount\Documents\examples

	macOS or Linux: ~/Documents/examples

Most operating systems have a built-in extraction tool. You also may use an archive tool such as 7-Zip (www.7-zip.org) or WinZip (www.winzip.com).

Structure of the examples Folder

You’ll execute three kinds of examples in this book:

	Individual code snippets in the IPython interactive environment.

	Complete applications, which are known as scripts.

	Jupyter Notebooks—a convenient interactive, web-browser-based environment in which you can write and execute code and intermix the code with text, images and video.

We demonstrate each in Section 1.10’s test drives.

The examples folder contains one subfolder per chapter. These are named ch##, where ## is the two-digit chapter number 01 to 17—for example, ch01. Except for Chapters 14, 16 and 17, each chapter’s folder contains the following items:

	snippets_ipynb—A folder containing the chapter’s Jupyter Notebook files.

	snippets_py—A folder containing Python source code files in which each code snippet we present is separated from the next by a blank line. You can copy and paste these snippets into IPython or into new Jupyter Notebooks that you create.

	Script files and their supporting files.

Chapter 14 contains one application. Chapters 16 and 17 explain where to find the files you need in the ch16 and ch17 folders, respectively.

Installing Anaconda

We use the easy-to-install Anaconda Python distribution with this book. It comes with almost everything you’ll need to work with our examples, including:

	the IPython interpreter,

	most of the Python and data science libraries we use,

	a local Jupyter Notebooks server so you can load and execute our notebooks, and

	various other software packages, such as the Spyder Integrated Development Environment (IDE)—we use only IPython and Jupyter Notebooks in this book.

Download the Python 3.x Anaconda installer for Windows, macOS or Linux from:

https://www.anaconda.com/download/

When the download completes, run the installer and follow the on-screen instructions. To ensure that Anaconda runs correctly, do not move its files after you install it.

Updating Anaconda

Next, ensure that Anaconda is up to date. Open a command-line window on your system as follows:

	On macOS, open a Terminal from the Applications folder’s Utilities subfolder.

	On Windows, open the Anaconda Prompt from the start menu. When doing this to update Anaconda (as you’ll do here) or to install new packages (discussed momentarily), execute the Anaconda Prompt as an administrator by right-clicking, then selecting More > Run as administrator. (If you cannot find the Anaconda Prompt in the start menu, simply search for it in the Type here to search field at the bottom of your screen.)

	On Linux, open your system’s Terminal or shell (this varies by Linux distribution).

In your system’s command-line window, execute the following commands to update Anaconda’s installed packages to their latest versions:

	conda update conda

	conda update --all

Package Managers

The conda command used above invokes the conda package manager—one of the two key Python package managers you’ll use in this book. The other is pip. Packages contain the files required to install a given Python library or tool. Throughout the book, you’ll use conda to install additional packages, unless those packages are not available through conda, in which case you’ll use pip. Some people prefer to use pip exclusively as it currently supports more packages. If you ever have trouble installing a package with conda, try pip instead.

Installing the Prospector Static Code Analysis Tool

In the book’s exercises, we ask you to analyze Python code using the Prospector analysis tool, which checks your Python code for common errors and helps you improve your code. To install Prospector and the Python libraries it uses, run the following command in the command-line window:

pip install prospector

Installing jupyter-matplotlib

We implement several animations using a visualization library called Matplotlib. To use them in Jupyter Notebooks, you must install a tool called ipympl. In the Terminal, Anaconda Command Prompt or shell you opened previously, execute the following commands1 one at a time:
1. https://github.com/matplotlib/jupyter-matplotlib.

conda install -c conda-forge ipympl

conda install nodejs

jupyter labextension install @jupyter-widgets/jupyterlab-manager

jupyter labextension install jupyter-matplotlib

Installing the Other Packages

Anaconda comes with approximately 300 popular Python and data science packages for you, such as NumPy, Matplotlib, pandas, Regex, BeautifulSoup, requests, Bokeh, SciPy, SciKit-Learn, Seaborn, Spacy, sqlite, statsmodels and many more. The number of additional packages you’ll need to install throughout the book will be small and we’ll provide installation instructions as necessary. As you discover new packages, their documentation will explain how to install them.

Get a Twitter Developer Account

If you intend to use our “Data Mining Twitter” chapter and any Twitter-based examples in subsequent chapters, apply for a Twitter developer account. Twitter now requires registration for access to their APIs. To apply, fill out and submit the application at

https://developer.twitter.com/en/apply-for-access

Twitter reviews every application. At the time of this writing, personal developer accounts were being approved immediately and company-account applications were taking from several days to several weeks. Approval is not guaranteed.

Internet Connection Required in Some Chapters

While using this book, you’ll need an Internet connection to install various additional Python libraries. In some chapters, you’ll register for accounts with cloud-based services, mostly to use their free tiers. Some services require credit cards to verify your identity. In a few cases, you’ll use services that are not free. In these cases, you’ll take advantage of monetary credits provided by the vendors so you can try their services without incurring charges. Caution: Some cloud-based services incur costs once you set them up. When you complete our case studies using such services, be sure to promptly delete the resources you allocated.

Slight Differences in Program Outputs

When you execute our examples, you might notice some differences between the results we show and your own results:

	Due to differences in how calculations are performed with floating-point numbers (like –123.45, 7.5 or 0.0236937) across operating systems, you might see minor variations in outputs—especially in digits far to the right of the decimal point.

	When we show outputs that appear in separate windows, we crop the windows to remove their borders.

Getting Your Questions Answered

Online forums enable you to interact with other Python programmers and get your Python questions answered. Popular Python and general programming forums include:

	python-forum.io

	StackOverflow.com

	https://www.dreamincode.net/forums/forum/29-python/

Also, many vendors provide forums for their tools and libraries. Most of the libraries you’ll use in this book are managed and maintained at github.com. Some library maintainers provide support through the Issues tab on a given library’s GitHub page. If you cannot find an answer to your questions online, please see our web page for the book at

http://www.deitel.com1
1. Our website is undergoing a major upgrade. If you do not find something you need, please write to us directly at deitel@deitel.com.

You’re now ready to begin reading Intro to Python for Computer Science and Data Sciences: Learning to Program with AI, Big Data and the Cloud. We hope you enjoy the book!

1 Introduction to Computers and Python

Objectives

In this chapter you’ll:

	Learn about exciting recent developments in computing.

	Learn computer hardware, software and Internet basics.

	Understand the data hierarchy from bits to databases.

	Understand the different types of programming languages.

	Understand object-oriented programming basics.

	Understand the strengths of Python and other leading programming languages.

	Understand the importance of libraries.

	Be introduced to key Python and data-science libraries you’ll use in this book.

	Test-drive the IPython interpreter’s interactive mode for executing Python code.

	Execute a Python script that animates a bar chart.

	Create and test-drive a web-browser-based Jupyter Notebook for executing Python code.

	Learn how big “big data” is and how quickly it’s getting even bigger.

	Study a big-data case study on a mobile navigation app.

	Be introduced to artificial intelligence—the intersection between computer science and data science.

Outline

	1.1 Introduction

	1.2 Hardware and Software

	1.2.1 Moore’s Law

	1.2.2 Computer Organization

	1.3 Data Hierarchy

	1.4 Machine Languages, Assembly Languages and High-Level Languages

	1.5 Introduction to Object Technology

	1.6 Operating Systems

	1.7 Python

	1.8 It’s the Libraries!

	1.8.1 Python Standard Library

	1.8.2 Data-Science Libraries

	1.9 Other Popular Programming Languages

	1.10 Test-Drive: Using IPython and Jupyter Notebooks

	1.10.1 Using IPython Interactive Mode as a Calculator

	1.10.2 Executing a Python Program Using the IPython Interpreter

	1.10.3 Writing and Executing Code in a Jupyter Notebook

	1.11 Internet and World Wide Web

	1.11.1 Internet: A Network of Networks

	1.11.2 World Wide Web: Making the Internet User-Friendly

	1.11.3 The Cloud

	1.11.4 Internet of Things

	1.12 Software Technologies

	1.13 How Big Is Big Data?

	1.13.1 Big Data Analytics

	1.13.2 Data Science and Big Data Are Making a Difference: Use Cases

	1.14 Case Study—A Big-Data Mobile Application

	1.15 Intro to Data Science: Artificial Intelligence—at the Intersection of CS and Data Science

	Exercises

1.1 Introduction

Welcome to Python—one of the world’s most widely used computer programming languages and, according to the Popularity of Programming Languages (PYPL) Index, the world’s most popular.1 You’re probably familiar with many of the powerful tasks computers perform. In this textbook, you’ll get intensive, hands-on experience writing Python instructions that command computers to perform those and other tasks. Software (that is, the Python instructions you write, which are also called code) controls hardware (that is, computers and related devices).
1. https://pypl.github.io/PYPL.html (as of January 2019).

Here, we introduce terminology and concepts that lay the groundwork for the Python programming you’ll learn in Chapters 2–11 and the big-data, artificial-intelligence and cloud-based case studies we present in Chapters 12–17. We’ll introduce hardware and software concepts and overview the data hierarchy—from individual bits to databases, which store the massive amounts of data companies need to implement contemporary applications such as Google Search, Waze, Uber, Airbnb and a myriad of others.

We’ll discuss the types of programming languages and introduce object-oriented programming terminology and concepts. You’ll learn why Python has become so popular. We’ll introduce the Python Standard Library and various data-science libraries that help you avoid “reinventing the wheel.” You’ll use these libraries to create software objects that you’ll interact with to perform significant tasks with modest numbers of instructions. We’ll introduce additional software technologies that you’re likely to use as you develop software.

Next, you’ll work through three test-drives showing how to execute Python code:

	In the first, you’ll use IPython to execute Python instructions interactively and immediately see their results.

	In the second, you’ll execute a substantial Python application that will display an animated bar chart summarizing rolls of a six-sided die as they occur. You’ll see the “Law of Large Numbers” in action. In Chapter 6, you’ll build this application with the Matplotlib visualization library.

	In the last, we’ll introduce Jupyter Notebooks using JupyterLab—an interactive, web-browser-based tool in which you can conveniently write and execute Python instructions. Jupyter Notebooks enable you to include text, images, audios, videos, animations and code.

In the past, most computer applications ran on “standalone” computers (that is, not networked together). Today’s applications can be written with the aim of communicating among the world’s computers via the Internet. We’ll introduce the Internet, the World Wide Web, the Cloud and the Internet of Things (IoT), laying the groundwork for the contemporary applications you’ll develop in Chapters 12–17.

You’ll learn just how big “big data” is and how quickly it’s getting even bigger. Next, we’ll present a big-data case study on the Waze mobile navigation app, which uses many current technologies to provide dynamic driving directions that get you to your destination as quickly and as safely as possible. As we walk through those technologies, we’ll mention where you’ll use many of them in this book. The chapter closes with our first Intro to Data Science section in which we discuss a key intersection between computer science and data science—artificial intelligence.

1.2 Hardware and Software

Computers can perform calculations and make logical decisions phenomenally faster than human beings can. Many of today’s personal computers can perform billions of calculations in one second—more than a human can perform in a lifetime. Supercomputers are already performing thousands of trillions (quadrillions) of instructions per second! IBM has developed the IBM Summit supercomputer, which can perform over 122 quadrillion calculations per second (122 petaflops)!2 To put that in perspective, the IBM Summit supercomputer can perform in one second almost 16 million calculations for every person on the planet!3 And supercomputing upper limits are growing quickly.
2. https://en.wikipedia.org/wiki/FLOPS.
3. For perspective on how far computing performance has come, consider this: In his early computing days, Harvey Deitel used the Digital Equipment Corporation PDP-1 (https://en.wikipedia.org/wiki/PDP-1), which was capable of performing only 93,458 operations per second.

Computers process data under the control of sequences of instructions called computer programs (or simply programs). These software programs guide the computer through ordered actions specified by people called computer programmers.

A computer consists of various physical devices referred to as hardware (such as the keyboard, screen, mouse, solid-state disks, hard disks, memory, DVD drives and processing units). Computing costs are dropping dramatically, due to rapid developments in hardware and software technologies. Computers that might have filled large rooms and cost millions of dollars decades ago are now inscribed on computer chips smaller than a fingernail, costing perhaps a few dollars each. Ironically, silicon is one of the most abundant materials on Earth—it’s an ingredient in common sand. Silicon-chip technology has made computing so economical that computers have become a commodity.

1.2.1 Moore’s Law

Every year, you probably expect to pay at least a little more for most products and services. The opposite has been the case in the computer and communications fields, especially with regard to the hardware supporting these technologies. For many decades, hardware costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpensively. This remarkable trend often is called Moore’s Law, named for the person who identified it in the 1960s, Gordon Moore, co-founder of Intel—one of the leading manufacturers of the processors in today’s computers and embedded systems. Moore’s Law and related observations apply especially to

	the amount of memory that computers have for programs,

	the amount of secondary storage (such as solid-state drive storage) they have to hold programs and data over longer periods of time, and

	their processor speeds—the speeds at which they execute their programs (that is, do their work).

Similar growth has occurred in the communications field—costs have plummeted as enormous demand for communications bandwidth (that is, information-carrying capacity) has attracted intense competition. We know of no other fields in which technology improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fostering the Information Revolution.

1.2.2 Computer Organization

Regardless of differences in physical appearance, computers can be envisioned as divided into various logical units or sections:

Input Unit

This “receiving” section obtains information (data and computer programs) from input devices and places it at the disposal of the other units for processing. Most user input is entered into computers through keyboards, touch screens and mouse devices. Other forms of input include receiving voice commands, scanning images and barcodes, reading from secondary storage devices (such as hard drives, Blu-ray Disc™ drives and USB flash drives—also called “thumb drives” or “memory sticks”), receiving video from a webcam and having your computer receive information from the Internet (such as when you stream videos from YouTube® or download e-books from Amazon). Newer forms of input include position data from a GPS device, motion and orientation information from an accelerometer (a device that responds to up/down, left/right and forward/backward acceleration) in a smartphone or wireless game controller (such as those for Microsoft® Xbox®, Nintendo Switch™ and Sony® PlayStation®) and voice input from intelligent assistants like Apple Siri®, Amazon Echo® and Google Home®.

Output Unit

This “shipping” section takes information the computer has processed and places it on various output devices to make it available for use outside the computer. Most information that’s output from computers today is displayed on screens (including touch screens), printed on paper (“going green” discourages this), played as audio or video on smartphones, tablets, PCs and giant screens in sports stadiums, transmitted over the Internet or used to control other devices, such as self-driving cars, robots and “intelligent” appliances. Information is also commonly output to secondary storage devices, such as solid-state drives (SSDs), hard drives, DVD drives and USB flash drives. Popular recent forms of output are smartphone and game-controller vibration, virtual reality devices like Oculus Rift®, Sony® PlayStation® VR and Google Daydream View™ and Samsung Gear VR®, and mixed reality devices like Magic Leap® One and Microsoft HoloLens™.

Memory Unit

This rapid-access, relatively low-capacity “warehouse” section retains information that has been entered through the input unit, making it immediately available for processing when needed. The memory unit also retains processed information until it can be placed on output devices by the output unit. Information in the memory unit is volatile—it’s typically lost when the computer’s power is turned off. The memory unit is often called either memory, primary memory or RAM (Random Access Memory). Main memories on desktop and notebook computers contain as much as 128 GB of RAM, though 8 to 16 GB is most common. GB stands for gigabytes; a gigabyte is approximately one billion bytes. A byte is eight bits. A bit is either a 0 or a 1.

Arithmetic and Logic Unit (ALU)

This “manufacturing” section performs calculations, such as addition, subtraction, multiplication and division. It also contains the decision mechanisms that allow the computer, for example, to compare two items from the memory unit to determine whether they’re equal. In today’s systems, the ALU is part of the next logical unit, the CPU.

Central Processing Unit (CPU)

This “administrative” section coordinates and supervises the operation of the other sections. The CPU tells the input unit when information should be read into the memory unit, tells the ALU when information from the memory unit should be used in calculations and tells the output unit when to send information from the memory unit to specific output devices. Most computers have multicore processors that implement multiple processors on a single integrated-circuit chip. Such processors can perform many operations simultaneously. A dual-core processor has two CPUs, a quad-core processor has four and an octa-core processor has eight. Intel has some processors with up to 72 cores. Today’s desktop computers have processors that can execute billions of instructions per second.

Secondary Storage Unit

This is the long-term, high-capacity “warehousing” section. Programs or data not actively being used by the other units normally are placed on secondary storage devices (e.g., your hard drive) until they’re again needed, possibly hours, days, months or even years later. Information on secondary storage devices is persistent—it’s preserved even when the computer’s power is turned off. Secondary storage information takes much longer to access than information in primary memory, but its cost per unit is much less. Examples of secondary storage devices include solid-state drives (SSDs), hard drives, read/write Blu-ray drives and USB flash drives. Many current drives hold terabytes (TB) of data—a terabyte is approximately one trillion bytes). Typical hard drives on desktop and notebook computers hold up to 4 TB, and some recent desktop-computer hard drives hold up to 15 TB.4
4. https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/.

[image:] Self Check for Section 1.2

	(Fill-In) Every year or two, the capacities of computers have approximately doubled inexpensively. This remarkable trend often is called .

Answer: Moore’s Law.

	(True/False) Information in the memory unit is persistent—it’s preserved even when the computer’s power is turned off

Answer: False. Information in the memory unit is volatile—it’s typically lost when the computer’s power is turned off.

	(Fill-In) Most computers have processors that implement multiple processors on a single integrated-circuit chip. Such processors can perform many operations simultaneously.

Answer: multicore.

1.3 Data Hierarchy

Data items processed by computers form a data hierarchy that becomes larger and more complex in structure as we progress from the simplest data items (called “bits”) to richer ones, such as characters and fields. The following diagram illustrates a portion of the data hierarchy:

[image: A diagram of a data hierarchy.]

1.3-1 Full Alternative Text

Bits

A bit (short for “binary digit”—a digit that can assume one of two values) is the smallest data item in a computer. It can have the value 0 or 1. Remarkably, the impressive functions performed by computers involve only the simplest manipulations of 0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to 0 or from 0 to 1). Bits for the basis of the binary number system, which you can study in-depth in our online “Number Systems” appendix.

Characters

Work with data in the low-level form of bits is tedious. Instead, people prefer to work with decimal digits (0–9), letters (A–Z and a–z) and special symbols such as

$ @ % & * () – + " : ; , ? /

Digits, letters and special symbols are known as characters. The computer’s character set contains the characters used to write programs and represent data items. Computers process only 1s and 0s, so a computer’s character set represents every character as a pattern of 1s and 0s. Python uses Unicode® characters that are composed of one, two, three or four bytes (8, 16, 24 or 32 bits, respectively)—known as UTF-8 encoding.5
5. https://docs.python.org/3/howto/unicode.html.

Unicode contains characters for many of the world’s languages. The ASCII (American Standard Code for Information Interchange) character set is a subset of Unicode that represents letters (a–z and A–Z), digits and some common special characters. You can view the ASCII subset of Unicode at

http://unicode.org/charts/PDF/U0000.pdf

The Unicode charts for all languages, symbols, emojis and more are viewable at

http://www.unicode.org/charts/

Fields

Just as characters are composed of bits, fields are composed of characters or bytes. A field is a group of characters or bytes that conveys meaning. For example, a field consisting of uppercase and lowercase letters can be used to represent a person’s name, and a field consisting of decimal digits could represent a person’s age.

Records

Several related fields can be used to compose a record. In a payroll system, for example, the record for an employee might consist of the following fields (possible types for these fields are shown in parentheses):

	Employee identification number (a whole number).

	Name (a string of characters).

	Address (a string of characters).

	Hourly pay rate (a number with a decimal point).

	Year-to-date earnings (a number with a decimal point).

	Amount of taxes withheld (a number with a decimal point).

Thus, a record is a group of related fields. All the fields listed above belong to the same employee. A company might have many employees and a payroll record for each.

Files

A file is a group of related records. More generally, a file contains arbitrary data in arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—any organization of the bytes in a file, such as organizing the data into records, is a view created by the application programmer. You’ll see how to do that in Chapter 9, “Files and Exceptions.” It’s not unusual for an organization to have many files, some containing billions, or even trillions, of characters of information.

Databases

A database is a collection of data organized for easy access and manipulation. The most popular model is the relational database, in which data is stored in simple tables. A table includes records and fields. For example, a table of students might include first name, last name, major, year, student ID number and grade-point-average fields. The data for each student is a record, and the individual pieces of information in each record are the fields. You can search, sort and otherwise manipulate the data, based on its relationship to multiple tables or databases. For example, a university might use data from the student database in combination with data from databases of courses, on-campus housing, meal plans, etc. We discuss databases in Chapter 17, “Big Data: Hadoop, Spark, NoSQL and IoT.”

Big Data

The table below shows some common byte measurements:

[image: A table shows common byte measurements]

1.3-2 Full Alternative Text

The amount of data being produced worldwide is enormous and its growth is accelerating. Big data applications deal with massive amounts of data. This field is growing quickly, creating lots of opportunity for software developers. Millions of IT jobs globally already are supporting big data applications. Section 1.13 discusses big data in more depth. You’ll study big data and associated technologies in Chapter 17.

[image:] Self Check

	(Fill-In) A(n) (short for “binary digit”—a digit that can assume one of two values) is the smallest data item in a computer.

Answer: bit.

	(True/False) In some operating systems, a file is viewed simply as a sequence of bytes—any organization of the bytes in a file, such as organizing the data into records, is a view created by the application programmer.

Answer: True.

	(Fill-In) A database is a collection of data organized for easy access and manipulation. The most popular model is the database, in which data is stored in simple tables.

Answer: relational

1.4 Machine Languages, Assembly Languages and High-Level Languages

Programmers write instructions in various programming languages, some directly understandable by computers and others requiring intermediate translation steps. Hundreds of such languages are in use today. These may be divided into three general types:

	Machine languages.

	Assembly languages.

	High-level languages.

Machine Languages

Any computer can directly understand only its own machine language, defined by its hardware design. Machine languages generally consist of strings of numbers (ultimately reduced to 1s and 0s) that instruct computers to perform their most elementary operations one at a time. Machine languages are machine dependent (a particular machine language can be used on only one type of computer). Such languages are cumbersome for humans. For example, here’s a section of an early machine-language payroll program that adds overtime pay to base pay and stores the result in gross pay:

+1300042774

+1400593419

+1200274027

Assembly Languages and Assemblers

Programming in machine language was simply too slow and tedious for most programmers. Instead of using the strings of numbers that computers could directly understand, programmers began using English-like abbreviations to represent elementary operations. These abbreviations formed the basis of assembly languages. Translator programs called assemblers were developed to convert assembly-language programs to machine language at computer speeds. The following section of an assembly-language payroll program also adds overtime pay to base pay and stores the result in gross pay:

load basepay

add overpay

store grosspay

Although such code is clearer to humans, it’s incomprehensible to computers until translated to machine language.

High-Level Languages and Compilers

With the advent of assembly languages, computer usage increased rapidly, but programmers still had to use numerous instructions to accomplish even the simplest tasks. To speed the programming process, high-level languages were developed in which single statements could be written to accomplish substantial tasks. A typical high-level-language program contains many statements, known as the program’s source code.

Translator programs called compilers convert high-level-language source code into machine language. High-level languages allow you to write instructions that look almost like everyday English and contain commonly used mathematical notations. A payroll program written in a high-level language might contain a single statement such as

grossPay = basePay + overTimePay

From the programmer’s standpoint, high-level languages are preferable to machine and assembly languages. Python is among the world’s most widely used high-level programming languages.

Interpreters

Compiling a large high-level language program into machine language can take considerable computer time. Interpreter programs, developed to execute high-level language programs directly, avoid the delay of compilation, although they run slower than compiled programs. The most widely used Python implementation—CPython (which is written in the C programming language)—uses a clever mixture of compilation and interpretation to run programs.6
6. https://opensource.com/article/18/4/introduction-python-bytecode.

[image:] Self Check

	(Fill-In) Translator programs called convert assembly-language programs to machine language at computer speeds.

Answer: assemblers.

	(Fill-In) programs, developed to execute high-level-language programs directly, avoid the delay of compilation, although they run slower than compiled programs

Answer: Interpreter.

	(True/False) High-level languages allow you to write instructions that look almost like everyday English and contain commonly used mathematical notations.

Answer: True.

1.5 Introduction to Object Technology

As demands for new and more powerful software are soaring, building software quickly, correctly and economically is important. Objects, or more precisely, the classes objects come from, are essentially reusable software components. There are date objects, time objects, audio objects, video objects, automobile objects, people objects, etc. Almost any noun can be reasonably represented as a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g., calculating, moving and communicating). Software-development groups can use a modular, object-oriented design-and-implementation approach to be much more productive than with earlier popular techniques like “structured programming.” Object-oriented programs are often easier to understand, correct and modify.

Automobile as an Object

To help you understand objects and their contents, let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by pressing its accelerator pedal. What must happen before you can do this? Well, before you can drive a car, someone has to design it. A car typically begins as engineering drawings, similar to the blueprints that describe the design of a house. These drawings include the design for an accelerator pedal. The pedal hides from the driver the complex mechanisms that make the car go faster, just as the brake pedal “hides” the mechanisms that slow the car, and the steering wheel “hides” the mechanisms that turn the car. This enables people with little or no knowledge of how engines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the blueprint of a kitchen, you cannot drive a car’s engineering drawings. Before you can drive a car, it must be built from the engineering drawings that describe it. A completed car has an actual accelerator pedal to make it go faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver must press the pedal to accelerate the car.

Methods and Classes

Let’s use our car example to introduce some key object-oriented programming concepts. Performing a task in a program requires a method. The method houses the program statements that perform its tasks. The method hides these statements from its user, just as the accelerator pedal of a car hides from the driver the mechanisms of making the car go faster. In Python, a program unit called a class houses the set of methods that perform the class’s tasks. For example, a class that represents a bank account might contain one method to deposit money to an account, another to withdraw money from an account and a third to inquire what the account’s balance is. A class is similar in concept to a car’s engineering drawings, which house the design of an accelerator pedal, steering wheel, and so on.

Instantiation

Just as someone has to build a car from its engineering drawings before you can drive a car, you must build an object of a class before a program can perform the tasks that the class’s methods define. The process of doing this is called instantiation. An object is then referred to as an instance of its class.

Reuse

Just as a car’s engineering drawings can be reused many times to build many cars, you can reuse a class many times to build many objects. Reuse of existing classes when building new classes and programs saves time and effort. Reuse also helps you build more reliable and effective systems because existing classes and components often have undergone extensive testing, debugging (that is, finding and removing errors) and performance tuning. Just as the notion of interchangeable parts was crucial to the Industrial Revolution, reusable classes are crucial to the software revolution that has been spurred by object technology.

In Python, you’ll typically use a building-block approach to create your programs. To avoid reinventing the wheel, you’ll use existing high-quality pieces wherever possible. This software reuse is a key benefit of object-oriented programming.

Messages and Method Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—that is, to go faster. Similarly, you send messages to an object. Each message is implemented as a method call that tells a method of the object to perform its task. For example, a program might call a bank-account object’s deposit method to increase the account’s balance.

Attributes and Instance Variables

A car, besides having capabilities to accomplish tasks, also has attributes, such as its color, its number of doors, the amount of gas in its tank, its current speed and its record of total miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are represented as part of its design in its engineering diagrams (which, for example, include an odometer and a fuel gauge). As you drive an actual car, these attributes are carried along with the car. Every car maintains its own attributes. For example, each car knows how much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These attributes are specified as part of the object’s class. For example, a bank-account object has a balance attribute that represents the amount of money in the account. Each bank-account object knows the balance in the account it represents, but not the balances of the other accounts in the bank. Attributes are specified by the class’s instance variables. A class’s (and its object’s) attributes and methods are intimately related, so classes wrap together their attributes and methods.

Inheritance

A new class of objects can be created conveniently by inheritance—the new class (called the subclass) starts with the characteristics of an existing class (called the superclass), possibly customizing them and adding unique characteristics of its own. In our car analogy, an object of class “convertible” certainly is an object of the more general class “automobile,” but more specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design (OOAD)

Soon you’ll be writing programs in Python. How will you create the code (i.e., the program instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on your computer and start typing. This approach may work for small programs (like the ones we present in the early chapters of the book), but what if you were asked to create a software system to control thousands of automated teller machines for a major bank? Or suppose you were asked to work on a team of 1,000 software developers building the next generation of the U.S. air traffic control system? For projects so large and complex, you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for determining your project’s requirements (i.e., defining what the system is supposed to do), then develop a design that satisfies them (i.e., specifying how the system should do it). Ideally, you’d go through this process and carefully review the design (and have your design reviewed by other software professionals) before writing any code. If this process involves analyzing and designing your system from an object-oriented point of view, it’s called an object-oriented analysis-and-design (OOAD) process. Languages like Python are object-oriented. Programming in such a language, called object-oriented programming (OOP), allows you to implement an object-oriented design as a working system.

[image:] Self Check for Section 1.5

	(Fill-In) To create the best solutions, you should follow a detailed analysis process for determining your project’s (i.e., defining what the system is supposed to do) and developing a design that satisfies them (i.e., specifying how the system should do it).

Answer: requirements.

	(Fill-In) The size, shape, color and weight of an object are of the object’s class.

Answer: attributes.

	(True/False) Objects, or more precisely, the classes objects come from, are essentially reusable software components.

Answer: True.

1.6 Operating Systems

Operating systems are software systems that make using computers more convenient for users, application developers and system administrators. They provide services that allow each application to execute safely, efficiently and concurrently with other applications. The software that contains the core components of the operating system is called the kernel. Linux, Windows and macOS are popular desktop computer operating systems—you can use any of these with this book. The most popular mobile operating systems used in smartphones and tablets are Google’s Android and Apple’s iOS.

Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a graphical user interface built on top of DOS (Disk Operating System)—an enormously popular personal-computer operating system that users interacted with by typing commands. Windows 10 is Microsoft’s latest operating system—it includes the Cortana personal assistant for voice interactions. Windows is a proprietary operating system—it’s controlled by Microsoft exclusively. Windows is by far the world’s most widely used desktop operating system.

Linux—An Open-Source Operating System

The Linux operating system is among the greatest successes of the open-source movement. Open-source software departs from the proprietary software development style that dominated software’s early years. With open-source development, individuals and companies contribute their efforts in developing, maintaining and evolving software in exchange for the right to use that software for their own purposes, typically at no charge. Open-source code is often scrutinized by a much larger audience than proprietary software, so errors often get removed faster. Open source also encourages innovation.

There are many organizations in the open-source community. Some key ones are:

	Python Software Foundation (responsible for Python).

	GitHub (provides tools for managing open-source projects—it has millions of them under development).

	The Apache Software Foundation (originally the creators of the Apache web server, they now oversee 350 open-source projects, including several big data infrastructure technologies we present in Chapter 17.

	The Eclipse Foundation (the Eclipse Integrated Development Environment helps programmers conveniently develop software)

	The Mozilla Foundation (creators of the Firefox web browser)

	OpenML (which focuses on open-source tools and data for machine learning—you’ll explore machine learning in Chapter 15).

	OpenAI (which does research on artificial intelligence and publishes open-source tools used in AI reinforcement-learning research).

	OpenCV (which focuses on open-source computer-vision tools that can be used across a range of operating systems and programming languages—you’ll study computer-vision applications in Chapter 16).

Rapid improvements to computing and communications, decreasing costs and open-source software have made it much easier and more economical to create software-based businesses now than just a decade ago. A great example is Facebook, which was launched from a college dorm room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed, full-featured operating system. It’s developed by a loosely organized team of volunteers and is popular in servers, personal computers and embedded systems (such as the computer systems at the heart of smartphones, smart TVs and automobile systems). Unlike that of proprietary operating systems like Microsoft’s Windows and Apple’s macOS, Linux source code (the program code) is available to the public for examination and modification and is free to download and install. As a result, Linux users benefit from a huge community of developers actively debugging and improving the kernel, and the ability to customize the operating system to meet specific needs.

Apple’s macOS and Apple’s iOS for iPhone® and iPad® Devices

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in personal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical user interface (GUI). That GUI served as the inspiration for the Apple Macintosh, launched in 1984.

The Objective-C programming language, created by Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP) to the C programming language. Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988, NeXT licensed Objective-C from Stepstone and developed an Objective-C compiler and libraries which were used as the platform for the NeXTSTEP operating system’s user interface, and Interface Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when they bought NeXT. Apple’s macOS operating system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is derived from macOS and is used in the iPhone, iPad, Apple Watch and Apple TV devices. In 2014, Apple introduced its new Swift programming language, which became open source in 2015. The iOS app-development community has largely shifted from Objective-C to Swift.

Google’s Android

Android—the fastest growing mobile and smartphone operating system—is based on the Linux kernel and the Java programming language. Android is open source and free.

According to idc.com, as of 2018, Android had 86.8% of the global smartphone market share, compared to 13.2% for Apple.7 The Android operating system is used in numerous smartphones, e-reader devices, tablets, in-store touch-screen kiosks, cars, robots, multimedia players and more.
7. https://www.idc.com/promo/smartphone-market-share/os.

Billions of Devices

In use today are Billions of personal computers and an even larger number of mobile devices. The following table lists many computerized devices. The explosive growth of mobile phones, tablets and other devices is creating significant opportunities for programming mobile apps. There are now various tools that enable you to use Python for Android and iOS app development, including BeeWare, Kivy, PyMob, Pythonista and others. Many are cross-platform, meaning that you can use them to develop apps that will run portably on Android, iOS and other platforms (like the web).

Computerized devices

	Access control systems

	Airplane systems

	ATMs

	Automobiles

	Blu-ray Disc™ players

	Building controls

	Cable boxes

	Copiers

	Credit cards

	CT scanners

	Desktop computers

	e-Readers

	Game consoles

	GPS navigation systems

	Home appliances

	Home security systems

	Internet-of-Things gateways

	Light switches

	Logic controllers

	Lottery systems

	Medical devices

	Mobile phones

	MRIs

	Network switches

	Optical sensors

	Parking meters

	Personal computers

	Point-of-sale terminals

	Printers

	Robots

	Routers

	Servers

	Smartcards

	Smart meters

	Smartpens

	Smartphones

	Tablets

	Televisions

	Thermostats

	Transportation passes

	TV set-top boxes

	Vehicle diagnostic systems

[image:] Self Check for Section 1.6

	(Fill-In) Windows is a(n) operating system—it’s controlled by Microsoft exclusively.

Answer: proprietary.

	(True/False) Proprietary code is often scrutinized by a much larger audience than open-source software, so errors often get removed faster.

Answer: False. Open-source code is often scrutinized by a much larger audience than proprietary software, so errors often get removed faster.

	(True/False) iOS dominates the global smartphone market over Android.

Answer: False. Android currently controls 88% of the smartphone market.

1.7 Python

Python is an object-oriented scripting language that was released publicly in 1991. It was developed by Guido van Rossum of the National Research Institute for Mathematics and Computer Science in Amsterdam.

Python has rapidly become one of the world’s most popular programming languages. It’s now particularly popular for educational and scientific computing,8 and it recently surpassed the programming language R as the most popular data-science programming language.9,10,11 Here are some reasons why Python is popular and everyone should consider learning it:12,13,14
8. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
9. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html.
10. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/.
11. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
12. https://dbader.org/blog/why-learn-python.
13. https://simpleprogrammer.com/2017/01/18/7-reasons-why-you-should-learn-python/.
14. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.

	It’s open source, free and widely available with a massive open-source community.

	It’s easier to learn than languages like C, C++, C# and Java, enabling novices and professional developers to get up to speed quickly.

	It’s easier to read than many other popular programming languages.

	It’s widely used in education.15
15. Tollervey, N., Python in Education: Teach, Learn, Program (O’Reilly Media, Inc., 2015).

	It enhances developer productivity with extensive standard libraries and thousands of third-party open-source libraries, so programmers can write code faster and perform complex tasks with minimal code. We’ll say more about this in Section 1.8.

	There are massive numbers of free open-source Python applications.

	It’s popular in web development (e.g., Django, Flask).

	It supports popular programming paradigms—procedural, functional, object-oriented and reflective.16 We’ll begin introducing functional-style programming features in Chapter 4 and use them in subsequent chapters.
16. https://en.wikipedia.org/wiki/Python_(programming_language).

	It simplifies concurrent programming—with asyncio and async/await, you’re able to write single-threaded concurrent code17, greatly simplifying the inherently complex processes of writing, debugging and maintaining that code.18
17. https://docs.python.org/3/library/asyncio.html.
18. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.

	There are lots of capabilities for enhancing Python performance.

	It’s used to build anything from simple scripts to complex apps with massive numbers of users, such as Dropbox, YouTube, Reddit, Instagram and Quora.19
19. https://www.hartmannsoftware.com/Blog/Articles_from_Software_Fans/Most-Famous-Software-Programs-Written-in-Python.

	It’s popular in artificial intelligence, which is enjoying explosive growth, in part because of its special relationship with data science.

	It’s widely used in the financial community.20
20. Kolanovic, M. and R. Krishnamachari, Big Data and AI Strategies: Machine Learning and Alternative Data Approach to Investing (J.P. Morgan, 2017).

	There’s an extensive job market for Python programmers across many disciplines, especially in data-science-oriented positions, and Python jobs are among the highest paid of all programming jobs.21,22
21. https://www.infoworld.com/article/3170838/developer/get-paid-10-programming-languages-to-learn-in-2017.html.
22. https://medium.com/@ChallengeRocket/top-10-of-programming-languages-with-the-highest-salaries-in-2017-4390f468256e.

Anaconda Python Distribution

We use the Anaconda Python distribution because it’s easy to install on Windows, macOS and Linux and supports the latest versions of Python (3.7 at the time of this writing), the IPython interpreter (introduced in Section 1.10.1) and Jupyter Notebooks (introduced in Section 1.10.3). Anaconda also includes other software packages and libraries commonly used in Python programming and data science, allowing students to focus on learning Python, computer science and data science, rather than software installation issues. The IPython interpreter23 has features that help students and professionals explore, discover and experiment with Python, the Python Standard Library and the extensive set of third-party libraries.
23. https://ipython.org/.

Zen of Python

We adhere to Tim Peters’ The Zen of Python, which summarizes Python creator Guido van Rossum’s design principles for the language. This list can be viewed in IPython with the command import this. The Zen of Python is defined in Python Enhancement Proposal (PEP) 20. “A PEP is a design document providing information to the Python community, or describing a new feature for Python or its processes or environment.”24
24. https://www.python.org/dev/peps/pep-0001/.

[image:] Self Check

	(Fill-In) The summarizes Python creator Guido van Rossum’s design principles for the Python language.

Answer: Zen of Python.

	(True/False) The Python language supports popular programming paradigms—procedural, functional, object-oriented and reflective.

Answer: True.

	(True/False) R is most the popular data-science programming language.

Answer: False. Python recently surpassed R as the most popular data-science programming language.

1.8 It’s the Libraries!

Throughout the book, we focus on using existing libraries to help you avoid “reinventing the wheel,” thus leveraging your program-development efforts. Often, rather than developing lots of original code—a costly and time-consuming process—you can simply create an object of a pre-existing library class, which takes only a single Python statement. So, libraries will help you perform significant tasks with modest amounts of code. You’ll use a broad range of Python standard libraries, data-science libraries and other third-party libraries.

1.8.1 Python Standard Library

The Python Standard Library provides rich capabilities for text/binary data processing, mathematics, functional-style programming, file/directory access, data persistence, data compression/archiving, cryptography, operating-system services, concurrent programming, interprocess communication, networking protocols, JSON/XML/other Internet data formats, multimedia, internationalization, GUI, debugging, profiling and more. The following table lists some of the Python Standard Library modules that we use in examples or that you’ll explore in the exercises.

Some of the Python Standard Library modules we use in the book

	collections—Additional data structures beyond lists, tuples, dictionaries and sets.

csv—Processing comma-separated value files.

datetime, time—Date and time manipulations.

decimal—Fixed-point and floating-point arithmetic, including monetary calculations.

doctest—Simple unit testing via validation tests and expected results embedded in docstrings.

json—JavaScript Object Notation (JSON) processing for use with web services and NoSQL document databases.

math—Common math constants and operations.

	os—Interacting with the operating system.

timeit—Performance analysis.

queue—First-in, first-out data structure.

random—Pseudorandom numbers.

re—Regular expressions for pattern matching.

sqlite3—SQLite relational database access.

statistics—Mathematical statistics functions like mean, median, modeand variance.

string—String processing.

sys—Command-line argument processing; standard input, standard output and standard error streams.

1.8.2 Data-Science Libraries

Python has an enormous and rapidly growing community of open-source developers in many fields. One of the biggest reasons for Python’s popularity is the extraordinary range of open-source libraries developed by the open-source community. One of our goals is to create examples, exercises, projects (EEPs) and implementation case studies that give you an engaging, challenging and entertaining introduction to Python programming, while also involving you in hands-on data science, key data-science libraries and more. You’ll be amazed at the substantial tasks you can accomplish in just a few lines of code. The following table lists various popular data-science libraries. You’ll use many of these as you work through our data-science examples, exercises and projects. For visualization, we’ll focus primarily on Matplotlib and Seaborn, but there are many more. For a nice summary of Python visualization libraries see http://pyviz.org/.

Popular Python libraries used in data science

	

Scientific Computing and Statistics

NumPy (Numerical Python)— Python does not have a built-in array data structure. It uses lists, which are convenient but relatively slow. NumPy provides the more efficient ndarray data structure to represent lists and matrices, and it also provides routines for processing such data structures.

SciPy (Scientific Python)— Built on NumPy, SciPy adds routines for scientific processing, such as integrals, differential equations, additional matrix processing and more. scipy.org controls SciPy and NumPy.

StatsModels— Provides support for estimations of statistical models, statistical tests and statistical data exploration.

	

Data Manipulation and Analysis

Pandas— An extremely popular library for data manipulations. Pandas makes abundant use of NumPy’s ndarray. Its two key data structures are Series (one dimensional) and DataFrames (two dimensional).

	Visualization

Matplotlib— A highly customizable visualization and plotting library. Supported plots include regular, scatter, bar, contour, pie, quiver, grid, polar axis, 3D and text.

Seaborn— A higher-level visualization library built on Matplotlib. Seaborn adds a nicer look-and-feel, additional visualizations and enables you to create visualizations with less code.

	Machine Learning, Deep Learning and Reinforcement Learning

scikit-learn— Top machine-learning library. Machine learning is a subset of AI. Deep learning is a subset of machine learning that focuses on neural networks.

Keras— One of the easiest to use deep-learning libraries. Keras runs on top of TensorFlow (Google), CNTK (Microsoft’s cognitive toolkit for deep learning) or Theano (Université de Montréal).

TensorFlow— From Google, this is the most widely used deep learning library. TensorFlow works with GPUs (graphics processing units) or Google’s custom TPUs (Tensor processing units) for performance. TensorFlow is important in AI and big data analytics—where processing demands are enormous. You’ll use the version of Keras that’s built into TensorFlow.

OpenAI Gym— A library and environment for developing, testing and comparing reinforcement-learning algorithms. You’ll explore this in the Chapter 16 exercises.

	Natural Language Processing (NLP)

NLTK (Natural Language Toolkit)— Used for natural language processing (NLP) tasks.

TextBlob— An object-oriented NLP text-processing library built on the NLTK and pattern NLP libraries. TextBlob simplifies many NLP tasks.

Gensim— Similar to NLTK. Commonly used to build an index for a collection of documents, then determine how similar another document is to each of those in the index. You’ll explore this in the Chapter 12 exercises.

[image:] Self Check for Section 1.8

	(Fill-In) help you avoid “reinventing the wheel,” thus leveraging your program-development efforts.

Answer: Libraries.

	(Fill-In) The provides rich capabilities for many common Python programming tasks.

Answer: Python Standard Library.

1.9 Other Popular Programming Languages

The following is a brief introduction to several other popular programming languages—in the next section, we take a deeper look at Python:

	Basic was developed in the 1960s at Dartmouth College to familiarize novices with programming techniques. Many of its latest versions are object-oriented.

	C was developed in the early 1970s by Dennis Ritchie at Bell Laboratories. It initially became widely known as the UNIX operating system’s development language. Today, most code for general-purpose operating systems and other performance-critical systems is written in C or C++.

	C++, which is based on C, was developed by Bjarne Stroustrup in the early 1980s at Bell Laboratories. C++ provides features that enhance the C language and adds capabilities for object-oriented programming.

	Java—Sun Microsystems in 1991 funded an internal corporate research project led by James Gosling, which resulted in the C++-based object-oriented programming language called Java. A key goal of Java is to enable developers to write programs that will run on a great variety of computer systems. This is called “write once, run anywhere.” Java is used to develop enterprise applications, to enhance the functionality of web servers (the computers that provide the content to our web browsers), to provide applications for consumer devices (e.g., smartphones, tablets, television set-top boxes, appliances, automobiles and more) and for many other purposes. Java was originally the key language for developing Android smartphone and tablet apps, though several other languages are now supported.

	C# (based on C++ and Java) is one of Microsoft’s three primary object-oriented programming languages—the other two are Visual C++ and Visual Basic. C# was developed to integrate the web into computer applications and is now widely used to develop many types of applications. As part of Microsoft’s many open-source initiatives implemented over the last few years, they now offer open-source versions of C# and Visual Basic.

	JavaScript is the most widely used scripting language. It’s primarily used to add programmability to web pages—for example, animations and interactivity with the user. All major web browsers support it. Many Python visualization libraries output JavaScript as part of visualizations that you can interact with in your web browser. Tools like NodeJS also enable JavaScript to run outside of web browsers.

	Swift, which was introduced in 2014, is Apple’s programming language for developing iOS and macOS apps. Swift is a contemporary language that includes popular features from languages such as Objective-C, Java, C#, Ruby, Python and others. Swift is open source, so it can be used on non-Apple platforms as well.

	R is a popular open-source programming language for statistical applications and visualization. Python and R are the two most widely data-science languages.

[image:] Self Check

	(Fill-In) Today, most code for general-purpose operating systems and other performance-critical systems is written in .

Answer: C or C++.

	(Fill-In) A key goal of is to enable developers to write programs that will run on a great variety of computer systems and computer-controlled devices. This is sometimes called “write once, run anywhere.”

Answer: Java.

1.10 Test-Drive: Using IPython and Jupyter Notebooks

In this section, you’ll test-drive the IPython interpreter25 in two modes:
25. Before reading this section, follow the instructions in the Before You Begin section to install the Anaconda Python distribution, which contains the IPython interpreter.

	In interactive mode, you’ll enter small bits of Python code called snippets and immediately see their results.

	In script mode, you’ll execute code loaded from a file that has the .py extension (short for Python). Such files are called scripts or programs, and they’re generally longer than the code snippets you’ll do in interactive mode.

Then, you’ll learn how to use the browser-based environment known as the Jupyter Notebook for writing and executing Python code.26
26. Jupyter supports many programming languages by installing their "kernels." For more information see https://github.com/jupyter/jupyter/wiki/Jupyter-kernels.

1.10.1 Using IPython Interactive Mode as a Calculator

Let’s use IPython interactive mode to evaluate simple arithmetic expressions.

Entering IPython in Interactive Mode

First, open a command-line window on your system:

	On macOS, open a Terminal from the Applications folder’s Utilities subfolder.

	On Windows, open the Anaconda Command Prompt from the start menu.

	On Linux, open your system’s Terminal or shell (this varies by Linux distribution).

In the command-line window, type ipython, then press Enter (or Return). You’ll see text like the following, this varies by platform and by IPython version:

Python 3.7.0 | packaged by conda-forge | (default, Jan 20 2019, 17:24:52)

Type 'copyright', 'credits' or 'license' for more information

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

The text "In [1]:" is a prompt, indicating that IPython is waiting for your input. You can type ? for help or begin entering snippets, as you’ll do momentarily.

Evaluating Expressions

In interactive mode, you can evaluate expressions:

In [1]: 45 + 72

Out[1]: 117

In [2]:

After you type 45 + 72 and press Enter, IPython reads the snippet, evaluates it and prints its result in Out[1].27 Then IPython displays the In [2] prompt to show that it’s waiting for you to enter your second snippet. For each new snippet, IPython adds 1 to the number in the square brackets. Each In [1] prompt in the book indicates that we’ve started a new interactive session. We generally do that for each new section of a chapter.
27. In the next chapter, you’ll see that there are some cases in which Out[] is not displayed.

Let’s evaluate a more complex expression:

In [2]: 5 * (12.7 - 4) / 2

Out[2]: 21.75

Python uses the asterisk (*) for multiplication and the forward slash (/) for division. As in mathematics, parentheses force the evaluation order, so the parenthesized expression (12.7 - 4) evaluates first, giving 8.7. Next, 5 * 8.7 evaluates giving 43.5. Then, 43.5 / 2 evaluates, giving the result 21.75, which IPython displays in Out[2]. Whole numbers, like 5, 4 and 2, are called integers. Numbers with decimal points, like 12.7, 43.5 and 21.75, are called floating-point numbers.

Exiting Interactive Mode

To leave interactive mode, you can:

	Type the exit command at the current In [] prompt and press Enter to exit immediately.

	Type the key sequence <Ctrl> + d (or <control> + d). This displays the prompt "Do you really want to exit ([y]/n)?". The square brackets around y indicate that it’s the default response—pressing Enter submits the default response and exits.

	Type <Ctrl> + d (or <control> + d) twice (macOS and Linux only).

[image:] Self Check

	(Fill-In) In IPython interactive mode, you’ll enter small bits of Python code called and immediately see their results.

Answer: snippets.

	In IPython mode, you’ll execute Python code loaded from a file that has the .py extension (short for Python).

Answer: script.

	(IPython Session) Evaluate the expression 5 * (3 + 4) both with and without the parentheses. Do you get the same result? Why or why not?

Answer: You get different results because snippet [1] first calculates 3 + 4, which is 7, then multiplies that by 5. Snippet [2] first multiplies 5 * 3, which is 15, then adds that to 4.

In [1]: 5 * (3 + 4)

Out[1]: 35

In [2]: 5 * 3 + 4

Out[2]: 19

1.10.2 Executing a Python Program Using the IPython Interpreter

In this section, you’ll execute a script named RollDieDynamic.py that you’ll write in Chapter 6. The .py extension indicates that the file contains Python source code. The script RollDieDynamic.py simulates rolling a six-sided die. It presents a colorful animated visualization that dynamically graphs the frequencies of each die face.

Changing to This Chapter’s Examples Folder

You’ll find the script in the book’s ch01 source-code folder. In the Before You Begin section you extracted the examples folder to your user account’s Documents folder. Each chapter has a folder containing that chapter’s source code. The folder is named ch##, where ## is a two-digit chapter number from 01 to 17. First, open your system’s command-line window. Next, use the cd (“change directory”) command to change to the ch01 folder:

	On macOS/Linux, type cd ~/Documents/examples/ch01, then press Enter.

	On Windows, type cd C:\Users\YourAccount\Documents\examples\ch01, then press Enter.

Executing the Script

To execute the script, type the following command at the command line, then press Enter:

ipython RollDieDynamic.py 6000 1

The script displays a window, showing the visualization. The numbers 6000 and 1 tell this script the number of times to roll dice and how many dice to roll each time. In this case, we’ll update the chart 6000 times for 1 die at a time.

For a six-sided die, the values 1 through 6 should each occur with “equal likelihood”—the probability of each is 1/6th or about 16.667%. If we roll a die 6000 times, we’d expect about 1000 of each face. Like coin tossing, die rolling is random, so there could be some faces with fewer than 1000, some with 1000 and some with more than 1000. We took the screen captures on the next page during the script’s execution. This script uses randomly generated die values, so your results will differ. Experiment with the script by changing the value 1 to 100, 1000 and 10000. Notice that as the number of die rolls gets larger, the frequencies zero in on 16.667%. This is a phenomenon of the “Law of Large Numbers.”

Creating Scripts

Typically, you create your Python source code in an editor that enables you to type text. Using the editor, you type a program, make any necessary corrections and save it to your computer. Integrated development environments (IDEs) provide tools that support the entire software-development process, such as editors, debuggers for locating logic errors that cause programs to execute incorrectly and more. Some popular Python IDEs include Spyder (which comes with Anaconda), PyCharm and Visual Studio Code.

[image: 2 bar graphs titled, Roll the dice 6 thousand times and roll 1 die each time: i python Roll Die Dynamic. Py 6000 1.]

1.10-3 Full Alternative Text

Problems That May Occur at Execution Time

Programs often do not work on the first try. For example, an executing program might try to divide by zero (an illegal operation in Python). This would cause the program to display an error message. If this occurred in a script, you’d return to the editor, make the necessary corrections and re-execute the script to determine whether the corrections fixed the problem(s).

Errors such as division by zero occur as a program runs, so they’re called runtime errors or execution-time errors. Fatal runtime errors cause programs to terminate immediately without having successfully performed their jobs. Non-fatal runtime errors allow programs to run to completion, often producing incorrect results.

[image:] Self Check

	

 (Discussion) When the example in this section finishes all 6000 rolls, does the chart show that the die faces appeared about 1000 times each?

Answer: Most likely, yes. This example is based on random-number generation, so the results may vary. Because of this randomness, most of the counts will be a little more than 1000 or a little less.

	

 (Discussion) Run the example in this section again. Do the faces appear the same number of times as they did in the previous execution?

Answer: Probably not. This example uses random-number generation, so successive executions likely will produce different results. In Chapter 4, we’ll show how to force Python to produce the same sequence of random numbers. This is important for reproducibility—a crucial data-science topic you’ll investigate in the chapter exercises and throughout the book. You’ll want other data scientists to be able to reproduce your results. Also, you’ll want to be able to reproduce your own experimental results. This is helpful when you find and fix an error in your program and want to make sure that you’ve corrected it properly.

1.10.3 Writing and Executing Code in a Jupyter Notebook

The Anaconda Python Distribution that you installed in the Before You Begin section comes with the Jupyter Notebook—an interactive, browser-based environment in which you can write and execute code and intermix the code with text, images and video. Jupyter Notebooks are broadly used in the data-science community in particular and the broader scientific community in general. They’re the preferred means of doing Python-based data analytics studies and reproducibly communicating their results. The Jupyter Notebook environment actually supports many programming languages.

For your convenience, all of the book’s source code also is provided in Jupyter Notebooks that you can simply load and execute. In this section, you’ll use the JupyterLab interface, which enables you to manage your notebook files and other files that your notebooks use (like images and videos). As you’ll see, JupyterLab also makes it convenient to write code, execute it, see the results, modify the code and execute it again.

You’ll see that coding in a Jupyter Notebook is similar to working with IPython—in fact, Jupyter Notebooks use IPython by default. In this section, you’ll create a notebook, add the code from Section 1.10.1 to it and execute that code.

Opening JupyterLab in Your Browser

To open JupyterLab, change to the ch01 examples folder in your Terminal, shell or Anaconda Command Prompt (as in Section 1.10.2), type the following command, then press Enter (or Return):

jupyter lab

This executes the Jupyter Notebook server on your computer and opens JupyterLab in your default web browser, showing the ch01 folder’s contents in the File Browser tab

[image: a folder]

at the left side of the JupyterLab interface:

[image: A computer screen shot of the Jupyter Lab interface.]

1.10-5 Full Alternative Text

The Jupyter Notebooks server enables you to load and run Jupyter Notebooks in your web browser. From the JupyterLab Files tab, you can double-click files to open them in the right side of the window where the Launcher tab is currently displayed. Each file you open appears as a separate tab in this part of the window. If you accidentally close your browser, you can reopen JupyterLab by entering the following address in your web browser

http://localhost:8888/lab

Creating a New Jupyter Notebook

In the Launcher tab under Notebook, click the Python 3 button to create a new Jupyter Notebook named Untitled.ipynb in which you can enter and execute Python 3 code. The file extension .ipynb is short for IPython Notebook—the original name of the Jupyter Notebook.

Renaming the Notebook

Rename Untitled.ipynb as TestDrive.ipynb:

	Right-click the Untitled.ipynb tab and select Rename Notebook….

	Change the name to TestDrive.ipynb and click RENAME.

The top of JupyterLab should now appear as follows:

[image: A screen shot shows how to rename a Notebook in Jupyter Lab. The left screen shows a file name highlighted to the left and a window to the right is open to Launcher and a file named test drive with a blank line open.]

Evaluating an Expression

The unit of work in a notebook is a cell in which you can enter code snippets. By default, a new notebook contains one cell—the rectangle in the TestDrive.ipynb notebook—but you can add more. To the cell’s left, the notation []: is where the Jupyter Notebook will display the cell’s snippet number after you execute the cell. Click in the cell, then type the expression

45 + 72

To execute the current cell’s code, type Ctrl + Enter (or control + Enter). JupyterLab executes the code in IPython, then displays the results below the cell:

[image: A screen shot shows how to add and execute another cell in Jupyter Lab. The left screen shows a file name highlighted and a window to the right is open to Launcher and a file named test drive with 2 added cells below the tool bar.]

Adding and Executing Another Cell

Let’s evaluate a more complex expression. First, click the + button in the toolbar above the notebook’s first cell—this adds a new cell below the current one:

[image: A screen shot shows how to add and execute another cell in Jupyter Lab. The left screen shows a file name highlighted and a window to the right is open to Launcher and a file named test drive with 3 added cells below the tool bar.]

Click in the new cell, then type the expression

5 * (12.7 - 4) / 2

and execute the cell by typing Ctrl + Enter (or control + Enter):

[image: A screen shot shows how to add and execute another cell in Jupyter Lab. The left screen shows a file name highlighted and a window to the right is open to Launcher and a file named test drive with 4 added cells below the tool bar with equations.]

Saving the Notebook

If your notebook has unsaved changes, the X in the notebook’s tab will change to [image:]. To save the notebook, select the File menu in JupyterLab (not at the top of your browser’s window), then select Save Notebook.

Notebooks Provided with Each Chapter’s Examples

For your convenience, each chapter’s examples also are provided as ready-to-execute notebooks without their outputs. This enables you to work through them snippet-by-snippet and see the outputs appear as you execute each snippet.

So that we can show you how to load an existing notebook and execute its cells, let’s reset the TestDrive.ipynb notebook to remove its output and snippet numbers. This will return it to a state like the notebooks we provide for the subsequent chapters’ examples. From the Kernel menu select Restart Kernel and Clear All Outputs…, then click the RESTART button. The preceding command also is helpful whenever you wish to re-execute a notebook’s snippets. The notebook should now appear as follows:

[image: A screen shot shows how the Notebook should appear when Restart Kernel and clear all Outputs has been selected. The window to the right is open to Launcher and a file named test drive with 2 added cells below the tool bar.]

From the File menu, select Save Notebook, then click the TestDrive.ipynb tab’s X button to close the notebook.

Opening and Executing an Existing Notebook

When you launch JupyterLab from a given chapter’s examples folder, you’ll be able to open notebooks from that folder or any of its subfolders. Once you locate a specific notebook, double-click it to open it. Open the TestDrive.ipynb notebook again now. Once a notebook is open, you can execute each cell individually, as you did earlier in this section, or you can execute the entire notebook at once. To do so, from the Run menu select Run All Cells. The notebook will execute the cells in order, displaying each cell’s output below that cell.

Closing JupyterLab

When you’re done with JupyterLab, you can close its browser tab, then in the Terminal, shell or Anaconda Command Prompt from which you launched JupyterLab, type Ctrl + c (or control + c) twice.

JupyterLab Tips

While working in JupyterLab, you might find these tips helpful:

	If you need to enter and execute many snippets, you can execute the current cell and add a new one below it by typing Shift + Enter, rather than Ctrl + Enter (or control + Enter).

	As you get into the later chapters, some of the snippets you’ll enter in Jupyter Notebooks will contain many lines of code. To display line numbers within each cell, select Show line numbers from JupyterLab’s View menu.

More Information on Working with JupyterLab

JupyterLab has many more features that you’ll find helpful. We recommend that you read the Jupyter team’s introduction to JupyterLab at:

https://jupyterlab.readthedocs.io/en/stable/index.html

For a quick overview, click Overview under GETTING STARTED. Also, under USER GUIDE read the introductions to The JupyterLab Interface, Working with Files, Text Editor and Notebooks for many additional features.

[image:] Self Check

	

 (True/False) Jupyter Notebooks are the preferred means of doing Python-based data analytics studies and reproducibly communicating their results.

Answer: True.

	

 (Jupyter Notebook Session) Ensure that JupyterLab is running, then open your TestDrive.ipynb notebook. Add and execute two more snippets that evaluate the expression 5 * (3 + 4) both with and without the parentheses. You should see the same results as in Section 1.10.1’s Self Check Exercise 3.

Answer:

[image: A screen shot shows the answer in a window to the right with highlighted lines at the bottom of the screen showing one line with 5 times 3 plus t and last line with 19.]

1.11 Internet and World Wide Web

In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States Department of Defense—rolled out plans for networking the main computer systems of approximately a dozen ARPA-funded universities and research institutions. The computers were to be connected with communications lines operating at speeds on the order of 50,000 bits per second, a stunning rate at a time when most people (of the few who even had networking access) were connecting over telephone lines to computers at a rate of 110 bits per second. Academic research was about to take a giant leap forward. ARPA proceeded to implement what quickly became known as the ARPANET, the precursor to today’s Internet. Today’s fastest Internet speeds are on the order of billions of bits per second with trillion-bits-per-second (terabit) speeds already being tested!28
28. https://testinternetspeed.org/blog/bt-testing-1-4-terabit-internet-connections/.

Things worked out differently from the original plan. Although the ARPANET enabled researchers to network their computers, its main benefit proved to be the capability for quick and easy communication via what came to be known as electronic mail (e-mail). This is true even on today’s Internet, with e-mail, instant messaging, file transfer and social media such as Snapchat, Instagram, Facebook and Twitter enabling billions of people worldwide to communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became known as the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of sequentially numbered pieces called packets, were properly delivered from sender to receiver, arrived intact and were assembled in the correct order.

1.11.1 Internet: A Network of Networks

In parallel with the early evolution of the Internet, organizations worldwide were implementing their own networks for both intra-organization (that is, within an organization) and inter-organization (that is, between organizations) communication. A huge variety of networking hardware and software appeared. One challenge was to enable these different networks to communicate with each other. ARPA accomplished this by developing the Internet Protocol (IP), which created a true “network of networks,” the current architecture of the Internet. The combined set of protocols is now called TCP/IP. Each Internet-connected device has an IP address—a unique numerical identifier used by devices communicating via TCP/IP to locate one another on the Internet.

Businesses rapidly realized that by using the Internet, they could improve their operations and offer new and better services to their clients. Companies started spending large amounts of money to develop and enhance their Internet presence. This generated fierce competition among communications carriers and hardware and software suppliers to meet the increased infrastructure demand. As a result, bandwidth—the information-carrying capacity of communications lines—on the Internet has increased tremendously, while hardware costs have plummeted.

1.11.2 World Wide Web: Making the Internet User-Friendly

The World Wide Web (simply called “the web”) is a collection of hardware and software associated with the Internet that allows computer users to locate and view documents (with various combinations of text, graphics, animations, audios and videos) on almost any subject. In 1989, Tim Berners-Lee of CERN (the European Organization for Nuclear Research) began developing HyperText Markup Language (HTML)—the technology for sharing information via “hyperlinked” text documents. He also wrote communication protocols such as HyperText Transfer Protocol (HTTP) to form the backbone of his new hypertext information system, which he referred to as the World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium (W3C, https://www.w3.org), devoted to developing web technologies. One of the W3C’s primary goals is to make the web universally accessible to everyone regardless of disabilities, language or culture.

1.11.3 The Cloud

More and more computing today is done “in the cloud”—that is, distributed across the Internet worldwide. The apps you use daily are heavily dependent on various cloud-based services that use massive clusters of computing resources (computers, processors, memory, disk drives, etc.) and databases that communicate over the Internet with each other and the apps you use. A service that provides access to itself over the Internet is known as a web service. As you’ll see, using cloud-based services in Python often is as simple as creating a software object and interacting with it. That object then uses web services that connect to the cloud on your behalf.

Throughout the Chapters 12–17 examples and exercises, you’ll work with many cloud-based services:

	In Chapters 13 and 17, you’ll use Twitter’s web services (via the Python library Tweepy) to get information about specific Twitter users, search for tweets from the last seven days and to receive streams of tweets as they occur—that is, in real time.

	In Chapters 12 and 13, you’ll use the Python library TextBlob to translate text between languages. Behind the scenes, TextBlob uses the Google Translate web service to perform those translations.

	In Chapter 14, you’ll use the IBM Watson’s Text to Speech, Speech to Text and Translate services. You’ll implement a traveler’s assistant translation app that enables you to speak a question in English, transcribes the speech to text, translates the text to Spanish and speaks the Spanish text. The app then allows you to speak a Spanish response (in case you don’t speak Spanish, we provide an audio file you can use), transcribes the speech to text, translates the text to English and speaks the English response. Via IBM Watson demos, you’ll also experiment with many other Watson cloud-based services in Chapter 14.

	In Chapter 17, you’ll work with Microsoft Azure’s HDInsight service and other Azure web services as you learn to implement big-data applications using Apache Hadoop and Spark. Azure is Microsoft’s set of cloud-based services.

	In Chapter 17, you’ll use the Dweet.io web service to simulate an Internet-connected thermostat that publishes temperature readings online. You’ll also use a web-based service to create a “dashboard” that visualizes the temperature readings over time and warns you if the temperature gets too low or too high.

	In Chapter 17, you’ll use a web-based dashboard to visualize a simulated stream of live sensor data from the PubNub web service. You’ll also create a Python app that visualizes a PubNub simulated stream of live stock-price changes.

	In multiple exercises, you’ll research, explore and use Wikipedia web services.

In most cases, you’ll create Python objects that interact with web services on your behalf, hiding the details of how to access these services over the Internet.

Mashups

The applications-development methodology of mashups enables you to rapidly develop powerful software applications by combining (often free) complementary web services and other forms of information feeds—as you’ll do in our IBM Watson traveler’s assistant translation app. One of the first mashups combined the real-estate listings provided by http://www.craigslist.org with the mapping capabilities of Google Maps to offer maps that showed the locations of homes for sale or rent in a given area.

ProgrammableWeb (http://www.programmableweb.com/) provides a directory of over 20,750 web services and almost 8,000 mashups. They also provide how-to guides and sample code for working with web services and creating your own mashups. According to their website, some of the most widely used web services are Facebook, Google Maps, Twitter and YouTube.

1.11.4 Internet of Things

The Internet is no longer just a network of computers—it’s an Internet of Things (IoT). A thing is any object with an IP address and the ability to send, and in some cases receive, data automatically over the Internet. Such things include:

	a car with a transponder for paying tolls,

	monitors for parking-space availability in a garage,

	a heart monitor implanted in a human,

	water quality monitors,

	a smart meter that reports energy usage,

	radiation detectors,

	item trackers in a warehouse,

	mobile apps that can track your movement and location,

	smart thermostats that adjust room temperatures based on weather forecasts and activity in the home, and

	intelligent home appliances.

According to statista.com, there are already over 23 billion IoT devices in use today, and there could be over 75 billion IoT devices in 2025.29
29. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/.

[image:] Self Check for Section 1.11

	(Fill-In) The was the precursor to today’s Internet.

Answer: ARPANET.

	(Fill-In) The (simply called “the web”) is a collection of hardware and software associated with the Internet that allows computer users to locate and view documents (with various combinations of text, graphics, animations, audios and videos).

Answer: World Wide Web.

	(Fill-In) In the Internet of Things (IoT), a thing is any object with a(n) and the ability to send, and in some cases receive, data automatically over the Internet.

Answer: IP address.

1.12 Software Technologies

As you learn about and work in software development, you’ll frequently encounter the following buzzwords:

	Refactoring: Reworking programs to make them clearer and easier to maintain while preserving their correctness and functionality. Many IDEs contain built-in refactoring tools to do major portions of the reworking automatically.

	Design patterns: Proven architectures for constructing flexible and maintainable object-oriented software. The field of design patterns tries to enumerate those recurring patterns, encouraging software designers to reuse them to develop better-quality software using less time, money and effort.

	Cloud computing: You can use software and data stored in the “cloud”—i.e., accessed on remote computers (or servers) via the Internet and available on demand—rather than having it stored locally on your desktop, notebook computer or mobile device. This allows you to increase or decrease computing resources to meet your needs at any given time, which is more cost effective than purchasing hardware to provide enough storage and processing power to meet occasional peak demands. Cloud computing also saves money by shifting to the service provider the burden of managing these apps (such as installing and upgrading the software, security, backups and disaster recovery).

	Software Development Kits (SDKs)—The tools and documentation that developers use to program applications. For example, in Chapter 14, you’ll use the Watson Developer Cloud Python SDK to interact with IBM Watson services from a Python application.

[image:] Self Check

	(Fill-In) is the process of reworking programs to make them clearer and easier to maintain while preserving their correctness and functionality.

Answer: refactoring.

1.13 How Big Is Big Data?

For computer scientists and data scientists, data is now as important as writing programs. According to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily,30 and 90% of the world’s data was created in the last two years.31 According to IDC, the global data supply will reach 175 zettabytes (equal to 175 trillion gigabytes or 175 billion terabytes) annually by 2025.32 Consider the following examples of various popular data measures.
30. https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/.
31. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
32. https://www.networkworld.com/article/3325397/storage/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html.

Megabytes (MB)

One megabyte is about one million (actually 220) bytes. Many of the files we use on a daily basis require one or more MBs of storage. Some examples include:

	MP3 audio files—High-quality MP3s range from 1 to 2.4 MB per minute.33
33. https://www.audiomountain.com/tech/audio-file-size.html.

	Photos—JPEG format photos taken on a digital camera can require about 8 to 10 MB per photo.

	Video—Smartphone cameras can record video at various resolutions. Each minute of video can require many megabytes of storage. For example, on one of our iPhones, the Camera settings app reports that 1080p video at 30 frames-per-second (FPS) requires 130 MB/minute and 4K video at 30 FPS requires 350 MB/minute.

Gigabytes (GB)

One gigabyte is about 1000 megabytes (actually 230 bytes). A dual-layer DVD can store up to 8.5 GB34, which translates to:
34. https://en.wikipedia.org/wiki/DVD.

	as much as 141 hours of MP3 audio,

	approximately 1000 photos from a 16-megapixel camera,

	approximately 7.7 minutes of 1080p video at 30 FPS, or

	approximately 2.85 minutes of 4K video at 30 FPS.

The current highest-capacity Ultra HD Blu-ray discs can store up to 100 GB of video.35 Streaming a 4K movie can use between 7 and 10 GB per hour (highly compressed).
35. https://en.wikipedia.org/wiki/Ultra_HD_Blu-ray.

Terabytes (TB)

One terabyte is about 1000 gigabytes (actually 240 bytes). Recent disk drives for desktop computers come in sizes up to 15 TB,36 which is equivalent to:
36. https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/.

	approximately 28 years of MP3 audio,

	approximately 1.68 million photos from a 16-megapixel camera,

	approximately 226 hours of 1080p video at 30 FPS and

	approximately 84 hours of 4K video at 30 FPS.

Nimbus Data now has the largest solid-state drive (SSD) at 100 TB, which can store 6.67 times the 15-TB examples of audio, photos and video listed above.37
37. https://www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/.

Petabytes, Exabytes and Zettabytes

There are nearly four billion people online creating about 2.5 quintillion bytes of data each day38—that’s 2500 petabytes (each petabyte is about 1000 terabytes) or 2.5 exabytes (each exabyte is about 1000 petabytes). According to a March 2016 AnalyticsWeek article, within five years there will be over 50 billion devices connected to the Internet (most of them through the Internet of Things, which we discuss in Sections 1.11.4 and 17.8) and by 2020 we’ll be producing 1.7 megabytes of new data every second for every person on the planet.39 At today’s numbers (approximately 7.7 billion people40), that’s about
38. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
39. https://analyticsweek.com/content/big-data-facts/.
40. https://en.wikipedia.org/wiki/World_population.

	13 petabytes of new data per second,

	780 petabytes per minute,

	46,800 petabytes (46.8 exabytes) per hour and

	1,123 exabytes per day—that’s 1.123 zettabytes (ZB) per day (each zettabyte is about 1000 exabytes).

That’s the equivalent of over 5.5 million hours (over 600 years) of 4K video every day or approximately 116 billion photos every day!

Additional Big-Data Stats

For a real-time sense of big data, check out https://www.internetlivestats.com, with various statistics, including the numbers so far today of

	Google searches.

	Tweets.

	Videos viewed on YouTube.

	Photos uploaded on Instagram.

You can click each statistic to drill down for more information. For instance, they say over 250 billion tweets have been sent in 2018.

Some other interesting big-data facts:

	Every hour, YouTube users upload 24,000 hours of video, and almost 1 billion hours of video are watched on YouTube every day.41
41. https://www.brandwatch.com/blog/youtube-stats/.

	Every second, there are 51,773 GBs (or 51.773 TBs) of Internet traffic, 7894 tweets sent, 64,332 Google searches and 72,029 YouTube videos viewed.42
42. http://www.internetlivestats.com/one-second.

	On Facebook each day there are 800 million “likes,”43 60 million emojis are sent,44 and there are over two billion searches of the more than 2.5 trillion Facebook posts since the site’s inception.45
43. https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook.
44. https://mashable.com/2017/07/17/facebook-world-emoji-day/.
45. https://techcrunch.com/2016/07/27/facebook-will-make-you-talk/.

	In June 2017, Will Marshall, CEO of Planet, said the company has 142 satellites that image the whole planet’s land mass once per day. They add one million images and seven TBs of new data each day. Together with their partners, they’re using machine learning on that data to improve crop yields, see how many ships are in a given port and track deforestation. With respect to Amazon deforestation, he said: “Used to be we’d wake up after a few years and there’s a big hole in the Amazon. Now we can literally count every tree on the planet every day.”46
46. https://www.bloomberg.com/news/videos/2017-06-30/learning-from-planet-s-shoe-boxed-sized-satellites-video, June 30, 2017.

Domo, Inc. has a nice infographic called “Data Never Sleeps 6.0” showing how much data is generated every minute, including:47
47. https://www.domo.com/learn/data-never-sleeps-6.

	473,400 tweets sent.

	2,083,333 Snapchat photos shared.

	97,222 hours of Netflix video viewed.

	12,986,111 million text messages sent.

	49,380 Instagram posts.

	176,220 Skype calls.

	750,000 Spotify songs streamed.

	3,877,140 Google searches.

	4,333,560 YouTube videos watched.

Computing Power Over the Years

Data is getting more massive and so is the computing power for processing it. The performance of today’s processors is often measured in terms of FLOPS (floating-point operations per second). In the early to mid-1990s, the fastest supercomputer speeds were measured in gigaflops (109 FLOPS). By the late 1990s, Intel produced the first teraflop (1012 FLOPS) supercomputers. In the early-to-mid 2000s, speeds reached hundreds of teraflops, then in 2008, IBM released the first petaflop (1015 FLOPS) supercomputer. Currently, the fastest supercomputer—the IBM Summit, located at the Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL)—is capable of 122.3 petaflops.48
48. https://en.wikipedia.org/wiki/FLOPS.

Distributed computing can link thousands of personal computers via the Internet to produce even more FLOPS. In late 2016, the Folding@home network—a distributed network in which people volunteer their personal computers’ resources for use in disease research and drug design49—was capable of over 100 petaflops.50 Companies like IBM are now working toward supercomputers capable of exaflops (1018 FLOPS).51
49. https://en.wikipedia.org/wiki/Folding@home.
50. https://en.wikipedia.org/wiki/FLOPS.
51. https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-model-exascale/.

The quantum computers now under development theoretically could operate at 18,000,000,000,000,000,000 times the speed of today’s “conventional computers”!52 This number is so extraordinary that in one second, a quantum computer theoretically could do staggeringly more calculations than the total that have been done by all computers since the world’s first computer appeared. This almost unimaginable computing power could wreak havoc with blockchain-based cryptocurrencies like Bitcoin. Engineers are already rethinking blockchain to prepare for such massive increases in computing power.53
52. https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quantum-computing-406a0a91fcf4.
53. https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-to-blockchain-technology/.

The history of supercomputing power is that it eventually works its way down from research labs, where extraordinary amounts of money have been spent to achieve those performance numbers, into “reasonably priced” commercial computer systems and even desktop computers, laptops, tablets and smartphones.

Computing power’s cost continues to decline, especially with cloud computing. People used to ask the question, “How much computing power do I need on my system to deal with my peak processing needs?” Today, that thinking has shifted to “Can I quickly carve out on the cloud what I need temporarily for my most demanding computing chores?” You pay for only what you use to accomplish a given task.

Processing the World’s Data Requires Lots of Electricity

Data from the world’s Internet-connected devices is exploding, and processing that data requires tremendous amounts of energy. According to a recent article, energy use for processing data in 2015 was growing at 20% per year and consuming approximately three to five percent of the world’s power. The article says that total data-processing power consumption could reach 20% by 2025.54
54. https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025.

Another enormous electricity consumer is the blockchain-based cryptocurrency Bitcoin. Processing just one Bitcoin transaction uses approximately the same amount of energy as powering the average American home for a week. The energy use comes from the process Bitcoin “miners” use to prove that transaction data is valid.55
55. https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-consumption-ethereum-energy-climate-change.

According to some estimates, a year of Bitcoin transactions consumes more energy than many countries.56 Together, Bitcoin and Ethereum (another popular blockchain-based platform and cryptocurrency) consume more energy per year than Israel and almost as much as Greece.57
56. https://digiconomist.net/bitcoin-energy-consumption.
57. https://digiconomist.net/ethereum-energy-consumption.

Morgan Stanley predicted in 2018 that “the electricity consumption required to create cryptocurrencies this year could actually outpace the firm’s projected global electric vehicle demand—in 2025.”58 This situation is unsustainable, especially given the huge interest in blockchain-based applications, even beyond the cryptocurrency explosion. The blockchain community is working on fixes.59,60
58. https://www.morganstanley.com/ideas/cryptocurrencies-global-utilities.
59. https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energy-but-theres-a-plan-to-fix-it/.
60. http://mashable.com/2017/12/01/bitcoin-energy/.

Big-Data Opportunities

The big-data explosion is likely to continue exponentially for years to come. With 50 billion computing devices on the horizon, we can only imagine how many more there will be over the next few decades. It’s crucial for businesses, governments, the military, and even individuals to get a handle on all this data.

It’s interesting that some of the best writings about big data, data science, artificial intelligence and more are coming out of distinguished business organizations, such as J.P. Morgan, McKinsey and more. Big data’s appeal to big business is undeniable given the rapidly accelerating accomplishments. Many companies are making significant investments and getting valuable results through technologies in this book, such as big data, machine learning, deep learning, and natural-language processing. This is forcing competitors to invest as well, rapidly increasing the need for computing professionals with data-science and computer science experience. This growth is likely to continue for many years.

[image:] Self Check

	(Fill-In) Today’s processor performance is often measured in terms of .

Answer: FLOPS (floating-point operations per second).

	(Fill-In) The technology that could wreak havoc with blockchain-based cryptocurrencies, like Bitcoin, and other blockchain-based technologies is .

Answer: quantum computers.

	(True/False) With cloud computing you pay a fixed price for cloud services regardless of how much you use those services?

Answer: False. A key cloud-computing benefit is that you pay for only what you use to accomplish a given task.

1.13.1 Big Data Analytics

Data analytics is a mature and well-developed academic and professional discipline. The term “data analysis” was coined in 1962,61 though people have been analyzing data using statistics for thousands of years going back to the ancient Egyptians.62 Big data analytics is a more recent phenomenon—the term “big data” was coined around 2000.63
61. https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/.
62. https://www.flydata.com/blog/a-brief-history-of-data-analysis/.
63. https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/.

Consider four of the V’s of big data64,65:
64. https://www.ibmbigdatahub.com/infographic/four-vs-big-data.
65. There are lots of articles and papers that add many other “V-words” to this list.

	Volume—the amount of data the world is producing is growing exponentially.

	Velocity—the speed at which that data is being produced, the speed at which it moves through organizations and the speed at which data changes are growing quickly.66,67,68
66. https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/.
67. https://whatis.techtarget.com/definition/3Vs.
68. https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-variety-focus-on-velocity.

	Variety—data used to be alphanumeric (that is, consisting of alphabetic characters, digits, punctuation and some special characters)—today it also includes images, audios, videos and data from an exploding number of Internet of Things sensors in our homes, businesses, vehicles, cities and more.

	Veracity—the validity of the data—is it complete and accurate? Can we trust that data when making crucial decisions? Is it real?

Most data is now being created digitally in a variety of types, in extraordinary volumes and moving at astonishing velocities. Moore’s Law and related observations have enabled us to store data economically and to process and move it faster—and all at rates growing exponentially over time. Digital data storage has become so vast in capacity, cheap and small that we can now conveniently and economically retain all the digital data we’re creating.69 That’s big data.
69. http://www.lesk.com/mlesk/ksg97/ksg.html. [The following article pointed us to this Michael Lesk article: https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/.]

The following Richard W. Hamming quote—although from 1962—sets the tone for the rest of this book:

“The purpose of computing is insight, not numbers.”70
70. Hamming, R. W., Numerical Methods for Scientists and Engineers (New York, NY., McGraw Hill, 1962). [The following article pointed us to Hamming’s book and his quote that we cited: https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/.]

Data science is producing new, deeper, subtler and more valuable insights at a remarkable pace. It’s truly making a difference. Big data analytics is an integral part of the answer. We address big data infrastructure in Chapter 17 with hands-on case studies on NoSQL databases, Hadoop MapReduce programming, Spark, real-time Internet of Things (IoT) stream programming and more.

To get a sense of big data’s scope in industry, government and academia, check out the high-resolution graphic.71 You can click to zoom for easier readability:
71. Turck, M., and J. Hao, “Great Power, Great Responsibility: The 2018 Big Data & AI Landscape,” http://mattturck.com/bigdata2018/.

http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png

1.13.2 Data Science and Big Data Are Making a Difference: Use Cases

The data-science field is growing rapidly because it’s producing significant results that are making a difference. We enumerate data-science and big data use cases in the following table. We expect that the use cases and our examples, exercises and projects will inspire interesting term projects, directed-study projects, capstone-course projects and thesis research. Big-data analytics has resulted in improved profits, better customer relations, and even sports teams winning more games and championships while spending less on players.72,73,74
72. Sawchik, T., Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak (New York, Flat Iron Books, 2015).
73. Ayres, I., Super Crunchers (Bantam Books, 2007), pp. 7–10.
74. Lewis, M., Moneyball: The Art of Winning an Unfair Game (W. W. Norton & Company, 2004).

Data-science use cases

anomaly detection

assisting people with disabilities

auto-insurance risk prediction

automated closed captioning

automated image captions

automated investing

autonomous ships

brain mapping

caller identification

cancer diagnosis/treatment

carbon emissions reduction

classifying handwriting

computer vision

credit scoring

crime: predicting locations

crime: predicting recidivism

crime: predictive policing

crime: prevention

CRISPR gene editing

crop-yield improvement

customer churn

customer experience

customer retention

customer satisfaction

customer service

customer service agents

customized diets

cybersecurity

data mining

data visualization

detecting new viruses

diagnosing breast cancer

diagnosing heart disease

diagnostic medicine

disaster-victim identification

drones

dynamic driving routes

dynamic pricing

electronic health records

emotion detection

energy-consumption reduction

facial recognition

fitness tracking

fraud detection

game playing

genomics and healthcare

Geographic Information Systems

(GIS)

GPS Systems

health outcome improvement

hospital readmission reduction

human genome sequencing

identity-theft prevention

immunotherapy

insurance pricing

intelligent assistants

Internet of Things (IoT) and

medical device monitoring

Internet of Things and weather

forecasting

inventory control

language translation

location-based services

loyalty programs

malware detection

mapping

marketing

marketing analytics

music generation

natural-language translation

new pharmaceuticals

opioid abuse prevention

personal assistants

personalized medicine

personalized shopping

phishing elimination

pollution reduction

precision medicine

predicting cancer survival

predicting disease outbreaks

predicting health outcomes

predicting student enrollments

predicting weather-sensitive

product sales

predictive analytics

preventative medicine

preventing disease outbreaks

reading sign language

real-estate valuation

recommendation systems

reducing overbooking

ride sharing

risk minimization

robo financial advisors

security enhancements

self-driving cars

sentiment analysis

sharing economy

similarity detection

smart cities

smart homes

smart meters

smart thermostats

smart traffic control

social analytics

social graph analysis

spam detection

spatial data analysis

sports recruiting and coaching

stock market forecasting

student performance assessment

summarizing text

telemedicine

terrorist attack prevention

theft prevention

travel recommendations

trend spotting

visual product search

voice recognition

voice search

weather forecasting

1.14 Case Study—A Big-Data Mobile Application

Google’s Waze GPS navigation app, with its 90 million monthly active users,75 is one of the most widely used big-data apps. Early GPS navigation devices and apps relied on static maps and GPS coordinates to determine the best route to your destination. They could not adjust dynamically to changing traffic situations.
75. https://www.waze.com/brands/drivers/.

Waze processes massive amounts of crowdsourced data—that is, the data that’s continuously supplied by their users and their users’ devices worldwide. They analyze this data as it arrives to determine the best route to get you to your destination in the least amount of time. To accomplish this, Waze relies on your smartphone’s Internet connection. The app automatically sends location updates to their servers (assuming you allow it to). They use that data to dynamically re-route you based on current traffic conditions and to tune their maps. Users report other information, such as roadblocks, construction, obstacles, vehicles in breakdown lanes, police locations, gas prices and more. Waze then alerts other drivers in those locations.

Waze uses many technologies to provide its services. We’re not privy to how Waze is implemented, but we infer below a list of technologies they probably use. You’ll see many of these in Chapters 12–17. For example,

	Most apps created today use at least some open-source software. You’ll take advantage of many open-source libraries and tools throughout this book.

	Waze communicates information over the Internet between their servers and their users’ mobile devices. Today, such data typically is transmitted in JSON (JavaScript Object Notation) format, which we’ll introduce in Chapter 9 and use in subsequent chapters. Often the JSON data will be hidden from you by the libraries you use.

	Waze uses speech synthesis to speak driving directions and alerts to you, and speech recognition to understand your spoken commands. We use IBM Watson’s speech-synthesis and speech-recognition capabilities in Chapter 14.

	Once Waze converts a spoken natural-language command to text, it must determine the correct action to perform, which requires natural language processing (NLP). We present NLP in Chapter 12 and use it in several subsequent chapters.

	Waze displays dynamically updated visualizations such as alerts and maps. Waze also enables you to interact with the maps by moving them or zooming in and out. We create dynamic visualizations with Matplotlib and Seaborn throughout the book, and we display interactive maps with Folium in Chapters 13 and 17.

	Waze uses your phone as a streaming Internet of Things (IoT) device. Each phone is a GPS sensor that continuously streams data over the Internet to Waze. In Chapter 17, we introduce IoT and work with simulated IoT streaming sensors.

	Waze receives IoT streams from millions of phones at once. It must process, store and analyze that data immediately to update your device’s maps, to display and speak relevant alerts and possibly to update your driving directions. This requires massively parallel processing capabilities implemented with clusters of computers in the cloud. In Chapter 17, we’ll introduce various big-data infrastructure technologies for receiving streaming data, storing that big data in appropriate databases and processing the data with software and hardware that provide massively parallel processing capabilities.

	Waze uses artificial-intelligence capabilities to perform the data-analysis tasks that enable it to predict the best routes based on the information it receives. In Chapters 15 and 16 we use machine learning and deep learning, respectively, to analyze massive amounts of data and make predictions based on that data.

	Waze probably stores its routing information in a graph database. Such databases can efficiently calculate shortest routes. We introduce graph databases, such as Neo4J, in Chapter 17. Exercise 17.7 asks you to solve the popular “six degrees of separation” problem with Neo4j.

	Many cars are now equipped with devices that enable them to “see” cars and obstacles around them. These are used, for example, to help implement automated braking systems and are a key part of self-driving car technology. Rather than relying on users to report obstacles and stopped cars on the side of the road, navigation apps could take advantage of cameras and other sensors by using deep-learning computer-vision techniques to analyze images “on the fly” and automatically report those items. We introduce deep learning for computer vision in Chapter 16.

1.15 Intro to Data Science: Artificial Intelligence—at the Intersection of CS and Data Science

When a baby first opens its eyes, does it “see” its parent’s faces? Does it understand any notion of what a face is—or even what a simple shape is? Babies must “learn” the world around them. That’s what artificial intelligence (AI) is doing today. It’s looking at massive amounts of data and learning from it. AI is being used to play games, implement a wide range of computer-vision applications, enable self-driving cars, enable robots to learn to perform new tasks, diagnose medical conditions, translate speech to other languages in near real time, create chatbots that can respond to arbitrary questions using massive databases of knowledge, and much more. Who’d have guessed just a few years ago that artificially intelligent self-driving cars would be allowed on our roads—or even become common? Yet, this is now a highly competitive area. The ultimate goal of all this learning is artificial general intelligence—an AI that can perform intelligence tasks as well as humans.

Artificial-Intelligence Milestones

Several artificial-intelligence milestones, in particular, captured people’s attention and imagination, made the general public start thinking that AI is real and made businesses think about commercializing AI:

	In a 1997 match between IBM’s DeepBlue computer system and chess Grandmaster Gary Kasparov, DeepBlue became the first computer to beat a reigning world chess champion under tournament conditions.76 IBM loaded DeepBlue with hundreds of thousands of grandmaster chess games.77 DeepBlue was capable of using brute force to evaluate up to 200 million moves per second!78 This is big data at work. IBM received the Carnegie Mellon University Fredkin Prize, which in 1980 offered $100,000 to the creators of the first computer to beat a world chess champion.79
76. https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov.
77. https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer).
78. https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer).
79. https://articles.latimes.com/1997/jul/30/news/mn-17696.

	In 2011, IBM’s Watson beat the two best human Jeopardy! players in a $1 million match. Watson simultaneously used hundreds of language-analysis techniques to locate correct answers in 200 million pages of content (including all of Wikipedia) requiring four terabytes of storage.80,81 Watson was trained with machine learning and reinforcement-learning techniques.82 Chapter 16 discusses machine-learning and Chapter 17’s exercises introduce reinforcement learning.
80. https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/.
81. https://en.wikipedia.org/wiki/Watson_(computer).
82. https://www.aaai.org/Magazine/Watson/watson.php, AI Magazine, Fall 2010.

	Go—a board game created in China thousands of years ago83—is widely considered to be one of the most complex games ever invented with 10170 possible board configurations.84 To give you a sense of how large a number that is, it’s believed that there are (only) between 1078 and 1087 atoms in the known universe!85,86 In 2015, AlphaGo—created by Google’s DeepMind group—used deep learning with two neural networks to beat the European Go champion Fan Hui. Go is considered to be a far more complex game than chess. Chapter 17 discusses neural networks and deep learning.
83. http://www.usgo.org/brief-history-go.
84. https://www.pbs.org/newshour/science/google-artificial-intelligence-beats-champion-at-worlds-most-complicated-board-game.
85. https://www.universetoday.com/36302/atoms-in-the-universe/.
86. https://en.wikipedia.org/wiki/Observable_universe#Matter_content.

	More recently, Google generalized its AlphaGo AI to create AlphaZero—a game-playing AI that teaches itself to play other games. In December 2017, AlphaZero learned the rules of and taught itself to play chess in less than four hours using reinforcement learning. It then beat the world champion chess program, Stockfish 8, in a 100-game match—winning or drawing every game. After training itself in Go for just eight hours, AlphaZero was able to play Go vs. its AlphaGo predecessor, winning 60 of 100 games.87 Chapter 17 discusses reinforcement learning.
87. https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours.

A Personal Anecdote

When one of the authors, Harvey Deitel, was an undergraduate student at MIT in the mid-1960s, he took a graduate-level artificial-intelligence course with Marvin Minsky (to whom this book is dedicated), one of the founders of artificial intelligence (AI). Harvey:

Professor Minsky required a major term project. He told us to think about what intelligence is and to make a computer do something intelligent. Our grade in the course would be almost solely dependent on the project. No pressure!

I researched the standardized IQ tests that schools administer to help evaluate their students’ intelligence capabilities. Being a mathematician at heart, I decided to tackle the popular IQ-test problem of predicting the next number in a sequence of numbers of arbitrary length and complexity. I used interactive Lisp running on an early Digital Equipment Corporation PDP-1 and was able to get my sequence predictor running on some pretty complex stuff, handling challenges well beyond what I recalled seeing on IQ tests. Lisp’s ability to manipulate arbitrarily long lists recursively was exactly what I needed to meet the project’s requirements. Python offers recursion (Chapter 11) and generalized list processing (Chapter 5).

I tried the sequence predictor on many of my MIT classmates. They would make up number sequences and type them into my predictor. The PDP-1 would “think” for a while—often a long while—and almost always came up with the right answer.

Then I hit a snag. One of my classmates typed in the sequence 14, 23, 34 and 42. My predictor went to work on it, and the PDP-1 chugged away for a long time, failing to predict the next number. I couldn’t get it either. My classmate told me to think about it overnight, and he’d reveal the answer the next day, claiming that it was a simple sequence. My efforts were to no avail.

The following day he told me the next number was 57, but I didn’t understand why. So he told me to think about it overnight again, and the following day he said the next number was 125. That didn’t help a bit—I was stumped. He said that the sequence was the numbers of the two-way crosstown streets of Manhattan. I cried, “foul,” but he said it met my criterion of predicting the next number in a numerical sequence. My world view was mathematics—his was broader.

Over the years, I’ve tried that sequence on friends, relatives and professional colleagues. A few who either lived in Manhattan or spent time there got it right. My sequence predictor needed a lot more than just mathematical knowledge to handle problems like this, requiring (a possibly vast) world knowledge.

Watson and Big Data Open New Possibilities

When Paul and I started working on this Python book, we were immediately drawn to IBM’s Watson using big data and artificial-intelligence techniques like natural language processing (NLP) and machine learning to beat two of the world’s best human Jeopardy! players. We realized that Watson could probably handle problems like the sequence predictor because it was loaded with the world’s street maps and a whole lot more. That whet our appetite for digging in deep on big data and today’s artificial-intelligence technologies.

It’s notable that all of the data-science implementation case studies in Chapters 12 to 17 either are rooted in artificial intelligence technologies or discuss the big data hardware and software infrastructure that enables data scientists to implement leading-edge AI-based solutions effectively.

AI: A Field with Problems But No Solutions

For many decades, AI has been a field with problems and no solutions. That’s because once a particular problem is solved people say, “Well, that’s not intelligence, it’s just a computer program that tells the computer exactly what to do.” However, with machine learning (Chapter 15), deep learning (Chapter 16) and reinforcement learning (Chapter 16 exercises), we’re not pre-programming solutions to specific problems. Instead, we’re letting our computers solve problems by learning from data—and, typically, lots of it.

Many of the most interesting and challenging problems are being pursued with deep learning. Google alone has thousands of deep-learning projects underway and that number is growing quickly.88, 89 As you work through this book, we’ll introduce you to many edge-of-the-practice artificial intelligence, big data and cloud technologies and you’ll work through hundreds of (often intriguing) examples, exercises and projects.
88. http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelligence-projects-works.
89. https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/.

[image:] Self Check

	(Fill-In) The ultimate goal of AI is to produce a(n) .

Answer: artificial general intelligence.

	(Fill-In) IBM’s Watson beat the two best human Jeopardy! players. Watson was trained using a combination of learning and learning techniques.

Answer: machine, reinforcement.

	(Fill-In) Google’s taught itself to play chess in less than four hours using reinforcement learning, then beat the world champion chess program, Stockfish 8, in a 100-game match—winning or drawing every game.

Answer: AlphaZero.

Exercises

	

1.1 (IPython Session) Using the techniques you learned in Section 1.10.1, execute the following expressions. Which, if any, produce a runtime error?

	10 / 3

	10 // 3

	10 / 0

	10 // 0

	0 / 10

	0 // 10

	

1.2 (IPython Session) Using the techniques you learned in Section 1.10.1, execute the following expressions. Which, if any, produce a runtime error?

	10 / 3 + 7

	10 // 3 + 7

	10 / (3 + 7)

	10 / 3 - 3

	10 / (3 - 3)

	10 // (3 - 3)

	

1.3 (Creating a Jupyter Notebook) Using the techniques you learned in Section 1.10.3, create a Jupyter Notebook containing cells for the previous exercise’s expressions and execute those expressions.

	

1.4 (Computer Organization) Fill in the blanks in each of the following statements:

	The logical unit that receives information from outside the computer for use by the computer is the .

	 is a logical unit that sends information which has already been processed by the computer to various devices so that it may be used outside the computer.

	 and are logical units of the computer that retain information.

	 is a logical unit of the computer that performs calculations.

	 is a logical unit of the computer that makes logical decisions.

	 is a logical unit of the computer that coordinates the activities of all the other logical units.

	

1.5 (Clock as an Object) Clocks are among the world’s most common objects. Discuss how each of the following terms and concepts applies to the notion of a clock: class, object, instantiation, instance variable, reuse, method, inheritance (consider, for example, an alarm clock), superclass, subclass.

	

1.6 (Gender Neutrality) Write down the steps of a manual procedure for processing a paragraph of text and replacing gender-specific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific words and their gender-neutral replacements (for example, replace “wife” or “husband” with “spouse,” replace “man” or “woman” with “person,” replace “daughter” or “son” with “child,” and so on), explain the procedure you’d use to read through a paragraph of text and manually perform these replacements. How might your procedure generate a strange term like “woperchild” and how might you modify your procedure to avoid this possibility? In Chapter 3, you’ll learn that a more formal computing term for “procedure” is “algorithm,” and that an algorithm specifies the steps to be performed and the order in which to perform them.

	

1.7 (Self-Driving Cars) Just a few years back the notion of driverless cars on our streets would have seemed impossible (in fact, our spell-checking software doesn’t recognize the word “driverless”). Many of the technologies you’ll study in this book are making self-driving cars possible. They’re already common in some areas.

	If you hailed a taxi and a driverless taxi stopped for you, would you get into the back seat? Would you feel comfortable telling it where you want to go and trusting that it would get you there? What kinds of safety measures would you want in place? What would you do if the car headed off in the wrong direction?

	What if two self-driving cars approached a one-lane bridge from opposite directions? What protocol should they go through to determine which car should proceed?

	If a police officer pulls over a speeding self-driving car in which you’re the only passenger, who—or what entity—should pay the ticket?

	What if you’re behind a car stopped at a red light, the light turns green and the car doesn’t move? You honk and nothing happens. You get out of your car and notice that there’s no driver. What would you do?

	One serious concern with self-driving vehicles is that they could potentially be hacked. Someone could set the speed high (or low), which could be dangerous. What if they redirect you to a destination other than what you want?

	Imagine other scenarios that self-driving cars will encounter.

	

1.8 (Research: Reproducibility) A crucial concept in data-science studies is reproducibility, which helps others (and you) reproduce your results. Research reproducibility and list the concepts used to create reproducible results in data-science studies. Research and discuss the part that Jupyter Notebooks play in reproducibility.

	

1.9 (Research: Artificial General Intelligence) One of the most ambitious goals in the field of AI is to achieve artificial general intelligence—the point at which machine intelligence would equal human intelligence. Research this intriguing topic. When is this forecast to happen? What are some key ethical issues this raises? Human intelligence seems to be stable over long periods. Powerful computers with artificial general intelligence could conceivably (and quickly) evolve intelligence far beyond that of humans. Research and discuss the issues this raises.

	

1.10 (Research: Intelligent Assistants) Many companies now offer computerized intelligent assistants, such as IBM Watson, Amazon Alexa, Apple Siri, Google Assistant and Microsoft Cortana. Research these and others and list uses that can improve people’s lives. Research privacy and ethics issues for intelligent assistants. Locate amusing intelligent-assistant anecdotes.

	

1.11 (Research: AI in Health Care) Research the rapidly growing field of AI big-data applications in health care. For example, suppose a diagnostic medical application had access to every x-ray that’s ever been taken and the associated diagnoses—that’s surely big data. As you’ll see in the “Deep Learning” chapter, computer-vision applications can work with this “labeled” data to learn to diagnose medical problems. Research deep learning in diagnostic medicine and describe some of its most significant accomplishments. What are some ethical issues of having machines instead of human doctors performing medical diagnoses? Would you trust a machine-generated diagnosis? Would you ask for a second opinion?

	

1.12 (Research: Big Data, AI and the Cloud—How Companies Use These Technologies) For a major organization of your choice, research how they may be using each of the following technologies that you’ll use in this book: Python, AI, big data, the cloud, mobile, natural language processing, speech recognition, speech synthesis, database, machine learning, deep learning, reinforcement learning, Hadoop, Spark, Internet of Things (IoT) and web services.

	

1.13 (Research: Raspberry Pi and the Internet of Things) It’s now possible to have a computer at the heart of just about any type of device and to connect those devices to the Internet. This has led to the Internet of Things (IoT), which already interconnects tens of billions of devices. The Raspberry Pi is an economical computer which is often at the heart of IoT devices. Research the Raspberry Pi and some of the many IoT applications in which it’s used.

	

1.14 (Research: The Ethics of Deep Fakes) Artificial-intelligence technologies are making it possible to create deep fakes—realistic fake videos of people that capture their appearance, voice, body motions and facial expressions. You can have them say and do whatever you specify. Research the ethics of deep fakes. What would happen if you turned on your TV and saw a deep-fake video of a prominent government official or newscaster reporting that a nuclear attack was about to happen? Research Orson Welles and his “War of the Worlds” radio broadcast of 1938, which created mass panic.

	

1.15 (Public-Key Cryptography) Cryptography is a crucial technology for privacy and security. Research Python’s cryptography capabilities. Research online for a simple explanation of how public-key cryptography is used to implement the BitCoin cryptocurrency.

	

1.16 (Blockchain: A World of Opportunity) Cryptocurrencies like Bitcoin and Ethereum are based on a technology called blockchain that has seen explosive growth over the last few years. Research blockchain’s origin, applications and how it came to be used as the basis for cryptocurrencies. Research other major applications of blockchain. Over the next many years there will be extraordinary opportunities for software developers who thoroughly understand blockchain applications development.

	

1.17 (OWASP Python Security Project) Building secure computer applications is a tremendous challenge. Many of the world’s largest companies, government agencies, and military organizations have had their systems compromised. The OWASP project is concerned with "hardening" computer systems and applications to resist attacks. Research OWASP and discuss their accomplishments and current challenges.

	

1.18 (IBM Watson) We discuss IBM’s Watson in Chapter 14. You’ll use its cognitive computing capabilities to quickly build some intriguing applications. IBM is partnering with tens of thousands of companies—including our publisher, Pearson Education—across a wide range of industries. Research some of Watson’s key accomplishments and the kinds of challenges IBM and its partners are addressing.

	

1.19 (Research: Mobile App Development with Python) Research the tools that are available for Python-based iOS and Android app development, such as BeeWare, Kivy, PyMob, Pythonista and others. Which of these are cross-platform? Mobile applications development is one of the fastest growing areas of software development, and it’s a great source of class projects, directed study projects, capstone exercise projects and even thesis projects. With cross-platform app-development tools, you’ll be able to write your own apps and deploy them on many app stores quickly.

2 Introduction to Python Programming

Objectives

In this chapter, you’ll:

	Continue using IPython interactive mode to enter code snippets and see their results immediately.

	Write simple Python statements and scripts.

	Create variables to store data for later use.

	Become familiar with built-in data types.

	Use arithmetic operators and comparison operators, and understand their precedence.

	Use single-, double- and triple-quoted strings.

	Use built-in function print to display text.

	Use built-in function input to prompt the user to enter data at the keyboard and get that data for use in the program.

	Convert text to integer values with built-in function int.

	Use comparison operators and the if statement to decide whether to execute a statement or group of statements.

	Learn about objects and Python’s dynamic typing.

	Use built-in function type to get an object’s type.

Outline

	2.1 Introduction

	2.2 Variables and Assignment Statements

	2.3 Arithmetic

	2.4 Function print and an Intro to Single- and Double-Quoted Strings

	2.5 Triple-Quoted Strings

	2.6 Getting Input from the User

	2.7 Decision Making: The if Statement and Comparison Operators

	2.8 Objects and Dynamic Typing

	2.9 Intro to Data Science: Basic Descriptive Statistics

	2.10 Wrap-Up

	Exercises

2.1 Introduction

In this chapter, we introduce Python programming and present examples illustrating key language features. We assume you’ve read the IPython Test-Drive in Chapter 1, which introduced the IPython interpreter and used it to evaluate simple arithmetic expressions.

2.2 Variables and Assignment Statements

You’ve used IPython’s interactive mode as a calculator with expressions such as

In [1]: 45 + 72

Out[1]: 117

As in algebra, Python expressions also may contain variables, which store values for later use in your code. Let’s create a variable named x that stores the integer 7, which is the variable’s value:

In [2]: x = 7

Snippet [2] is a statement. Each statement specifies a task to perform. The preceding statement creates x and uses the assignment symbol (=) to give x a value. The entire statement is an assignment statement that we read as “x is assigned the value 7.” Most statements stop at the end of the line, though it’s possible for statements to span more than one line. The following statement creates the variable y and assigns to it the value 3:

In [3]: y = 3

Adding Variable Values and Viewing the Result

You can now use the values of x and y in expressions:

In [4]: x + y

Out[4]: 10

The + symbol is the addition operator. It’s a binary operator because it has two operands (in this case, the variables x and y) on which it performs its operation.

Calculations in Assignment Statements

You’ll often save calculation results for later use. The following assignment statement adds the values of variables x and y and assigns the result to the variable total, which we then display:

In [5]: total = x + y

In [6]: total

Out[6]: 10

Snippet [5] is read, “total is assigned the value of x + y.” The = symbol is not an operator. The right side of the = symbol always executes first, then the result is assigned to the variable on the symbol’s left side.

Python Style

The Style Guide for Python Code1 helps you write code that conforms to Python’s coding conventions. The style guide recommends inserting one space on each side of the assignment symbol = and binary operators like + to make programs more readable.
1. https://www.python.org/dev/peps/pep-0008/.

Variable Names

A variable name, such as x, is an identifier. Each identifier may consist of letters, digits and underscores (_) but may not begin with a digit. Python is case sensitive, so number and Number are different identifiers because one begins with a lowercase letter and the other begins with an uppercase letter.

Types

Each value in Python has a type that indicates the kind of data the value represents. You can view a value’s type, as in:

In [7]: type(x)

Out[7]: int

In [8]: type(10.5)

Out[8]: float

The variable x contains the integer value 7 (from snippet [2]), so Python displays int (short for integer). The value 10.5 is a floating-point number (that is, a number with a decimal point), so Python displays float.

Python’s type built-in function determines a value’s type. A function performs a task when you call it by writing its name, followed by parentheses, (). The parentheses contain the function’s argument—the data that the type function needs to perform its task. You’ll create custom functions in later chapters.

[image:] Self Check

	(True/False) The following are valid variable names: 3g, 87 and score_4.

Answer: False. Because they begin with a digit, 3g and 87 are invalid names.

	(True/False) Python treats y and Y as the same identifier.

Answer: False. Python is case sensitive, so y and Y are different identifiers.

	(IPython Session) Calculate the sum of 10.8, 12.2 and 0.2, store it in the variable total, then display total’s value.

Answer:

In [1]: total = 10.8 + 12.2 + 0.2

In [2]: total

Out[2]: 23.1

2.3 Arithmetic

Many programs perform arithmetic calculations. The following table summarizes the arithmetic operators, which include some symbols not used in algebra.

[image: A table summarizes the arithmetic operators, which include some symbols not used in algebra.]

2.3-1 Full Alternative Text

Multiplication (*)

Rather than algebra’s center dot (·), Python uses the asterisk (*) multiplication operator:

In [1]: 7 * 4

Out[1]: 28

Exponentiation (**)

The exponentiation (**) operator raises one value to the power of another:

In [2]: 2 ** 10

Out[2]: 1024

To calculate the square root, you can use the exponent 1/2 (that is, 0.5):

In [3]: 9 ** (1 / 2)

Out[3]: 3.0

True Division (/) vs. Floor Division (//)

True division (/) divides a numerator by a denominator and yields a floating-point number with a decimal point, as in:

In [4]: 7 / 4

Out[4]: 1.75

Floor division (//) divides a numerator by a denominator, yielding the highest integer that’s not greater than the result. Python truncates (discards) the fractional part:

In [5]: 7 // 4

Out[5]: 1

In [6]: 3 // 5

Out[6]: 0

In [7]: 14 // 7

Out[7]: 2

In true division, -13 divided by 4 gives -3.25:

In [8]: -13 / 4

Out[8]: -3.25

Floor division gives the closest integer that’s not greater than -3.25—which is -4:

In [9]: -13 // 4

Out[9]: -4

Exceptions and Tracebacks

Dividing by zero with / or // is not allowed and results in an exception—a sign that a problem occurred:

In [10]: 123 / 0

ZeroDivisionError Traceback (most recent call last)

<ipython-input-10-cd759d3fcf39> in <module>()

----> 1 123 / 0

ZeroDivisionError: division by zero

Python reports an exception with a traceback. This traceback indicates that an exception of type ZeroDivisionError occurred—most exception names end with Error. In interactive mode, the snippet number that caused the exception is specified by the 10 in the line

<ipython-input-10-cd759d3fcf39> in <module>()

The line that begins with ----> 1 shows the code that caused the exception. Sometimes snippets have more than one line of code—the 1 to the right of ----> indicates that line 1 within the snippet caused the exception. The last line shows the exception that occurred, followed by a colon (:) and an error message with more information about the exception:

ZeroDivisionError: division by zero

The “Files and Exceptions” chapter discusses exceptions in detail.

An exception also occurs if you try to use a variable that you have not yet created. The following snippet tries to add 7 to the undefined variable z, resulting in a NameError:

In [11]: z + 7

NameError Traceback (most recent call last)

<ipython-input-11-f2cdbf4fe75d> in <module>()

----> 1 z + 7

NameError: name 'z' is not defined

Remainder Operator

Python’s remainder operator (%) yields the remainder after the left operand is divided by the right operand:

In [12]: 17 % 5

Out[12]: 2

In this case, 17 divided by 5 yields a quotient of 3 and a remainder of 2. This operator is most commonly used with integers, but also can be used with other numeric types:

In [13]: 7.5 % 3.5

Out[13]: 0.5

In the exercises, we use the remainder operator for applications such as determining whether one number is a multiple of another—a special case of this is determining whether a number is odd or even.

Straight-Line Form

Algebraic notations such as

[image: a divided by b]

generally are not acceptable to compilers or interpreters. For this reason, algebraic expressions must be typed in straight-line form using Python’s operators. The expression above must be written as a / b (or a // b for floor division) so that all operators and operands appear in a horizontal straight line.

Grouping Expressions with Parentheses

Parentheses group Python expressions, as they do in algebraic expressions. For example, the following code multiplies 10 times the quantity 5 + 3:

In [14]: 10 * (5 + 3)

Out[14]: 80

Without these parentheses, the result is different:

In [15]: 10 * 5 + 3

Out[15]: 53

The parentheses are redundant (unnecessary) if removing them yields the same result.

Operator Precedence Rules

Python applies the operators in arithmetic expressions according to the following rules of operator precedence. These are generally the same as those in algebra:

	Expressions in parentheses evaluate first, so parentheses may force the order of evaluation to occur in any sequence you desire. Parentheses have the highest level of precedence. In expressions with nested parentheses, such as (a / (b - c)), the expression in the innermost parentheses (that is, b - c) evaluates first.

	Exponentiation operations evaluate next. If an expression contains several exponentiation operations, Python applies them from right to left.

	Multiplication, division and modulus operations evaluate next. If an expression contains several multiplication, true-division, floor-division and modulus operations, Python applies them from left to right. Multiplication, division and modulus are “on the same level of precedence.”

	Addition and subtraction operations evaluate last. If an expression contains several addition and subtraction operations, Python applies them from left to right. Addition and subtraction also have the same level of precedence.

We’ll expand these rules as we introduce other operators. For the complete list of operators and their precedence (in lowest-to-highest order), see

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Grouping

When we say that Python applies certain operators from left to right, we are referring to the operators’ grouping. For example, in the expression

a + b + c

the addition operators (+) group from left to right as if we parenthesized the expression as (a + b) + c. All Python operators of the same precedence group left-to-right except for the exponentiation operator (**), which groups right-to-left.

Redundant Parentheses

You can use redundant parentheses to group subexpressions to make the expression clearer. For example, the second-degree polynomial

y = a * x ** 2 + b * x + c

can be parenthesized, for clarity, as

y = (a * (x ** 2)) + (b * x) + c

Breaking a complex expression into a sequence of statements with shorter, simpler expressions also can promote clarity.

Operand Types

Each arithmetic operator may be used with integers and floating-point numbers. If both operands are integers, the result is an integer—except for the true-division (/) operator, which always yields a floating-point number. If both operands are floating-point numbers, the result is a floating-point number. Expressions containing an integer and a floating-point number are mixed-type expressions—these always produce floating-point numbers.

[image:] Self Check

	

 (Multiple Choice) Given that y = ax3 + 7, which of the following is not a correct statement for this equation?

	y = a * x * x * x + 7

	y = a * x ** 3 + 7

	y = a * (x * x * x) + 7

	y = a * x * (x * x + 7

Answer: d is incorrect.

	

 (True/False) In nested parentheses, the expression in the innermost pair evaluates last.

Answer: False. The expression in the innermost parentheses evaluates first.

	(IPython Session) Evaluate the expression 3 * (4 - 5) with and without parentheses. Are the parentheses redundant?

Answer:

In [1]: 3 * (4 - 5)

Out[1]: -3

In [2]: 3 * 4 - 5

Out[2]: 7

The parentheses are not redundant—if you remove them the resulting value is different.

	

 (IPython Session) Evaluate the expressions 4 ** 3 ** 2, (4 ** 3) ** 2 and 4 ** (3 ** 2). Are any of the parentheses redundant?

Answer:

In [3]: 4 ** 3 ** 2

Out[3]: 262144

In [4]: (4 ** 3) ** 2

Out[4]: 4096

In [5]: 4 ** (3 ** 2)

Out[5]: 262144

Only the parentheses in the last expression are redundant.

2.4 Function print and an Intro to Single- and Double-Quoted Strings

The built-in print function displays its argument(s) as a line of text:

In [1]: print('Welcome to Python!')

Welcome to Python!

In this case, the argument 'Welcome to Python!' is a string—a sequence of characters enclosed in single quotes ('). Unlike when you evaluate expressions in interactive mode, the text that print displays here is not preceded by Out[1]. Also, print does not display a string’s quotes, though we’ll soon show how to display quotes in strings.

You also may enclose a string in double quotes ("), as in:

In [2]: print("Welcome to Python!")

Welcome to Python!

Python programmers generally prefer single quotes.

When print completes its task, it positions the screen cursor at the beginning of the next line. This is similar to what happens when you press the Enter (or Return) key while typing in a text editor.

Printing a Comma-Separated List of Items

The print function can receive a comma-separated list of arguments, as in:

In [3]: print('Welcome', 'to', 'Python!')

Welcome to Python!

The print function displays each argument separated from the next by a space, producing the same output as in the two preceding snippets. Here we showed a comma-separated list of strings, but the values can be of any type. We’ll show in the next chapter how to prevent automatic spacing between values or use a different separator than space.

Printing Many Lines of Text with One Statement

When a backslash (\) appears in a string, it’s known as the escape character. The backslash and the character immediately following it form an escape sequence. For example, \n represents the newline character escape sequence, which tells print to move the output cursor to the next line. Placing two newline characters back-to-back displays a blank line. The following snippet uses three newline characters to create many lines of output:

In [4]: print('Welcome\nto\n\nPython!')

Welcome

to

Python!

Other Escape Sequences

The following table shows some common escape sequences.

[image: A Table shows some common escape sequences.]

2.4-3 Full Alternative Text

Ignoring a Line Break in a Long String

You may also split a long string (or a long statement) over several lines by using the \ continuation character as the last character on a line to ignore the line break:

In [5]: print('this is a longer string, so we \

 ...: split it over two lines')

this is a longer string, so we split it over two lines

The interpreter reassembles the string’s parts into a single string with no line break. Though the backslash character in the preceding snippet is inside a string, it’s not the escape character because another character does not follow it.

Printing the Value of an Expression

Calculations can be performed in print statements:

In [6]: print('Sum is', 7 + 3)

Sum is 10

[image:] Self Check

	(Fill-In) The function instructs the computer to display information on the screen.

Answer: print.

	(Fill-In) Values of the data type contain a sequence of characters.

Answer: string (type str).

	(IPython Session) Write an expression that displays the type of 'word'.

Answer:

In [1]: type('word')

Out[1]: str

	(IPython Session) What does the following print statement display?

print('int(5.2)', 'truncates 5.2 to', int(5.2))

Answer:

In [2]: print('int(5.2)', 'truncates 5.2 to', int(5.2))

int(5.2) truncates 5.2 to 5

2.5 Triple-Quoted Strings

Earlier, we introduced strings delimited by a pair of single quotes (') or a pair of double quotes ("). Triple-quoted strings begin and end with three double quotes (""") or three single quotes ('''). The Style Guide for Python Code recommends three double quotes ("""). Use these to create:

	multiline strings,

	strings containing single or double quotes and

	docstrings, which are the recommended way to document the purposes of certain program components.

Including Quotes in Strings

In a string delimited by single quotes, you may include double-quote characters:

In [1]: print('Display "hi" in quotes')

Display "hi" in quotes

but not single quotes:

In [2]: print('Display 'hi' in quotes')

 File "<ipython-input-2-19bf596ccf72>", line 1

 print('Display 'hi' in quotes')

 ^

SyntaxError: invalid syntax

unless you use the \' escape sequence:

In [3]: print('Display \'hi\' in quotes')

Display 'hi' in quotes

Snippet [2] displayed a syntax error, which is a violation of Python’s language rules—in this case, a single quote inside a single-quoted string. IPython displays information about the line of code that caused the syntax error and points to the error with a ^ symbol. It also displays the message SyntaxError: invalid syntax.

A string delimited by double quotes may include single quote characters:

In [4]: print("Display the name O'Brien")

Display the name O'Brien

but not double quotes, unless you use the \" escape sequence:

In [5]: print("Display \"hi\" in quotes")

Display "hi" in quotes

To avoid using \' and \" inside strings, you can enclose such strings in triple quotes:

In [6]: print("""Display "hi" and 'bye' in quotes""")

Display "hi" and 'bye' in quotes

Multiline Strings

The following snippet assigns a multiline triple-quoted string to triple_quoted_string:

In [7]: triple_quoted_string = """This is a triple-quoted

 ...: string that spans two lines"""

IPython knows that the string is incomplete because we did not type the closing """ before we pressed Enter. So, IPython displays a continuation prompt ...: at which you can input the multiline string’s next line. This continues until you enter the ending """ and press Enter. The following displays triple_quoted_string:

In [8]: print(triple_quoted_string)

This is a triple-quoted

string that spans two lines

Python stores multiline strings with embedded newline escape sequences. When we evaluate triple_quoted_string rather than printing it, IPython displays the string in single quotes with a \n character where you pressed Enter in snippet [7]. The quotes IPython displays indicate that triple_quoted_string is a string—they’re not part of the string’s contents:

In [9]: triple_quoted_string

Out[9]: 'This is a triple-quoted\nstring that spans two lines'

[image:] Self Check

	(Fill-In) Multiline strings are enclosed either in or in .

Answer: """ (triple double quotes) or ''' (triple single quotes).

	(IPython Session) What displays when you execute the following statement?

print("""This is a lengthy

 multiline string containing

a few lines \

of text""")

Answer:

In [1]: print("""This is a lengthy

 ...: multiline string containing

 ...: a few lines \

 ...: of text""")

This is a lengthy

 multiline string containing

a few lines of text

2.6 Getting Input from the User

The built-in input function requests and obtains user input:

In [1]: name = input("What's your name? ")

What's your name? Paul

In [2]: name

Out[2]: 'Paul'

In [3]: print(name)

Paul

The snippet executes as follows:

	First, input displays its string argument—called a prompt—to tell the user what to type and waits for the user to respond. We typed Paul (without quotes) and pressed Enter. We use bold text to distinguish the user’s input from the prompt text that input displays.

	Function input then returns (that is, gives back) those characters as a string that the program can use. Here we assigned that string to the variable name.

Snippet [2] shows name’s value. Evaluating name displays its value in single quotes as 'Paul' because it’s a string. Printing name (in snippet [3]) displays the string without the quotes. If you enter quotes, they’re part of the string, as in:

In [4]: name = input("What's your name? ")

What's your name? 'Paul'

In [5]: name

Out[5]: "'Paul'"

In [6]: print(name)

'Paul'

Function input Always Returns a String

Consider the following snippets that attempt to read two numbers and add them:

In [7]: value1 = input('Enter first number: ')

Enter first number: 7

In [8]: value2 = input('Enter second number: ')

Enter second number: 3

In [9]: value1 + value2

Out[9]: '73'

Rather than adding the integers 7 and 3 to produce 10, Python “adds” the string values '7' and '3', producing the string '73'. This is known as string concatenation. It creates a new string containing the left operand’s value followed by the right operand’s value.

Getting an Integer from the User

If you need an integer, convert the string to an integer using the built-in int function:

In [10]: value = input('Enter an integer: ')

Enter an integer: 7

In [11]: value = int(value)

In [12]: value

Out[12]: 7

We could have combined the code in snippets [10] and [11]:

In [13]: another_value = int(input('Enter another integer: '))

Enter another integer: 13

In [14]: another_value

Out[14]: 13

Variables value and another_value now contain integers. Adding them produces an integer result (rather than concatenating them):

In [15]: value + another_value

Out[15]: 20

If the string passed to int cannot be converted to an integer, a ValueError occurs:

In [16]: bad_value = int(input('Enter another integer: '))

Enter another integer: hello

ValueError Traceback (most recent call last)

<ipython-input-16-cd36e6cf8911> in <module>()

----> 1 bad_value = int(input('Enter another integer: '))

ValueError: invalid literal for int() with base 10: 'hello'

Function int also can convert a floating-point value to an integer:

In [17]: int(10.5)

Out[17]: 10

To convert strings to floating-point numbers, use the built-in float function.

[image:] Self Check

	(Fill-In) The built-in function converts a floating-point value to an integer value or converts a string representation of an integer to an integer value.

Answer: int.

	(True/False) Built-in function get_input requests and obtains input from the user.

Answer: False. The built-in function’s name is input.

	(IPython Session) Use float to convert '6.2' (a string) to a floating-point value. Multiply that value by 3.3 and show the result.

Answer:

In [1]: float('6.2') * 3.3

Out[1]: 20.46

2.7 Decision Making: The if Statement and Comparison Operators

A condition is a Boolean expression with the value True or False. The following determines whether 7 is greater than 4 and whether 7 is less than 4:

In [1]: 7 > 4

Out[1]: True

In [2]: 7 < 4

Out[2]: False

True and False are keywords—words that Python reserves for its language features. Using a keyword as an identifier causes a SyntaxError. True and False are each capitalized.

You’ll often create conditions using the comparison operators in the table at the top of the next page:

[image: A Table shows comparison operators.]

2.7-4 Full Alternative Text

Operators >, <, >= and <= all have the same precedence. Operators == and != both have the same precedence, which is lower than that of >, <, >= and <=. A syntax error occurs when any of the operators ==, !=, >= and <= contains spaces between its pair of symbols:

In [3]: 7 > = 4

 File "<ipython-input-3-5c6e2897f3b3>", line 1

 7 > = 4

 ^

SyntaxError: invalid syntax

Another syntax error occurs if you reverse the symbols in the operators !=, >= and <= (by writing them as =!, => and =<).

Making Decisions with the if Statement: Introducing Scripts

We now present a simple version of the if statement, which uses a condition to decide whether to execute a statement (or a group of statements). Here we’ll read two integers from the user and compare them using six consecutive if statements, one for each comparison operator. If the condition in a given if statement is True, the corresponding print statement executes; otherwise, it’s skipped.

IPython interactive mode is helpful for executing brief code snippets and seeing immediate results. When you have many statements to execute as a group, you typically write them as a script stored in a file with the .py (short for Python) extension—such as fig02_01.py for this example’s script. Scripts are also called programs. For instructions on locating and executing the scripts in this book, see Chapter 1’s IPython Test-Drive.

Each time you execute this script, three of the six conditions are True. To show this, we execute the script three times—once with the first integer less than the second, once with the same value for both integers and once with the first integer greater than the second. The three sample executions appear after the script

Figure 2.1 shows the script. Each time we present a script, we introduce it before the figure, then explain the script’s code after the figure. We show line numbers for your convenience—these are not part of Python. Integrated development environments (IDEs) enable you to choose whether to display line numbers. To run this example, change to this chapter’s ch02 examples folder, then enter:

ipython fig02_01.py

or, if you’re in IPython already, use the command:

run fig02_01.py

Fig. 2.1 | Comparing integers using if statements and comparison operators.

 1 # fig02_01.py

 2 """Comparing integers using if statements and comparison operators."""

 3

 4 print('Enter two integers, and I will tell you',

 5 'the relationships they satisfy.')

 6

 7 # read first integer

 8 number1 = int(input('Enter first integer: '))

 9

10 # read second integer

11 number2 = int(input('Enter second integer: '))

12

13 if number1 == number2:

14 print(number1, 'is equal to', number2)

15

16 if number1 != number2:

17 print(number1, 'is not equal to', number2)

18

19 if number1 < number2:

20 print(number1, 'is less than', number2)

21

22 if number1 > number2:

23 print(number1, 'is greater than', number2)

24

25 if number1 <= number2:

26 print(number1, 'is less than or equal to', number2)

27

28 if number1 >= number2:

29 print(number1, 'is greater than or equal to', number2)

Enter two integers and I will tell you the relationships they satisfy.

Enter first integer: 37

Enter second integer: 42

37 is not equal to 42

37 is less than 42

37 is less than or equal to 42

Enter two integers and I will tell you the relationships they satisfy.

Enter first integer: 7

Enter second integer: 7

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

Enter two integers and I will tell you the relationships they satisfy.

Enter first integer: 54

Enter second integer: 17

54 is not equal to 17

54 is greater than 17

54 is greater than or equal to 17

Comments

Line 1 begins with the hash character (#), which indicates that the rest of the line is a comment:

fig02_01.py

You insert comments to document your code and to improve readability. Comments also help other programmers read and understand your code. They do not cause the computer to perform any action when the code executes. For easy reference, we begin each script with a comment indicating the script’s file name.

A comment also can begin to the right of the code on a given line and continue until the end of that line. Such a comment documents the code to its left.

Docstrings

The Style Guide for Python Code states that each script should start with a docstring that explains the script’s purpose, such as the one in line 2:

"""Comparing integers using if statements and comparison operators."""

For more complex scripts, the docstring often spans many lines. In later chapters, you’ll use docstrings to describe script components you define, such as new functions and new types called classes. We’ll also discuss how to access docstrings with the IPython help mechanism.

Blank Lines

Line 3 is a blank line. You use blank lines and space characters to make code easier to read. Together, blank lines, space characters and tab characters are known as white space. Python ignores most white space—you’ll see that some indentation is required.

Splitting a Lengthy Statement Across Lines

Lines 4–5

print('Enter two integers, and I will tell you',

 'the relationships they satisfy.')

display instructions to the user. These are too long to fit on one line, so we broke them into two strings. Recall that you can display several values by passing to print a comma-separated list—print separates each value from the next with a space character.

Typically, you write statements on one line. You may spread a lengthy statement over several lines with the \ continuation character. Python also allows you to split long code lines in parentheses without using continuation characters (as in lines 4–5). This is the preferred way to break long code lines according to the Style Guide for Python Code. Always choose breaking points that make sense, such as after a comma in the preceding call to print or before an operator in a lengthy expression.

Reading Integer Values from the User

Next, lines 8 and 11 use the built-in input and int functions to prompt for and read two integer values from the user.

if Statements

The if statement in lines 13–14

if number1 == number2:

 print(number1, 'is equal to', number2)

uses the == comparison operator to determine whether the values of variables number1 and number2 are equal. If so, the condition is True, and line 14 displays a line of text indicating that the values are equal. If any of the remaining if statements’ conditions are True (lines 16, 19, 22, 25 and 28), the corresponding print displays a line of text.

Each if statement consists of the keyword if, the condition to test, and a colon (:) followed by an indented body called a suite. Each suite must contain one or more statements. Forgetting the colon (:) after the condition is a common syntax error.

Suite Indentation

Python requires you to indent the statements in suites. The Style Guide for Python Code recommends four-space indents—we use that convention throughout this book. You’ll see in the next chapter that incorrect indentation can cause errors.

Confusing == and =

Using the assignment symbol (=) instead of the equality operator (==) in an if statement’s condition is a common syntax error. To help avoid this, read == as “is equal to” and = as “is assigned.” You’ll see in the next chapter that using == in place of = in an assignment statement can lead to subtle problems.

Chaining Comparisons

You can chain comparisons to check whether a value is in a range. The following comparison determines whether x is in the range 1 through 5, inclusive:

In [1]: x = 3

In [2]: 1 <= x <= 5

Out[2]: True

In [3]: x = 10

In [4]: 1 <= x <= 5

Out[4]: False

Precedence of the Operators We’ve Presented So Far

The precedence of the operators introduced in this chapter is shown below:

[image: A Table shows the precedence of the operators in 3 columns.]

2.7-5 Full Alternative Text

The table lists the operators top-to-bottom in decreasing order of precedence. When writing expressions containing multiple operators, confirm that they evaluate in the order you expect by referring to the operator precedence chart at

https://docs.python.org/3/reference/expressions.html#operator-precedence

[image:] Self Check

	(Fill-In) You use to document code and improve its readability.

Answer: comments.

	(True/False) The comparison operators evaluate left to right and all have the same level of precedence.

Answer: False. The operators <, <=, > and >= all have the same level of precedence and evaluate left to right. The operators == and != have the same level of precedence and evaluate left to right. Their precedence is lower than that of <, <=, > and >=.

	(IPython Session) For any of the operators !=, >= or <=, show that a syntax error occurs if you reverse the symbols in a condition.

Answer:

In [1]: 7 =< 10

 File "<ipython-input-1-090d4004a38e>", line 1

 7 =< 10

 ^

SyntaxError: invalid syntax

	(IPython Session) Use all six comparison operators to compare the values 5 and 9. Display the values on one line using print.

Answer:

In [2]: print(5 < 9, 5 <= 9, 5 > 9, 5 >= 9, 5 == 9, 5 != 9)

True True False False False True

2.8 Objects and Dynamic Typing

The first chapter introduced the terms classes and objects and in Section 2.2, we discussed variables, values and types. Values such as 7 (an integer), 4.1 (a floating-point number) and 'dog' are all objects. Every object has a type and a value:

In [1]: type(7)

Out[1]: int

In [2]: type(4.1)

Out[2]: float

In [3]: type('dog')

Out[3]: str

An object’s value is the data stored in the object. The snippets above show objects of Python built-in types int (for integers), float (for floating-point numbers) and str (for strings).

Variables Refer to Objects

Assigning an object to a variable binds (associates) that variable’s name to the object. As you’ve seen, you can then use the variable in your code to access the object’s value:

In [4]: x = 7

In [5]: x + 10

Out[5]: 17

In [6]: x

Out[6]: 7

After snippet [4]’s assignment, the variable x refers to the integer object containing 7. As shown in snippet [6], snippet [5] does not change x’s value. You can change x as follows:

In [7]: x = x + 10

In [8]: x

Out[8]: 17

Dynamic Typing

Python uses dynamic typing—it determines the type of the object a variable refers to while executing your code. We can show this by rebinding the variable x to different objects and checking their types:

In [9]: type(x)

Out[9]: int

In [10]: x = 4.1

In [11]: type(x)

Out[11]: float

In [12]: x = 'dog'

In [13]: type(x)

Out[13]: str

Garbage Collection

Python creates objects in memory and removes them from memory as necessary. After snippet [10], the variable x now refers to a float object. The integer object from snippet [7] is no longer bound to a variable. As we’ll discuss in a later chapter, Python automatically removes such objects from memory. This process—called garbage collection—helps ensure that memory is available for new objects you create.

[image:] Self Check

	(Fill-In) Assigning an object to a variable the variable’s name to the object.

Answer: binds.

	(True/False) A variable always references the same object.

Answer: False. You can make an existing variable refer to a different object and even one of a different type.

	(IPython Session) What is the type of the expression 7.5 * 3?

Answer:

In [1]: type(7.5 * 3)

Out[1]: float

2.9 Intro to Data Science: Basic Descriptive Statistics

In data science, you’ll often use statistics to describe and summarize your data. Here, we begin by introducing several such descriptive statistics, including:

	minimum—the smallest value in a collection of values.

	maximum—the largest value in a collection of values.

	range—the range of values from the minimum to the maximum.

	count—the number of values in a collection.

	sum—the total of the values in a collection.

We’ll look at determining the count and sum in the next chapter. Measures of dispersion (also called measures of variability), such as range, help determine how spread out values are. Other measures of dispersion that we’ll present in later chapters include variance and standard deviation.

Determining the Minimum of Three Values

First, let’s show how to determine the minimum of three values manually. The following script prompts for and inputs three values, uses if statements to determine the minimum value, then displays it.

Fig. 2.2 | Find the minimum of three values.

 1 # fig02_02.py

 2 """Find the minimum of three values."""

 3

 4 number1 = int(input('Enter first integer: '))

 5 number2 = int(input('Enter second integer: '))

 6 number3 = int(input('Enter third integer: '))

 7

 8 minimum = number1

 9

10 if number2 < minimum:

11 minimum = number2

12

13 if number3 < minimum:

14 minimum = number3

15

16 print('Minimum value is', minimum)

Enter first integer: 12

Enter second integer: 27

Enter third integer: 36

Minimum value is 12

Enter first integer: 27

Enter second integer: 12

Enter third integer: 36

Minimum value is 12

Enter first integer: 36

Enter second integer: 27

Enter third integer: 12

Minimum value is 12

After inputting the three values, we process one value at a time:

	First, we assume that number1 contains the smallest value, so line 8 assigns it to the variable minimum. Of course, it’s possible that number2 or number3 contains the actual smallest value, so we still must compare each of these with minimum.

	The first if statement (lines 10–11) then tests number2 < minimum and if this condition is True assigns number2 to minimum.

	The second if statement (lines 13–14) then tests number3 < minimum, and if this condition is True assigns number3 to minimum.

Now, minimum contains the smallest value, so we display it. We executed the script three times to show that it always finds the smallest value regardless of whether the user enters it first, second or third.

Determining the Minimum and Maximum with Built-In Functions min and max

Python has many built-in functions for performing common tasks. Built-in functions min and max calculate the minimum and maximum, respectively, of a collection of values:

In [1]: min(36, 27, 12)

Out[1]: 12

In [2]: max(36, 27, 12)

Out[2]: 36

The functions min and max can receive any number of arguments.

Determining the Range of a Collection of Values

The range of values is simply the minimum through the maximum value. In this case, the range is 12 through 36. Much data science is devoted to getting to know your data. Descriptive statistics is a crucial part of that, but you also have to understand how to interpret the statistics. For example, if you have 100 numbers with a range of 12 through 36, those numbers could be distributed evenly over that range. At the opposite extreme, you could have clumping with 99 values of 12 and one 36, or one 12 and 99 values of 36. In later data science sections, we’ll look at common data distributions.

Functional-Style Programming: Reduction

Throughout this book, we introduce various functional-style programming capabilities. These enable you to write code that can be more concise, clearer and easier to debug—that is, find and correct errors. The min and max functions are examples of a functional-style programming concept called reduction. They reduce a collection of values to a single value. Other reductions you’ll see include the sum, average, variance and standard deviation of a collection of values. You’ll also learn how to define custom reductions.

Upcoming Intro to Data Science Sections

In the next two chapters, we’ll continue our discussion of basic descriptive statistics with measures of central tendency, including mean, median and mode, and measures of dispersion, including variance and standard deviation.

[image:] Self Check

	(Fill-In) The range of a collection of values is a measure of .

Answer: dispersion.

	(IPython Session) For the values 47, 95, 88, 73, 88 and 84 calculate the minimum, maximum and range.

Answer:

In [1]: min(47, 95, 88, 73, 88, 84)

Out[1]: 47

In [2]: max(47, 95, 88, 73, 88, 84)

Out[2]: 95

In [3]: print('Range:', min(47, 95, 88, 73, 88, 84), '-',

 ...: max(47, 95, 88, 73, 88, 84))

 ...:

Range: 47 - 95

2.10 Wrap-Up

This chapter continued our discussion of arithmetic. You used variables to store values for later use. We introduced Python’s arithmetic operators and showed that you must write all expressions in straight-line form. You used the built-in function print to display data. We created single-, double- and triple-quoted strings. You used triple-quoted strings to create multiline strings and to embed single or double quotes in strings.

You used the input function to prompt for and get input from the user at the keyboard. We used the functions int and float to convert strings to numeric values. We presented Python’s comparison operators. Then, you used them in a script that read two integers from the user and compared their values using a series of if statements.

We discussed Python’s dynamic typing and used the built-in function type to display an object’s type. Finally, we introduced the basic descriptive statistics minimum and maximum and used them to calculate the range of a collection of values. In the next chapter, you’ll learn Python’s control statements and program development.

Exercises

Unless specified otherwise, use IPython sessions for each exercise.

	

2.1 (What does this code do?) Create the variables x = 2 and y = 3, then determine what each of the following statements displays:

	print('x =', x)

	print('Value of', x, '+', x, 'is', (x + x))

	print('x =')

	print((x + y), 'x =', (y + x))

	

2.2 (What’s wrong with this code?) The following code should read an integer into the variable rating:

rating = input('Enter an integer rating between 1 and 10')

	

2.3 (Fill in the missing code) Replace *** in the following code with a statement that will print a message like 'Congratulations! Your grade of 91 earns you an A in this course'. Your statement should print the value stored in the variable grade:

if grade >= 90:

2.4 (Arithmetic) For each of the arithmetic operators +, -, *, /, // and **, display the value of an expression with 27.5 as the left operand and 2 as the right operand.

	

2.5 (Circle Area, Diameter and Circumference) For a circle of radius 2, display the diameter, circumference and area. Use the value 3.14159 for π. Use the following formulas (r is the radius): diameter = 2r, circumference = 2πr and area = πr2. [In a later chapter, we’ll introduce Python’s math module which contains a higher-precision representation of π.]

	

2.6 (Odd or Even) Use if statements to determine whether an integer is odd or even. [Hint: Use the remainder operator. An even number is a multiple of 2. Any multiple of 2 leaves a remainder of 0 when divided by 2.]

	

2.7 (Multiples) Use if statements to determine whether 1024 is a multiple of 4 and whether 2 is a multiple of 10. (Hint: Use the remainder operator.)

	

2.8 (Table of Squares and Cubes) Write a script that calculates the squares and cubes of the numbers from 0 to 5. Print the resulting values in table format, as shown below. Use the tab escape sequence to achieve the three-column output.

[image: A 3 column output table shows Number, square and cube.]

2.1-6 Full Alternative Text

The next chapter shows how to “right align” numbers. You could try that as an extra challenge here. The output would be:

[image: A 3 column table shows Number, square and cube.]

2.1-7 Full Alternative Text

	

2.9 (Integer Value of a Character) Here’s a peek ahead. In this chapter, you learned about strings. Each of a string’s characters has an integer representation. The set of characters a computer uses together with the characters’ integer representations is called that computer’s character set. You can indicate a character value in a program by enclosing that character in quotes, as in 'A'. To determine a character’s integer value, call the built-in function ord:

In [1]: ord('A')

Out[1]: 65

Display the integer equivalents of B C D b c d 0 1 2 $ * + and the space character.

	

2.10 (Arithmetic, Smallest and Largest) Write a script that inputs three integers from the user. Display the sum, average, product, smallest and largest of the numbers. Note that each of these is a reduction in functional-style programming.

	

2.11 (Separating the Digits in an Integer) Write a script that inputs a five-digit integer from the user. Separate the number into its individual digits. Print them separated by three spaces each. For example, if the user types in the number 42339, the script should print

4 2 3 3 9

Assume that the user enters the correct number of digits. Use both the floor division and remainder operations to “pick off” each digit.

	

2.12 (7% Investment Return) Some investment advisors say that it’s reasonable to expect a 7% return over the long term in the stock market. Assuming that you begin with $1000 and leave your money invested, calculate and display how much money you’ll have after 10, 20 and 30 years. Use the following formula for determining these amounts:

a = p(1 + r)n

where

p is the original amount invested (i.e., the principal of $1000),

r is the annual rate of return (7%),

n is the number of years (10, 20 or 30) and

a is the amount on deposit at the end of the

nth year.

	

2.13 (How Big Can Python Integers Be?) We’ll answer this question later in the book. For now, use the exponentiation operator ** with large and very large exponents to produce some huge integers and assign those to the variable number to see if Python accepts them. Did you find any integer value that Python won’t accept?

	

2.14 (Target Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see that your heart rate stays within a safe range suggested by your doctors and trainers. According to the American Heart Association (AHA) (http://bit.ly/AHATargetHeartRates), the formula for calculating your maximum heart rate in beats per minute is 220 minus your age in years. Your target heart rate is 50–85% of your maximum heart rate. Write a script that prompts for and inputs the user’s age and calculates and displays the user’s maximum heart rate and the range of the user’s target heart rate. [These formulas are estimates provided by the AHA; maximum and target heart rates may vary based on the health, fitness and gender of the individual. Always consult a physician or qualified healthcare professional before beginning or modifying an exercise program.]

	

2.15 (Sort in Ascending Order) Write a script that inputs three different floating-point numbers from the user. Display the numbers in increasing order. Recall that an if statement’s suite can contain more than one statement. Prove that your script works by running it on all six possible orderings of the numbers. Does your script work with duplicate numbers? [This is challenging. In later chapters you’ll do this more conveniently and with many more numbers.]

3 Control Statements and Program Development

Objectives

In this chapter you’ll:

	Decide whether to execute actions with the statements if, if …else and if …elif …else.

	Execute statements repeatedly with while and for.

	Shorten assignment expressions with augmented assignments.

	Use the for statement and the built-in range function to repeat actions for a sequence of values.

	Perform sentinel-controlled repetition with while.

	Learn problem-solving skills: understanding problem requirements, dividing problems into smaller pieces, developing algorithms to solve problems and implementing those algorithms in code.

	Develop algorithms through the process of top-down, stepwise refinement.

	Create compound conditions with the Boolean operators and, or and not.

	Stop looping with break.

	Force the next iteration of a loop with continue.

	Use some functional-style programming features to write scripts that are more concise, clearer, easier to debug and easier to parallelize.

Outline

	3.1 Introduction

	3.2 Algorithms

	3.3 Pseudocode

	3.4 Control Statements

	3.5 if Statement

	3.6 if…else and if…elif…else Statements

	3.7 while Statement

	3.8 for Statement

	3.8.1 Iterables, Lists and Iterators

	3.8.2 Built-In range Function

	3.9 Augmented Assignments

	3.10 Program Development: Sequence-Controlled Repetition

	3.10.1 Requirements Statement

	3.10.2 Pseudocode for the Algorithm

	3.10.3 Coding the Algorithm in Python

	3.10.4 Introduction to Formatted Strings

	3.11 Program Development: Sentinel-Controlled Repetition

	3.12 Program Development: Nested Control Statements

	3.13 Built-In Function range: A Deeper Look

	3.14 Using Type Decimal for Monetary Amounts

	3.15 break and continue Statements

	3.16 Boolean Operators and, or and not

	3.17 Intro to Data Science: Measures of Central Tendency—Mean, Median and Mode

	3.18 Wrap-Up

	Exercises

3.1 Introduction
 Before writing a program to solve a particular problem, you must understand the problem and have a carefully planned approach to solving it. You must also understand Python’s building blocks and use proven program-construction principles.

3.2 Algorithms

You can solve any computing problem by executing a series of actions in a specific order. An algorithm is a procedure for solving a problem in terms of:

	the actions to execute, and

	the order in which these actions execute.

Correctly specifying the order in which the actions execute is essential. Consider the “rise-and-shine algorithm” that an executive follows for getting out of bed and going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get dressed; (5) eat breakfast; (6) carpool to work. This routine gets the executive to work well prepared to make critical decisions. Suppose the executive performs these steps in a different order: (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower; (5) eat breakfast; (6) carpool to work. Now, our executive shows up for work soaking wet. Program control specifies the order in which statements (actions) execute in a program. This chapter investigates program control using Python’s control statements.

[image: tick mark] Self Check

	(Fill-In) A(n) ___________ is a procedure for solving a problem. It specifies the ___________ to execute and the ___________ in which they execute.

Answer: algorithm, actions, order.

3.3 Pseudocode

Pseudocode is an informal English-like language for “thinking out” algorithms. You write text that describes what your program should do. You then convert the pseudocode to Python by replacing pseudocode statements with their Python equivalents.

Addition-Program Pseudocode

The following pseudocode algorithm prompts the user to enter two integers, inputs them from the user at the keyboard, adds them, then stores and displays their sum:

Prompt the user to enter the first integer

Input the first integer

Prompt the user to enter the second integer

Input the second integer

Add first integer and second integer, store their sum

Display the numbers and their sum

This is the complete pseudocode algorithm. Later in the chapter, we’ll show a simple process for creating a pseudocode algorithm from a requirements statement. The English pseudocode statements specify the actions you wish to perform and the order in which you wish to perform them.

[image: tick mark] Self Check

	(True/False) Pseudocode is a simple programming language.

Answer: False. Pseudocode is not a programming language. It’s an artificial and informal language that helps you develop algorithms.

	(IPython Session) Write Python statements that perform the tasks described by this section’s pseudocode. Enter the integers 10 and 5.

Answer:

In [1]: number1 = int(input('Enter first integer: '))

Enter first integer: 10

In [2]: number2 = int(input('Enter second integer: '))

Enter second integer: 5

In [3]: total = number1 + number2

In [4]: print('The sum of', number1, 'and', number2, 'is', total)

The sum of 10 and 5 is 15

3.4 Control Statements

Usually, statements in a program execute in the order in which they’re written. This is called sequential execution. Various Python statements enable you to specify that the next statement to execute may be other than the next one in sequence. This is called transfer of control and is achieved with Python control statements.

Forms of Control

In the 1960s, extensive use of control transfers was causing difficulty in software development. Blame was pointed at the goto statement. This statement allowed you to transfer control to one of many possible destinations in a program. Bohm and Jacopini’s research1 demonstrated that programs could be written without goto statements. The notion of structured programming became almost synonymous with “goto elimination.” Python does not have a goto statement. Structured programs are clearer, easier to debug and change, and more likely to be bug-free.
1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

Bohm and Jacopini demonstrated that all programs could be written using three forms of control—namely, sequential execution, the selection statement and the repetition statement. Sequential execution is simple. Python statements execute one after the other “in sequence,” unless directed otherwise.

Flowcharts

A flowchart is a graphical representation of an algorithm or a part of one. You draw flowcharts using rectangles, diamonds, rounded rectangles and small circles that you connect by arrows called flowlines. Like pseudocode, flowcharts are useful for developing and representing algorithms. They clearly show how forms of control operate. Consider the following flowchart segment, which shows sequential execution:

[image: A partial flowchart segment shows sequential execution of an algorithm using circles and rectangles.]

3.4-1 Full Alternative Text

We use the rectangle (or action) symbol to indicate any action, such as a calculation or an input/output operation. The flowlines show the order in which the actions execute. First, the grade is added to the total, then 1 is added to the counter. We show the Python code next to each action symbol for comparison purposes. This code is not part of the flowchart.

In a flowchart for a complete algorithm, the first symbol is a rounded rectangle containing the word “Begin.” The last symbol is a rounded rectangle containing the word “End.” In a flowchart for only a part of an algorithm, we omit the rounded rectangles, instead using small circles called connector symbols. The most important symbol is the decision (or diamond) symbol, which indicates that a decision is to be made, such as in an if statement. We begin using decision symbols in the next section.

Selection Statements

Python provides three types of selection statements that execute code based on a condition—an expression that evaluates to either True or False:

	The if statement performs an action if a condition is True or skips the action if the condition is False.

	The if…else statement performs an action if a condition is True or performs a differentaction if the condition is False.

	The if…elif…else statement performs one of many different actions, depending on the truth or falsity of several conditions.

Anywhere a single action can be placed, a group of actions can be placed.

The if statement is called a single-selection statement because it selects or ignores a single action (or group of actions). The if…else statement is called a double-selection statement because it selects between two different actions (or groups of actions). The if…elif…else statement is called a multiple-selection statement because it selects one of many different actions (or groups of actions).

Repetition Statements

Python provides two repetition statements—while and for:

	The while statement repeats an action (or a group of actions) as long as a condition remains True.

	The for statement repeats an action (or a group of actions) for every item in a sequence of items.

Keywords

The words if, elif, else, while, for, True and False are keywords that Python reserves to implement its features, such as control statements. Using a keyword as an identifier such as a variable name is a syntax error. The following table lists Python’s keywords.

Python keywords

	and

	as

	assert

	async

	await

	break

	class

	continue

	def

	del

	elif

	else

	except

	False

	finally

	for

	from

	global

	if

	import

	in

	is

	lambda

	None

	nonlocal

	not

	or

	pass

	raise

	return

	True

	try

	while

	with

	yield

Control Statements Summary

You form each Python program by combining as many control statements of each type as you need for the algorithm the program implements. With Single-entry/single-exit (one way in/one way out) control statements, the exit point of one connects to the entry point of the next. This is similar to the way a child stacks building blocks—hence, the term control-statement stacking. Control-statement nesting also connects control statements—we’ll see how later in the chapter.

You can construct any Python program from only six different forms of control (sequential execution, and the if, if…else, if…elif…else, while and for statements). You combine these in only two ways (control-statement stacking and control-statement nesting). This is the essence of simplicity.

[image: tick mark] Self Check

	(Fill-In) You can write all programs using three forms of control—___________ , ___________ and ___________ .

Answer: sequential execution, selection statements, repetition statements.

	(Fill-In) A(n) ___________ is a graphical representation of an algorithm.

Answer: flowchart.

3.5 if Statement

Suppose that a passing grade on an examination is 60. The pseudocode

If student’s grade is greater than or equal to 60

 Display 'Passed'

determines whether the condition “student’s grade is greater than or equal to 60” is true or false. If the condition is true, 'Passed' is displayed. Then, the next pseudocode statement in order is “performed.” (Remember that pseudocode is not a real programming language.) If the condition is false, nothing is displayed, and the next pseudocode statement is “performed.” The pseudocode’s second line is indented. Python code requires indentation. Here it emphasizes that 'Passed' is displayed only if the condition is true.

Let’s assign 85 to the variable grade, then show and execute the Python if statement for the pseudocode:

In [1]: grade = 85

In [2]: if grade >= 60:

 ...: print('Passed')

 ...:

Passed

The if statement closely resembles the pseudocode. The condition grade >= 60 is True, so the indented print statement displays 'Passed'.

Suite Indentation

Indenting a suite is required; otherwise, an IndentationError syntax error occurs:

In [3]: if grade >= 60:

 ...: print('Passed') # statement is not indented properly

 File "<ipython-input-3-f42783904220>", line 2

 print('Passed') # statement is not indented properly

 ^

IndentationError: expected an indented block

An IndentationError also occurs if you have more than one statement in a suite and those statements do not have the same indentation:

In [4]: if grade >= 60:

 ...: print('Passed') # indented 4 spaces

 ...: print('Good job!) # incorrectly indented only two spaces

 File <ipython-input-4-8c0d75c127bf>, line 3

 print('Good job!) # incorrectly indented only two spaces

 ^

IndentationError: unindent does not match any outer indentation level

Sometimes error messages may not be clear. The fact that Python calls attention to the line is usually enough for you to figure out what’s wrong. Apply indentation conventions uniformly throughout your code. Programs that are not uniformly indented are hard to read.

if Statement Flowchart

The flowchart for the if statement in snippet [2] is:

[image: A diagram of an If Flow chart with circles, arrows, diamonds and rectangles.]

3.5-2 Full Alternative Text

The decision (diamond) symbol contains a condition that can be either True or False. The diamond has two flowlines emerging from it:

	One indicates the direction to follow when the condition in the symbol is True. This points to the action (or group of actions) that should execute.

	The other indicates the direction to follow when the condition is False. This skips the action (or group of actions).

Every Expression Can Be Interpreted as Either True or False

You can base decisions on any expression. A nonzero value is True. Zero is False:

In [5]: if 1:

 ...: print('Nonzero values are true, so this will print')

 ...:

Nonzero values are true, so this will print

In [6]: if 0:

 ...: print('Zero is false, so this will not print')

In [7]:

Strings containing characters are True and empty strings ('', "" or """""") are False.

An Additional Note on Confusing == and =

Using the equality operator == instead of the assignment symbol = in an assignment statement can lead to subtle problems. For example, in this session, snippet [1] defined grade with the assignment:

grade = 85

If instead we accidentally wrote:

grade == 85

then grade would be undefined and we’d get a NameError.

If grade had been defined before the preceding statement, then grade == 85 would evaluate to True or False, depending on grade’s value, and not perform the intended assignment. This is a logic error.

[image: tick mark] Self Check

	(True/False) If you indent a suite’s statements, you will not get an IndentationError.

Answer: False. All the statements in a suite must have the same indentation. Otherwise, an IndentationError occurs.

	(IPython Session) Redo this section’s snippets [1] and [2], then change grade to 55 and repeat the if statement to show that its suite does not execute. The next section shows how to recall and re-execute earlier snippets to avoid having to re-enter the code.

Answer:

In [1]: grade = 85

In [2]: if grade >= 60:

 ...: print('Passed')

 ...:

Passed

In [3]: grade = 55

In [4]: if grade >= 60:

 ...: print('Passed')

 ...:

In [5]:

3.6 if…else and if…elif…else Statements

The if…else statement performs different suites, based on whether a condition is True or False. The pseudocode below displays 'Passed' if the student’s grade is greater than or equal to 60; otherwise, it displays 'Failed':

If student’s grade is greater than or equal to 60

 Display 'Passed'

Else

 Display 'Failed'

In either case, the next pseudocode statement in sequence after the entire If…Else is “performed.” We indent both the If and Else suites, and by the same amount. Let’s create and initialize (that is, give a starting value to) the variable grade, then show and execute the Python if…else statement for the preceding pseudocode:

In [1]: grade = 85

In [2]: if grade >= 60:

 ...: print('Passed')

 ...: else:

 ...: print('Failed')

 ...:

Passed

The condition above is True, so the if suite displays 'Passed'. Note that when you press Enter after typing print('Passed'), IPython indents the next line four spaces. You must delete those four spaces so that the else: suite correctly aligns under the i in if.

The following code assigns 57 to the variable grade, then shows the if…else statement again to demonstrate that only the else suite executes when the condition is False:

In [3]: grade = 57

In [4]: if grade >= 60:

 ...: print('Passed')

 ...: else:

 ...: print('Failed')

 ...:

Failed

The up and down arrow keys navigate backwards and forwards through the current interactive session’s snippets. Pressing Enter re-executes the snippet that’s displayed. Let’s set grade to 99, press the up arrow key twice to recall the code from snippet [4], then press Enter to re-execute that code as snippet [6]. Every recalled snippet that you execute gets a new ID:

In [5]: grade = 99

In [6]: if grade >= 60:

 ...: print('Passed')

 ...: else:

 ...: print('Failed')

 ...:

Passed

if…else Statement Flowchart

The flowchart below shows the preceding if…else statement’s flow of control:

[image: An image shows a partial flow chart of an if else statement.]

3.6-3 Full Alternative Text

Conditional Expressions

Sometimes the suites in an if…else statement assign different values to a variable, based on a condition, as in:

In [7]: grade = 87

In [8]: if grade >= 60:

 ...: result = 'Passed'

 ...: else:

 ...: result = 'Failed'

 ...:

We can then print or evaluate that variable:

In [9]: result

Out[9]: 'Passed'

You can write statements like snippet [8] using a concise conditional expression:

In [10]: result = ('Passed' if grade >= 60 else 'Failed')

In [11]: result

Out[11]: 'Passed'

The parentheses are not required, but they make it clear that the statement assigns the conditional expression’s value to result. First, Python evaluates the condition grade >= 60:

	If it’s True, snippet [10] assigns to result the value of the expression to the left of if, namely 'Passed'. The else part does not execute.

	If it’s False, snippet [10] assigns to result the value of the expression to the right of else, namely 'Failed'.

In interactive mode, you also can evaluate the conditional expression directly, as in:

In [12]: 'Passed' if grade >= 60 else 'Failed'

Out[12]: 'Passed'

Multiple Statements in a Suite

The following code shows two statements in the else suite of an if…else statement:

In [13]: grade = 49

In [14]: if grade >= 60:

 ...: print('Passed')

 ...: else:

 ...: print('Failed')

 ...: print('You must take this course again')

 ...:

Failed

You must take this course again

In this case, grade is less than 60, so both statements in the else’s suite execute. If you do not indent the second print, then it’s not in the else’s suite. So, that statement always executes, creating strange incorrect output:

In [15]: grade = 100

In [16]: if grade >= 60:

 ...: print('Passed')

 ...: else:

 ...: print('Failed')

 ...: print('You must take this course again')

 ...:

Passed

You must take this course again

if…elif…else Statement

You can test for many cases using the if…elif…else statement. The following pseudocode displays “A” for grades greater than or equal to 90, “B” for grades in the range 80–89, “C” for grades 70–79, “D” for grades 60–69 and “F” for all other grades:

If student’s grade is greater than or equal to 90

 Display “A”

Else If student’s grade is greater than or equal to 80

 Display “B”

Else If student’s grade is greater than or equal to 70

 Display “C”

Else If student’s grade is greater than or equal to 60

 Display “D”

Else

 Display “F”

Only the action for the first True condition executes. Let’s show and execute the Python code for the preceding pseudocode. The pseudocode Else If is written with the keyword elif. Snippet [18] displays C, because grade is 77:

In [17]: grade = 77

In [18]: if grade >= 90:

 ...: print('A')

 ...: elif grade >= 80:

 ...: print('B')

 ...: elif grade >= 70:

 ...: print('C')

 ...: elif grade >= 60:

 ...: print('D')

 ...: else:

 ...: print('F')

 ...:

C

The first condition—grade >= 90—is False, so print('A') is skipped. The second condition—grade >= 80—also is False, so print('B') is skipped. The third condition—grade >= 70—is True, so print('C') executes. Then all the remaining code in the if…elif…else statement is skipped. An if…elif…else is faster than separate if statements, because condition testing stops as soon as a condition is True.

if…elif…else Statement Flowchart

The following flowchart shows the general flow through an if…elif…else statement. It shows that, after any suite executes, control immediately exits the statement. The words to the left are not part of the flowchart. We added them to show how the flowchart corresponds to the equivalent Python code.

[image: An image titled control statements and program development shows a flowchart for an if else statement. It shows that after any suite executes, control immediately exits the statement.]

3.6-4 Full Alternative Text

else Is Optional

The else in the if…elif…else statement is optional. Including it enables you to handle values that do not satisfy any of the conditions. When an if…elif statement without an else tests a value that does not make any of its conditions True, the program does not execute any of the statement’s suites. The next statement in sequence after the if…elif statement executes. If you specify the else, you must place it after the last elif; otherwise, a SyntaxError occurs.

Logic Errors

The incorrectly indented code segment in snippet [16] is an example of a nonfatal logic error. The code executes, but it produces incorrect results. For a fatal logic error in a script, an exception occurs (such as a ZeroDivisionError from an attempt to divide by 0), so Python displays a traceback, then terminates the script. A fatal error in interactive mode terminates only the current snippet. Then IPython waits for your next input.

[image: tick mark] Self Check

	(True/False) A fatal logic error causes a script to produce incorrect results, then continue executing.

Answer: False. A fatal logic error causes a script to terminate.

	(IPython Session) Show that a SyntaxError occurs if an if…elif statement specifies an else before the last elif.

Answer:

In [1]: grade = 80

In [2]: if grade >= 90:

 ...: print('A')

 ...: else:

 ...: print('Not A or B')

 ...: elif grade >= 80:

 File "<ipython-input-2-033bcba40157>", line 5

 elif grade >= 80:

 ^

SyntaxError: invalid syntax

3.7 while Statement

The while statement allows you to repeat one or more actions while a condition remains True. Such a statement often is called a loop.

The following pseudocode specifies what happens when you go shopping:

While there are more items on my shopping list

 Buy next item and cross it off my list

If the condition “there are more items on my shopping list” is true, you perform the action “Buy next item and cross it off my list.” You repeat this action while the condition remains true. You stop repeating this action when the condition becomes false—that is, when you’ve crossed all items off your shopping list.

Let’s use a while statement to find the first power of 3 larger than 50:

In [1]: product = 3

In [2]: while product <= 50:

 ...: product = product * 3

 ...:

In [3]: product

Out[3]: 81

First, we create product and initialize it to 3. Then the while statement executes as follows:

	Python tests the condition product <= 50, which is True because product is 3. The statement in the suite multiplies product by 3 and assigns the result (9) to product. One iteration of the loop is now complete.

	Python again tests the condition, which is True because product is now 9. The suite’s statement sets product to 27, completing the second iteration of the loop.

	Python again tests the condition, which is True because product is now 27. The suite’s statement sets product to 81, completing the third iteration of the loop.

	Python again tests the condition, which is finally False because product is now 81. The repetition now terminates.

Snippet [3] evaluates product to see its value, 81, which is the first power of 3 larger than 50. If this while statement were part of a larger script, execution would continue with the next statement in sequence after the while.

Something in the while statement’s suite must change product’s value, so the condition eventually becomes False. Otherwise, a logic error called an infinite loop occurs. Such an error prevents the while statement from ever terminating—the program appears to “hang.” In applications executed from a Terminal, Command Prompt or shell, type Ctrl + c or control + c (depending on your keyboard) to terminate an infinite loop. IDEs typically have a toolbar button or menu option for stopping a program’s execution.

while Statement Flowchart

The following flowchart shows the preceding while statement’s flow of control:

[image: An image of a partial flowchart that shows a while statement’s flow of control with a true and false result.]

3.7-5 Full Alternative Text

Follow the flowlines to experience the repetition. The flowline from the rectangle “closes the loop” by flowing back into the condition product <= 50 that’s tested during each iteration. When that condition becomes False, the while statement exits and control proceeds to the next statement in sequence.

[image: tick mark] Self Check

	(True/False) A while statement performs its suite while some condition remains True.

Answer: True.

	(IPython Session) Write statements to determine the first power of 7 greater than 1000.

Answer:

In [1]: product = 7

In [2]: while product <= 1000:

 ...: product = product * 7

 ...:

In [3]: product

Out[3]: 2401

3.8 for Statement

Like the while statement, the for statement allows you to repeat an action or several actions. The for statement performs its action(s) for each item in a sequence of items. For example, a string is a sequence of individual characters. Let’s display 'Programming' with its characters separated by two spaces:

In [1]: for character in 'Programming':

 ...: print(character, end=' ')

 ...:

P r o g r a m m i n g

The for statement executes as follows:

	Upon entering the statement, it assigns the 'P' in 'Programming' to the target variable between keywords for and in—in this case, character.

	Next, the statement in the suite executes, displaying character’s value followed by two spaces—we’ll say more about this momentarily.

	After executing the suite, Python assigns to character the next item in the sequence (that is, the 'r' in 'Programming'), then executes the suite again.

	This continues while there are more items in the sequence to process. In this case, the statement terminates after displaying the letter 'g', followed by two spaces.

Using the target in the suite, as we did here to display its value, is common but not required.

for Statement Flowchart

The for statement’s flowchart is similar to that of the while statement:

[image: An image of a partial flowchart that shows a while statement’s flow of control with a true and false result.]

3.8-6 Full Alternative Text

First, Python determines whether there are more items to process. If so, the for statement assigns the next item to the target, then performs the suite’s action(s).

Function print’s end Keyword Argument

The built-in function print displays its argument(s), then moves the cursor to the next line. You can change this behavior with the argument end, as in

print(character, end=' ')

We used two spaces (' '), so each call to print displays character’s value followed by two spaces. So, all the characters display horizontally on the same line. Python calls end a keyword argument, but end is not a Python keyword. The end keyword argument is optional. If you do not include it, print uses a newline ('\n') by default. The Style Guide for Python Code recommends placing no spaces around a keyword argument’s =. Keyword arguments are sometimes called named arguments.

Function print’s sep Keyword Argument

You can use the keyword argument sep (short for separator) to specify the string that appears between the items that print displays. When you do not specify this argument, print uses a space character by default. Let’s display three numbers, each separated from the next by a comma and a space, rather than just a space:

In [2]: print(10, 20, 30, sep=', ')

10, 20, 30

To remove the spaces, use an empty string with no characters between its quotes.

3.8.1 Iterables, Lists and Iterators

The sequence to the right of the for statement’s in keyword must be an iterable. An iterable is an object from which the for statement can take one item at a time until no more items remain. Python has other iterable sequence types besides strings. One of the most common is a list, which is a comma-separated collection of items enclosed in square brackets ([and]). The following code totals five integers in a list:

In [3]: total = 0

In [4]: for number in [2, -3, 0, 17, 9]:

 ...: total = total + number

 ...:

In [5]: total

Out[5]: 25

Each sequence has an iterator. The for statement uses the iterator “behind the scenes” to get each consecutive item until there are no more to process. The iterator is like a bookmark—it always knows where it is in the sequence, so it can return the next item when it’s called upon to do so.

For each number in the list, the suite adds the number to the total. When there are no more items to process, total contains the sum (25) of the list’s items. We cover lists in detail in the “Sequences: Lists and Tuples” chapter. There, you’ll see that the order of the items in a list matters and that a list’s items are mutable (that is, modifiable).

3.8.2 Built-In range Function

Let’s use a for statement and the built-in range function to iterate precisely 10 times, displaying the values from 0 through 9:

In [6]: for counter in range(10):

 ...: print(counter, end=' ')

 ...:

0 1 2 3 4 5 6 7 8 9

The function call range(10) creates an iterable object that represents a sequence of consecutive integer values starting from 0 and continuing up to, but not including, the argument value (10). In this case, the sequence is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The for statement exits when it finishes processing the last integer that range produces. Iterators and iterable objects are two of Python’s functional-style programming features. We’ll introduce more of these throughout the book.

Off-By-One Errors

A logic error known as an off-by-one error occurs when you assume that range’s argument value is included in the generated sequence. For example, if you provide 9 as range’s argument when trying to produce the sequence 0 through 9, range generates only 0 through 8.

[image: tick mark] Self Check

	(Fill-In) Function ___________ generates a sequence of integers.

Answer: range.

	(IPython Session) Use the range function and a for statement to calculate the total of the integers from 0 through 1,000,000.

Answer:

In [1]: total = 0

In [2]: for number in range(1000001):

 ...: total = total + number

 ...:

In [3]: total

Out[3]: 500000500000

3.9 Augmented Assignments

Augmented assignments abbreviate assignment expressions in which the same variable name appears on the left and right of the assignment’s =, as total does in:

for number in [1, 2, 3, 4, 5]:

 total = total + number

Snippet [2] reimplements this using an addition augmented assignment (+=) statement:

In [1]: total = 0

In [2]: for number in [1, 2, 3, 4, 5]:

 ...: total += number # add number to total and store in number

 ...:

In [3]: total

Out[3]: 15

The += expression in snippet [2] first adds number’s value to the current total, then stores the new value in total. The table below shows sample augmented assignments:

[image: A table shows augmented assignments, sample expression, explanation and assigns.]

3.9-7 Full Alternative Text

[image: tick mark] Self Check

	(Fill-In) If x is 7, the value of x after evaluating x *= 5 is ___________ .

Answer: 35.

	(IPython Session) Create a variable x with the value 12. Use an exponentiation augmented assignment statement to square x’s value. Show x’s new value.

Answer:

In [1]: x = 12

In [2]: x **= 2

In [3]: x

Out[3]: 144

3.10 Program Development: Sequence-Controlled Repetition

Experience has shown that the most challenging part of solving a problem on a computer is developing an algorithm for the solution. As you’ll see, once a correct algorithm has been specified, creating a working Python program from the algorithm is typically straightforward. This section and the next present problem solving and program development by creating scripts that solve two class-averaging problems.

3.10.1 Requirements Statement

A requirements statement describes what a program is supposed to do, but not how the program should do it. Consider the following simple requirements statement:

	

A class of ten students took a quiz. Their grades (integers in the range 0 – 100) are 98, 76, 71, 87, 83, 90, 57, 79, 82, 94. Determine the class average on the quiz.

Once you know the problem’s requirements, you can begin creating an algorithm to solve it. Then, you can implement that solution as a program.

The algorithm for solving this problem must:

	Keep a running total of the grades.

	Calculate the average—the total of the grades divided by the number of grades.

	Display the result.

For this example, we’ll place the 10 grades in a list. You also could input the grades from a user at the keyboard (as we’ll do in the next example) or read them from a file (as you’ll see how to do in the “Files and Exceptions” chapter). We also show you how to read data from SQL and NoSQL databases in later chapters.

3.10.2 Pseudocode for the Algorithm

The following pseudocode lists the actions to execute and specifies the order in which they should execute:

Set total to zero

Set grade counter to zero

Set grades to a list of the ten grades

For each grade in the grades list:

 Add the grade to the total

 Add one to the grade counter

Set the class average to the total divided by the number of grades

Display the class average

Note the mentions of total and grade counter. In Fig. 3.1’s script, the variable total (line 5) stores the grade values’ running total, and grade_counter (line 6) counts the number of grades we’ve processed. We’ll use these to calculate the average. Variables for totaling and counting normally are initialized to zero before they’re used, as we do in lines 5 and 6.

3.10.3 Coding the Algorithm in Python

The following script implements the pseudocode algorithm.

Fig. 3.1 | Class average program with sequence-controlled repetition.

 1 # fig03_01.py

 2 """Class average program with sequence-controlled repetition."""

 3

 4 # initialization phase

 5 total = 0 # sum of grades

 6 grade_counter = 0

 7 grades = [98, 76, 71, 87, 83, 90, 57, 79, 82, 94] # list of 10 grades

 8

 9 # processing phase

10 for grade in grades:

11 total += grade # add current grade to the running total

12 grade_counter += 1 # indicate that one more grade was processed

13

14 # termination phase

15 average = total / grade_counter

16 print(f'Class average is {average}')

Class average is 81.7

Execution Phases

We used blank lines and comments to break the script into three execution phases—initialization, processing and termination:

	The initialization phase creates the variables needed to process the grades and set these variables to appropriate initial values.

	The processing phase processes the grades, calculating the running total and counting the number of grades processed so far.

	The termination phase calculates and displays the class average.

Many scripts can be decomposed (that is, broken apart) into these three phases.

Initialization Phase

Lines 5–6 create the variables total and grade_counter and initialize each to 0. Line 7

grades = [98, 76, 71, 87, 83, 90, 57, 79, 82, 94] # list of 10 grades

creates the variable grades and initializes it with a list of 10 integer grades.

Processing Phase

The for statement processes each grade in the list grades. Line 11 adds the current grade to the total. Then, line 12 adds 1 to the variable grade_counter to keep track of the number of grades processed so far. Repetition terminates when all 10 grades in the list have been processed. This is called definite repetition because the number of repetitions is known before the loop begins executing. In this case, it’s the number of elements in the list grades. The Style Guide for Python Coderecommends placing a blank line above and below each control statement (as in lines 8 and 13).

Termination Phase

When the for statement terminates, line 15 calculates the average and assigns it to the variable average. Then line 16 displays average. Later in this chapter, we use functional-style programming features to calculate the average of a list’s items more concisely.

3.10.4 Introduction to Formatted Strings

Line 16 uses the following simple f-string (short for formatted string) to format this script’s result by inserting the value of average into a string:

f'Class average is {average}'

The letter f before the string’s opening quote indicates it’s an f-string. You specify where to insert values by using placeholders delimited by curly braces ({ and }). The placeholder

{average}

converts the variable average’s value to a string representation, then replaces {average} with that replacement text. Replacement-text expressions may contain values, variables or other expressions, such as calculations or function calls. In line 16, we could have used total / grade_counter in place of average, eliminating the need for line 15.

[image: tick mark] Self Check

	(Fill-In) A(n) ___________ describes what a program is supposed to do, but not howthe program should do it.

Answer: requirements statement.

	(Fill-In) Many of the scripts you’ll write can be decomposed into three phases: ___________ , ___________ and ___________ .

Answer: initialization, processing, termination.

	(IPython Session) Display an f-string in which you insert the values of the variables number1 (7) and number2 (5) and their product. The displayed string should be

7 times 5 is 35

Answer:

In [1]: number1 = 7

In [2]: number2 = 5

In [3]: print(f'{number1} times {number2} is {number1 * number2}')

7 times 5 is 35

3.11 Program Development: Sentinel-Controlled Repetition

Let’s generalize the class-average problem. Consider the following requirements statement:

	

Develop a class-averaging program that processes an arbitrary number of grades each time the program executes.

In the first class-average example, we knew in advance the 10 grades to process. The requirements statement does not state what the grades are or how many there are, so we’re going to have the user enter the grades into the program. The program processes an arbitrary number of grades. How can the program determine when to stop processing grades so that it can move on to calculate and display the class average?

One way to solve this problem is to use a special value called a sentinel value (also called a signal value, a dummy value or a flag value) to indicate “end of data entry.” This is a bit like the way a caboose “marks” the end of a train. The user enters grades one at a time until all the grades have been entered. The user then enters the sentinel value to indicate that there are no more grades. Sentinel-controlled repetition is often called indefinite repetition because the number of repetitions is not known before the loop begins executing.

A sentinel value must not be confused with any acceptable input value. Grades on a quiz are typically nonnegative integers between 0 and 100, so the value –1 is an acceptable sentinel value for this problem. Thus, a run of the class-average program might process a stream of inputs such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class average for the grades 95, 96, 75, 74 and 89. The sentinel value –1 should not enter into the averaging calculation.

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement

We approach this class-average problem with a technique called top-down, stepwise refinement. We begin with a pseudocode representation of the top:

Determine the class average for the quiz

The top is a single statement that conveys the program’s overall function. Although it’s a complete representation of a program, the top rarely conveys enough detail from which to write a program. The top specifies what should be done, but not how to implement it. So we begin the refinement process. We decompose the top into a sequence of smaller tasks—a process sometimes called divide and conquer. This results in the following first refinement:

Initialize variables

Input, sum and count the quiz grades

Calculate and display the class average

Each refinement represents the complete algorithm—only the level of detail varies. In this refinement, the three pseudocode statements happen to correspond to the three execution phases described in the preceding section. The algorithm does not yet provide enough detail for us to write the Python program. So, we continue with the next refinement.

Second Refinement

To proceed to the second refinement, we commit to specific variables. The program needs to maintain

	a grade variable in which each successive user input will be stored,

	a running total of the grades,

	a count of how many grades have been processed and

	a variable that contains the calculated average.

The pseudocode statement

Initialize variables

can be refined as follows:

Initialize total to zero

Initialize grade counter to zero

Only the variables total and grade counter need to be initialized before they’re used. We do not initialize the variables for the user input and calculated average. Their values will be replaced each time we input a grade from the user and when we calculate the class average, respectively. We’ll create these variables when they’re needed.

The next pseudocode statement requires a loop that successively inputs each grade:

Input, sum and count the quiz grades

We do not know how many grades will be entered, so we use sentinel-controlled repetition. The user enters legitimate grades successively. After the last legitimate grade has been entered, the user enters the sentinel value. The program tests for the sentinel value after each grade is input and terminates the loop when the sentinel has been entered. The second refinement of the preceding pseudocode statement is

Input the first grade (possibly the sentinel)

While the user has not entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Input the next grade (possibly the sentinel)

The pseudocode statement

Calculate and display the class average

can be refined as follows:

If the counter is not equal to zero

 Set the average to the total divided by the grade counter

 Display the average

Else

 Display “No grades were entered”

Notice that we’re testing for the possibility of division by zero. If undetected, this would cause a fatal logic error. In the “Files and Exceptions” chapter, we discuss how to write programs that recognize such exceptions and take appropriate actions.

The following is the class-average problem’s complete second refinement:

Initialize total to zero

Initialize grade counter to zero

Input the first grade (possibly the sentinel)

While the user has not entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Input the next grade (possibly the sentinel)

If the counter is not equal to zero

 Set the average to the total divided by the counter

 Display the average

Else

 Display “No grades were entered”

Sometimes more than two refinements are necessary. You stop refining when there is enough detail for you to convert the pseudocode to Python. We include blank lines for readability. Here, they happen to separate the algorithm into the three popular execution phases.

Implementing Sentinel-Controlled Iteration

The following script implements the pseudocode algorithm and shows a sample execution in which the user enters three grades and the sentinel value.

Fig. 3.2 | Class average program with sentinel-controlled iteration.

 1 # fig03_02.py

 2 """Class average program with sentinel-controlled iteration."""

 3

 4 # initialization phase

 5 total = 0 # sum of grades

 6 grade_counter = 0 # number of grades entered

 7

 8 # processing phase

 9 grade = int(input('Enter grade, -1 to end: ')) # get one grade

10

11 while grade != -1:

12 total += grade

13 grade_counter += 1

14 grade = int(input('Enter grade, -1 to end: '))

15

16 # termination phase

17 if grade_counter != 0:

18 average = total / grade_counter

19 print(f'Class average is {average:.2f}')

20 else:

21 print('No grades were entered')

Enter grade, -1 to end: 97

Enter grade, -1 to end: 88

Enter grade, -1 to end: 72

Enter grade, -1 to end: -1

Class average is 85.67

Program Logic for Sentinel-Controlled Repetition

In sentinel-controlled repetition, the program reads the first value (line 9) before reaching the while statement. Line 9 demonstrates why we did not create the variable grade until we needed it in the program. If we had initialized it, that value would have been replaced immediately by this assignment.

The value input in line 9 determines whether the program’s flow of control should enter the while’s suite (lines 12–14). If the condition in line 11 is False, the user entered the sentinel value (-1), so the suite does not execute because the user did not enter any grades. If the condition is True, the suite executes, adding the grade value to the total and incrementing the grade_counter. Next, line 14 inputs another grade from the user. Then, the while’s condition (line 11) is tested again, using the most recent grade entered by the user. The value of grade is always input immediately before the program tests the while condition, so we can determine whether the value just input is the sentinel before processing that value as a grade. When the sentinel value is input, the loop terminates, and the program does not add –1 to the total. In a sentinel-controlled loop that performs user input, any prompts (lines 9 and 14) should remind the user of the sentinel value.

After the loop terminates, the if…else statement (lines 17–21) executes. Line 17 determines whether the user entered any grades. If not, the else part (lines 20–21) executes and displays the message 'No grades were entered' and the program terminates.

Formatting the Class Average with Two Decimal Places

This example formatted the class average with two digits to the right of the decimal point. In an f-string, you can optionally follow a replacement-text expression with a colon (:) and a format specifier that describes how to format the replacement text. The format specifier .2f (line 19) formats the average as a floating-point number (f) with two digits to the right of the decimal point (.2). In this example, the sum of the grades was 257, which, when divided by 3, yields 85.666666666…. Formatting the average with .2f rounds it to the hundredths position, producing the replacement text 85.67. An average with only one digit to the right of the decimal point would be formatted with a trailing zero (e.g., 85.50). The chapter “Strings: A Deeper Look” discusses many string-formatting features.

Control-Statement Stacking

In this example, notice that control statements are stacked in sequence. The while statement (lines 11–14) is followed immediately by an if…else statement (lines 17–21).

[image: tick mark] Self Check

	(Fill-In) Sentinel-controlled repetition is called ___________ because the number of repetitions is not known before the loop begins executing.

Answer: indefinite repetition.

	(True/False) Sentinel-controlled repetition uses a counter variable to control the number of times a set of instructions executes.

Answer: False. Sentinel-control repetition terminates repetition when the sentinel value is encountered.

3.12 Program Development: Nested Control Statements

Let’s work through another complete problem. Once again, we plan the algorithm using pseudocode and top-down, stepwise refinement and we develop a corresponding Python script. Consider the following requirements statement:

	

A college offers a course that prepares students for the state licensing exam for real-estate brokers. Last year, several of the students who completed this course took the licensing examination. The college wants to know how well its students did on the exam. You have been asked to write a program to summarize the results. You have been given a list of these 10 students. Next to each name is written a 1 if the student passed the exam and a 2 if the student failed.

Your program should analyze the results of the exam as follows:

	Input each test result (i.e., a 1 or a 2). Display the message “Enter result” each time the program requests another test result.

	Count the number of test results of each type.

	Display a summary of the test results indicating the number of students who passed and the number of students who failed.

	If more than eight students passed the exam, display “Bonus to instructor.”

After reading the requirements statement carefully, we make the following observations about the problem:

	The program must process 10 test results. We’ll use a for statement and the range function to control repetition.

	Each test result is a number—either a 1 or a 2. Each time the program reads a test result, the program must determine if the number is a 1 or a 2. We test for a 1 in our algorithm. If the number is not a 1, we assume that it’s a 2. (An exercise at the end of the chapter considers the consequences of this assumption.)

	We’ll use two counters—one to count the number of students who passed the exam and one to count the number of students who failed.

	After the script processes all the results, it must decide if more than eight students passed the exam so that it can bonus the instructor.

Top-Down, Stepwise Refinement

We begin with a pseudocode representation of the top:

Analyze exam results and decide whether instructor should receive a bonus

Once again, the top is a complete representation of the program, but several refinements are likely to be needed before the pseudocode can evolve naturally into a Python program.

First Refinement

Our first refinement is

Initialize variables

Input the ten exam grades and count passes and failures

Summarize the exam results and decide whether instructor should receive a bonus

Here, too, even though we have a complete representation of the entire program, further refinement is necessary. Note again that this first refinement happens to correspond to the three-execution-phases model.

Second Refinement

We now commit to specific variables. We need counters to record the passes and failures, and a variable to store the user input. The pseudocode statement

Initialize variables

can be refined as follows:

Initialize passes to zero

Initialize failures to zero

Only the counters for the number of passes and number of failures need to be initialized.

The pseudocode statement

Input the ten exam grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here it’s known in advance that there are ten exam results, so the for statement and the range function are appropriate. Inside the loop (that is, nested within the loop), an if…else statement determines whether each exam result is a pass or a failure and increments the appropriate counter. The refinement of the preceding pseudocode statement is

For each of the ten students

 Input the next exam result

 If the student passed

 Add one to passes

 Else

 Add one to failures

The blank line before the If…Else improves readability.

The pseudocode statement

Summarize the exam results and decide whether instructor should receive a bonus

may be refined as follows:

Display the number of passes

Display the number of failures

If more than eight students passed

 Display “Bonus to instructor”

Complete Pseudocode Algorithm

The pseudocode is now sufficiently refined for conversion to Python—the complete second refinement is shown below:

Initialize passes to zero

Initialize failures to zero

For each of the ten students

 Input the next exam result

 If the student passed

 Add one to passes

 Else

 Add one to failures

Display the number of passes

Display the number of failures

If more than eight students passed

 Display “Bonus to instructor”

Implementing the Algorithm

The following script implements the algorithm and is followed by two sample executions. Once again, notice that the Python code closely resembles the pseudocode. Lines 9–16 loop 10 times, inputting and processing one exam result each time. The if…else statement (lines 13–16) that processes each result is nested in the for statement—that is, it’s part of the for statement’s suite. If the result is 1, we add 1 to passes; otherwise, we assume the result is 2 and add 1 to failures. After inputting 10 values, the loop terminates and lines 19 and 20 display passes and failures. Lines 22–23 determine whether more than eight students passed the exam and, if so, display 'Bonus to instructor'.

Fig. 3.3 | Analysis of examination results

 1 # fig03_03.py

 2 """Using nested control statements to analyze examination results."""

 3

 4 # initialize variables

 5 passes = 0 # number of passes

 6 failures = 0 # number of failures

 7

 8 # process 10 students

 9 for student in range(10):

10 # get one exam result

11 result = int(input('Enter result (1=pass, 2=fail): '))

12

13 if result == 1:

14 passes = passes + 1

15 else:

16 failures = failures + 1

17

18 # termination phase

19 print('Passed:', passes)

20 print('Failed:', failures)

21

22 if passes > 8:

23 print('Bonus to instructor')

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 2

Enter result (1=pass, 2=fail): 2

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 2

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 2

Passed: 6

Failed: 4

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 2

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Enter result (1=pass, 2=fail): 1

Passed: 9

Failed: 1

Bonus to instructor

[image: tick mark] Self Check

	(IPython Session) Use a for statement to input two integers. Use a nested if…else statement to display whether each value is even or odd. Enter 10 and 7 to test your code.

Answer:

In [1]: for count in range(2):

 ...: value = int(input('Enter an integer: '))

 ...: if value % 2 == 0:

 ...: print(f'{value} is even')

 ...: else:

 ...: print(f'{value} is odd')

 ...:

Enter an integer: 10

10 is even

Enter an integer: 7

7 is odd

3.13 Built-In Function range: A Deeper Look

Function range also has two- and three-argument versions. As you’ve seen, range’s one-argument version produces a sequence of consecutive integers from 0 up to, but not including, the argument’s value. Function range’s two-argument version produces a sequence of consecutive integers from its first argument’s value up to, but not including, the second argument’s value, as in:

In [1]: for number in range(5, 10):

 ...: print(number, end=' ')

 ...:

5 6 7 8 9

Function range’s three-argument version produces a sequence of integers from its first argument’s value up to, but not including, the second argument’s value, incrementing by the third argument’s value, which is known as the step:

In [2]: for number in range(0, 10, 2):

 ...: print(number, end=' ')

 ...:

0 2 4 6 8

If the third argument is negative, the sequence progresses from the first argument’s value down to, but not including the second argument’s value, decrementing by the third argument’s value, as in:

In [3]: for number in range(10, 0, -2):

 ...: print(number, end=' ')

 ...:

10 8 6 4 2

[image: tick mark] Self Check

	(True/False) Function call range(1, 10) generates the sequence 1 through 10.

Answer: False. Function call range(1, 10) generates the sequence 1 through 9.

	(IPython Session) What happens if you try to print the items in range(10, 0, 2)?

Answer: Nothing displays because the step is not negative (this is not a fatal error):

In [1]: for number in range(10, 0, 2):

 ...: print(number, end=' ')

 ...:

In [2]:

	(IPython Session) Use a for statement, range and print to display on one line the sequence of values 99 88 77 66 55 44 33 22 11 0, each separated by one space.

Answer:

In [3]: for number in range(99, -1, -11):

 ...: print(number, end=' ')

 ...:

99 88 77 66 55 44 33 22 11 0

	(IPython Session) Use for and range to sum the even integers from 2 through 100, then display the sum.

Answer:

In [4]: total = 0

In [5]: for number in range(2, 101, 2):

 ...: total += number

 ...:

In [6]: total

Out[6]: 2550

3.14 Using Type Decimal for Monetary Amounts

In this section, we introduce Decimal capabilities for precise monetary calculations. If you enter banking or other fields that require the accuracy provided by type Decimal, you should investigate Decimal’s capabilities in depth.

For most scientific and other mathematical applications that use numbers with decimal points, Python’s built-in floating-point numbers work well. For example, when we speak of a “normal” body temperature of 98.6, we do not need to be precise to a large number of digits. When we view the temperature on a thermometer and read it as 98.6, the actual value may be 98.5999473210643. The point here is that calling this number 98.6 is adequate for most body-temperature applications.

Floating-point values are stored in binary format (we introduced binary in the first chapter and discuss it in depth in the online “Number Systems” appendix). Some floating-point values are represented only approximately when they’re converted to binary. For example, consider the variable amount with the dollars-and-cents value 112.31. If you display amount, it appears to have the exact value you assigned to it:

In [1]: amount = 112.31

In [2]: print(amount)

112.31

However, if you print amount with 20 digits of precision to the right of the decimal point, you can see that the actual floating-point value in memory is not exactly 112.31—it’s only an approximation:

In [3]: print(f'{amount:.20f}')

112.31000000000000227374

Many applications require precise representation of numbers with decimal points. Institutions like banks that deal with millions or even billions of transactions per day have to tie out their transactions “to the penny.” Floating-point numbers can represent some but not all monetary amounts with to-the-penny precision.

The Python Standard Library2 provides many predefined capabilities you can use in your Python code to avoid “reinventing the wheel.” For monetary calculations and other applications that require precise representation and manipulation of numbers with decimal points, the Python Standard Library provides type Decimal, which uses a special coding scheme to solve the problem of to-the-penny precision. That scheme requires additional memory to hold the numbers and additional processing time to perform calculations but provides the to-the-penny precision required for monetary calculations. Banks also have to deal with other issues such as using a fair rounding algorithm when they’re calculating daily interest on accounts. Type Decimal offers such capabilities.3
2. https://docs.python.org/3.7/library/index.html.
3. For more decimal module features, visit .https://docs.python.org/3.7/library/decimal.html.

Importing Type Decimal from the decimal Module

We’ve used several built-in types—int (for integers, like 10), float (for floating-point numbers, like 7.5) and str (for strings like 'Python'). The Decimal type is not built into Python. Rather, it’s part of the Python Standard Library, which is divided into modules—groups of related capabilities. The decimal module defines type Decimal and its capabilities.

To use capabilities from a module, you must first import the entire module, as in

import decimal

and refer to the Decimal type as decimal.Decimal, or you must indicate a specific capability to import using from…import, as we do here:

In [4]: from decimal import Decimal

This imports only the type Decimal from the decimal module so that you can use it in your code. We’ll discuss other import forms beginning in the next chapter.

Creating Decimals

You typically create a Decimal from a string:

In [5]: principal = Decimal('1000.00')

In [6]: principal

Out[6]: Decimal('1000.00')

In [7]: rate = Decimal('0.05')

In [8]: rate

Out[8]: Decimal('0.05')

We’ll soon use the variables principal and rate in a compound-interest calculation.

Decimal Arithmetic

Decimals support the standard arithmetic operators +, -, *, /, //, ** and %, as well as the corresponding augmented assignments:

In [9]: x = Decimal('10.5')

In [10]: y = Decimal('2')

In [11]: x + y

Out[11]: Decimal('12.5')

In [12]: x // y

Out[12]: Decimal('5')

In [13]: x += y

In [14]: x

Out[14]: Decimal('12.5')

You may perform arithmetic between Decimals and integers, but not between Decimals and floating-point numbers.

Compound-Interest Problem Requirements Statement

Let’s compute compound interest using the Decimal type for precise monetary calculations. Consider the following requirements statement:

 	

A person invests $1000 in a savings account yielding 5% interest. Assuming that the person leaves all interest on deposit in the account, calculate and display the amount of money in the account at the end of each year for 10 years. Use the following formula for determining these amounts:

a = p(1 + r)n

where

p is the original amount invested (i.e., the principal),

r is the annual interest rate,

n is the number of years and

a is the amount on deposit at the end of the nth year.

Calculating Compound Interest

To solve this problem, let’s use variables principal and rate that we defined in snippets [5] and [7], and a for statement that performs the interest calculation for each of the 10 years the money remains on deposit. For each year, the loop displays a formatted string containing the year number and the amount on deposit at the end of that year:

In [15]: for year in range(1, 11):

 ...: amount = principal * (1 + rate) ** year

 ...: print(f'{year:>2}{amount:>10.2f}')

 ...:

 1 1050.00

 2 1102.50

 3 1157.62

 4 1215.51

 5 1276.28

 6 1340.10

 7 1407.10

 8 1477.46

 9 1551.33

10 1628.89

The algebraic expression (1 + r) n from the requirements statement is written as

(1 + rate) ** year

where variable rate represents r and variable year represents n.

Formatting the Year and Amount on Deposit

The statement

print(f'{year:>2}{amount:>10.2f}')

uses an f-string with two placeholders to format the loop’s output.

The placeholder

{year:>2}

uses the format specifier >2 to indicate that year’s value should be right aligned (>) in a field of width 2—the field width specifies the number of character positions to use when displaying the value. For the single-digit year values

1–

9, the format specifier

>2 displays a space character followed by the value, thus right aligning the

years in the first column. The following diagram shows the numbers 1 and 10 each formatted in a field width of 2:

[image: A diagram shows the numbers 1 and 10 each formatted in a field width of 2. There is a leading space before the 1.]

You can left align values with <.

The format specifier 10.2f in the placeholder

{amount:>10.2f}

formats amount as a floating-point number (f) right aligned (>) in a field width of 10 with a decimal point and two digits to the right of the decimal point (.2). Formatting the amounts this way aligns their decimal points vertically, as is typical with monetary amounts. In the 10 character positions, the three rightmost characters are the number’s decimal point followed by the two digits to its right. The remaining seven character positions are the leading spaces and the digits to the decimal point’s left. In this example, all the dollar amounts have four digits to the left of the decimal point, so each number is formatted with three leading spaces. The following diagram shows the formatting for the value 1050.00:

[image: A diagram shows the formatting for the value 1050.00. The field width is 10. There are 3 leading spaces to the left then 1050 decimal point 2 digits to the right of the decimal point are 0 0.]

[image: tick mark] Self Check

	(Fill-In) A field width specifies the ___________ to use when displaying a value.

Answer: number of character positions.

	(IPython Session) Assume that the tax on a restaurant bill is 6.25% and that the bill amount is $37.45. Use type Decimal to calculate the bill total, then print the result with two digits to the right of the decimal point.

Answer:

In [1]: from decimal import Decimal

In [2]: print(f"{Decimal('37.45') * Decimal('1.0625'):.2f}")

39.79

3.15 break and continue Statements

The break and continue statements alter a loop’s flow of control. Executing a break statement in a while or for immediately exits that statement. In the following code, range produces the integer sequence 0–99, but the loop terminates when number is 10:

In [1]: for number in range(100):

 ...: if number == 10:

 ...: break

 ...: print(number, end=' ')

 ...:

0 1 2 3 4 5 6 7 8 9

In a script, execution would continue with the next statement after the for loop. The while and for statements each have an optional else clause that executes only if the loop terminates normally—that is, not as a result of a break. We explore this in the exercises.

Executing a continue statement in a while or for loop skips the remainder of the loop’s suite. In a while, the condition is then tested to determine whether the loop should continue executing. In a for, the loop processes the next item in the sequence (if any):

In [2]: for number in range(10):

...: if number == 5:

...: continue

...: print(number, end=' ')

...:

0 1 2 3 4 6 7 8 9

3.16 Boolean Operators and, or and not

The conditional operators >, <, >=, <=, == and != can be used to form simple conditions such as grade >= 60. To form more complex conditions that combine simple conditions, use the and, or and not Boolean operators.

Boolean Operator and

To ensure that two conditions are both True before executing a control statement’s suite, use the Boolean and operator to combine the conditions. The following code defines two variables, then tests a condition that’s True if and only if both simple conditions are True—if either (or both) of the simple conditions is False, the entire and expression is False:

In [1]: gender = 'Female'

In [2]: age = 70

In [3]: if gender == 'Female' and age >= 65:

 ...: print('Senior female')

 ...:

Senior female

The if statement has two simple conditions:

	gender == 'Female' determines whether a person is a female and

	age >= 65 determines whether that person is a senior citizen.

The simple condition to the left of the and operator evaluates first because == has higher precedence than and. If necessary, the simple condition to the right of and evaluates next, because >= has higher precedence than and. (We’ll discuss shortly why the right side of an and operator evaluates only if the left side is True.) The entire if statement condition is True if and only if both of the simple conditions are True. The combined condition can be made clearer by adding redundant (unnecessary) parentheses

(gender == 'Female') and (age >= 65)

The table below summarizes the and operator by showing all four possible combinations of False and True values for expression1 and expression2—such tables are called truth tables:

[image: A truth table shows the and operator by showing all four possible combinations of False and True values for expression 1 and expression 2.]

3.16-10 Full Alternative Text

Boolean Operator or

Use the Boolean or operator to test whether one or both of two conditions are True. The following code tests a condition that’s True if either or both simple conditions are True—the entire condition is False only if both simple conditions are False:

In [4]: semester_average = 83

In [5]: final_exam = 95

In [6]: if semester_average >= 90 or final_exam >= 90:

 ...: print('Student gets an A')

 ...:

Student gets an A

Snippet [6] also contains two simple conditions:

	semester_average >= 90 determines whether a student’s average was an A (90 or above) during the semester, and

	final_exam >= 90 determines whether a student’s final-exam grade was an A.

The truth table below summarizes the Boolean or operator. Operator and has higher precedence than or.

[image: A truth table shows the Boolean or operator.]

3.16-11 Full Alternative Text

Improving Performance with Short-Circuit Evaluation

Python stops evaluating an and expression as soon as it knows whether the entire condition is False. Similarly, Python stops evaluating an or expression as soon as it knows whether the entire condition is True. This is called short-circuit evaluation. So the condition

gender == 'Female' and age >= 65

stops evaluating immediately if gender is not equal to 'Female' because the entire expression must be False. If gender is equal to 'Female', execution continues, because the entire expression will be True if the age is greater than or equal to 65.

Similarly, the condition

semester_average >= 90 or final_exam >= 90

stops evaluating immediately if semester_average is greater than or equal to 90 because the entire expression must be True. If semester_average is less than 90, execution continues, because the expression could still be True if the final_exam is greater than or equal to 90.

In operator expressions that use and, make the condition that’s more likely to be False the leftmost condition. In or operator expressions, make the condition that’s more likely to be True the leftmost condition. These can reduce a program’s execution time.

Boolean Operator not

The Boolean not operator “reverses” the meaning of a condition—True becomes False and False becomes True. This is a unary operator—it has only one operand. You place the not operator before a condition to choose a path of execution if the original condition (without the not operator) is False, such as in the following code:

In [7]: grade = 87

In [8]: if not grade == -1:

 ...: print('The next grade is', grade)

 ...:

The next grade is 87

Often, you can avoid using not by expressing the condition in a more “natural” or convenient manner. For example, the preceding if statement can also be written as follows:

In [9]: if grade != -1:

 ...: print('The next grade is', grade)

 ...:

The next grade is 87

The truth table below summarizes the not operator.

[image: A truth table shows the not operator with 2 columns left to right expression and not expression. Row 1 False, True. Row 2 True, False.]

The following table shows the precedence and grouping of the operators introduced so far, from top to bottom, in decreasing order of precedence.

[image: A table shows the precedence and grouping of the operators from top to bottom, in decreasing order of precedence.]

3.16-13 Full Alternative Text

[image: tick mark] Self Check

	(IPython Session) Assume that i = 1, j = 2, k = 3 and m = 2. What does each of the following conditions display?

	(i >= 1) and (j < 4)

	(m <= 99) and (k < m)

	(j >= i) or (k == m)

	(k + m < j) or (3 - j >= k)

	not (k > m)

Answer:

In [1]: i = 1

In [2]: j = 2

In [3]: k = 3

In [4]: m = 2

In [5]: (i >= 1) and (j < 4)

Out[5]: True

In [6]: (m <= 99) and (k < m)

Out[6]: False

In [7]: (j >= i) or (k == m)

Out[7]: True

In [8]: (k + m < j) or (3 - j >= k)

Out[8]: False

In [9]: not (k > m)

Out[9]: False

3.17 Intro to Data Science: Measures of Central Tendency—Mean, Median and Mode

Here we continue our discussion of using statistics to analyze data with several additional descriptive statistics, including:

	mean—the average value in a set of values.

	median—the middle value when all the values are arranged in sorted order.

	mode—the most frequently occurring value.

These are measures of central tendency—each is a way of producing a single value that represents a “central” value in a set of values, i.e., a value which is in some sense typical of the others.

Let’s calculate the mean, median and mode on a list of integers. The following session creates a list called grades, then uses the built-in sum and len functions to calculate the mean “by hand”—sum calculates the total of the grades (397) and len returns the number of grades (5):

In [1]: grades = [85, 93, 45, 89, 85]

In [2]: sum(grades) / len(grades)

Out[2]: 79.4

The previous chapter mentioned the descriptive statistics count and sum—implemented in Python as the built-in functions len and sum. Like functions min and max (introduced in the preceding chapter), sum and len are both examples of functional-style programming reductions—they reduce a collection of values to a single value—the sum of those values and the number of values, respectively. In Fig. 3.1’s class-average example, we could have deleted lines 10–15 and replaced average in line 16 with snippet [2]’s calculation.

The Python Standard Library’s statistics module provides functions for calculating the mean, median and mode—these, too, are reductions. To use these capabilities, first import the statistics module:

In [3]: import statistics

Then, you can access the module’s functions with “statistics.” followed by the name of the function to call. The following calculates the grades list’s mean, median and mode, using the statistics module’s mean, median and mode functions:

In [4]: statistics.mean(grades)

Out[4]: 79.4

In [5]: statistics.median(grades)

Out[5]: 85

In [6]: statistics.mode(grades)

Out[6]: 85

Each function’s argument must be an iterable—in this case, the list grades. To confirm that the median and mode are correct, you can use the built-in sorted function to get a copy of grades with its values arranged in increasing order:

In [7]: sorted(grades)

Out[7]: [45, 85, 85, 89, 93]

The grades list has an odd number of values (5), so median returns the middle value (85). If the list’s number of values is even, median returns the average of the two middle values. Studying the sorted values, you can see that 85 is the mode because it occurs most frequently (twice). The mode function causes a StatisticsError for lists like

[85, 93, 45, 89, 85, 93]

in which there are two or more “most frequent” values. Such a set of values is said to be bimodal. Here, both 85 and 93 occur twice. We’ll say more about mean, median and mode in the Intro to Data Science exercises at the end of the chapter.

[image: tick mark] Self Check

	(Fill-In) The ___________ statistic indicates the average value in a set of values.

Answer: mean.

	(Fill-In) The ___________ statistic indicates the most frequently occurring value in a set of values.

Answer: mode.

	(Fill-In) The ___________ statistic indicates the middle value in a set of values.

Answer: median.

	(IPython Session) For the values 47, 95, 88, 73, 88 and 84, use the statistics module to calculate the mean, median and mode.

Answer:

In [1]: import statistics

In [2]: values = [47, 95, 88, 73, 88, 84]

In [3]: statistics.mean(values)

Out[3]: 79.16666666666667

In [4]: statistics.median(values)

Out[4]: 86.0

In [5]: statistics.mode(values)

Out[5]: 88

3.18 Wrap-Up

In this chapter, we discussed Python’s control statements, including if, if…else, if…elif…else, while, for, break and continue. We used pseudocode and top-down, stepwise refinement to develop several algorithms. You saw that many simple algorithms often have three execution phases—initialization, processing and termination.

You saw that the for statement performs sequence-controlled iteration—it processes each item in an iterable, such as a range of integers, a string or a list. You used the built-in function range to generate sequences of integers from 0 up to, but not including, its argument, and to determine how many times a for statement iterates. You used sentinel-controlled repetition with the while statement to create a loop that continues executing until a sentinel value is encountered. You used built-in function range’s two-argument version to generate sequences of integers from the first argument’s value up to, but not including, the second argument’s value. You also used the three-argument version in which the third argument indicated the step between integers in a range.

We introduced the Decimal type for precise monetary calculations and used it to calculate compound interest. You used f-strings and various format specifiers to create formatted output. We introduced the break and continue statements for altering the flow of control in loops. We discussed the Boolean operators and, or and not for creating conditions that combine simple conditions.

Finally, we continued our discussion of descriptive statistics by introducing measures of central tendency—mean, median and mode—and calculating them with functions from the Python Standard Library’s statistics module.

In the next chapter, you’ll create custom functions and use existing functions from Python’s math and random modules. We show several predefined functional-programming reductions. You’ll learn more of Python’s functional-programming capabilities.

Exercises

Unless specified otherwise, use IPython sessions for each exercise.

	

3.1 (Validating User Input) Modify the script of Fig3.3. to validate its inputs. For any input, if the value entered is other than 1 or 2, keep looping until the user enters a correct value. Use one counter to keep track of the number of passes, then calculate the number of failures after all the user’s inputs have been received.

	

3.2 (What’s Wrong with This Code?) What is wrong with the following code?

a = b = 7

print('a =', a, '\nb =', b)

First, answer the question, then check your work in an IPython session.

	

3.3 (What Does This Code Do?) What does the following program print?

for row in range(10):

 for column in range(10):

 print('<' if row % 2 == 1 else '>', end='')

 print()

	

3.4 (Fill in the Missing Code) In the code below

for ***:

 for ***:

 print('@')

 print()

replace the *** so that when you execute the code, it displays two rows, each containing seven @ symbols, as in:

@@@@@@@

@@@@@@@

	

3.5 (if…else Statements) Reimplement the script of Fig2.1. using three if…else statements rather than six if statements. [Hint: For example, think of == and != as “opposite” tests.]

	

3.6 (Turing Test) The great British mathematician Alan Turing proposed a simple test to determine whether machines could exhibit intelligent behavior. A user sits at a computer and does the same text chat with a human sitting at a computer and a computer operating by itself. The user doesn’t know if the responses are coming back from the human or the independent computer. If the user can’t distinguish which responses are coming from the human and which are coming from the computer, then it’s reasonable to say that the computer is exhibiting intelligence.

Create a script that plays the part of the independent computer, giving its user a simple medical diagnosis. The script should prompt the user with 'What is your problem?' When the user answers and presses Enter, the script should simply ignore the user’s input, then prompt the user again with 'Have you had this problem before (yes or no)?' If the user enters 'yes', print 'Well, you have it again.' If the user answers 'no', print 'Well, you have it now.'

Would this conversation convince the user that the entity at the other end exhibited intelligent behavior? Why or why not?

	

3.7 (Table of Squares and Cubes) In Exercise 2.8, you wrote a script to calculate the squares and cubes of the numbers from 0 through 5, then printed the resulting values in table format. Reimplement your script using a for loop and the f-string capabilities you learned in this chapter to produce the following table with the numbers right aligned in each column.

[image: A table of 3 columns shows squares and cubes. The 3 columns from left to right. Number, Square, Cube. Row 1. 0, 0, 0. Row 2. 1, 1,1. Row 3. 2, 4, 8. Row 4. 3, 9, 12. Row 5. 4, 16, 64. Row 6. 5, 25, 125.]

	

3.8 (Arithmetic, Smallest and Largest) In Exercise 2.10, you wrote a script that input three integers, then displayed the sum, average, product, smallest and largest of those values. Reimplement your script with a loop that inputs four integers.

	

3.9 (Separating the Digits in an Integer) In Exercise 2.11, you wrote a script that separated a five-digit integer into its individual digits and displayed them. Reimplement your script to use a loop that in each iteration “picks off” one digit (left to right) using the // and % operators, then displays that digit.

	

3.10 (7% Investment Return) Reimplement Exercise 2.12 to use a loop that calculates and displays the amount of money you’ll have each year at the ends of years 1 through 30.

	

3.11 (Miles Per Gallon) Drivers are concerned with the mileage obtained by their automobiles. One driver has kept track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. Develop a sentinel-controlled-repetition script that prompts the user to input the miles driven and gallons used for each tankful. The script should calculate and display the miles per gallon obtained for each tankful. After processing all input information, the script should calculate and display the combined miles per gallon obtained for all tankfuls (that is, total miles driven divided by total gallons used).

Enter the gallons used (-1 to end): 12.8

Enter the miles driven: 287

The miles/gallon for this tank was 22.421875

Enter the gallons used (-1 to end): 10.3

Enter the miles driven: 200

The miles/gallon for this tank was 19.417475

Enter the gallons used (-1 to end): 5

Enter the miles driven: 120

The miles/gallon for this tank was 24.000000

Enter the gallons used (-1 to end): -1

The overall average miles/gallon was 21.601423

	

3.12 (Palindromes) A palindrome is a number, word or text phrase that reads the same backwards or forwards. For example, each of the following five-digit integers is a palindrome: 12321, 55555, 45554 and 11611. Write a script that reads in a five-digit integer and determines whether it’s a palindrome. [Hint: Use the // and % operators to separate the number into its digits.]

	

3.13 (Factorials) Factorial calculations are common in probability. The factorial of a nonnegative integer n is written n! (pronounced “n factorial”) and is defined as follows:

n! = n · (n - 1) · (n - 2) · … · 1

for values of n greater than or equal to 1, with 0! defined to be 1. So,

5! = 5 · 4 · 3 · 2 · 1

which is 120. Factorials increase in size very rapidly. Write a script that inputs a nonnegative integer and computes and displays its factorial. Try your script on the integers 10, 20, 30 and even larger values. Did you find any integer input for which Python could not produce an integer factorial value?

	

3.14 (Challenge: Approximating the Mathematical Constant π) Write a script that computes the value of π from the following infinite series. Print a table that shows the value of π approximated by one term of this series, by two terms, by three terms, and so on. How many terms of this series do you have to use before you first get 3.14? 3.141? 3.1415? 3.14159?

[image: value of pi]

	

3.15 (Challenge: Approximating the Mathematical Constant e) Write a script that estimates the value of the mathematical constant e by using the formula below. Your script can stop after summing 10 terms.

[image: value of e]

	

3.16 (Nested Control Statements) Use a loop to find the two largest values of 10 numbers entered.

	

3.17 (Nested Loops) Write a script that displays the following triangle patterns separately, one below the other. Separate each pattern from the next by one blank line. Use for loops to generate the patterns. Display all asterisks (*) with a single statement of the form

print('*', end='')

which causes the asterisks to display side by side. [Hint: For the last two patterns, begin each line with zero or more space characters.]

(a) (b) (c) (d)

* ********** ********** *

** ********* ********* **

*** ******** ******** ***

**** ******* ******* ****

***** ****** ****** *****

****** ***** ***** ******

******* **** **** *******

******** *** *** ********

********* ** ** *********

********** * * **********

	

3.18 (Challenge: Nested Looping) Modify your script from Exercise 3.17 to display all four patterns side-by-side (as shown above) by making clever use of nested for loops. Separate each triangle from the next by three horizontal spaces. [Hint: One for loop should control the row number. Its nested for loops should calculate from the row number the appropriate number of asterisks and spaces for each of the four patterns.]

	

3.19 (Brute-Force Computing: Pythagorean Triples) A right triangle can have sides that are all integers. The set of three integer values for the sides of a right triangle is called a Pythagorean triple. These three sides must satisfy the relationship that the sum of the squares of two of the sides is equal to the square of the hypotenuse. Find all Pythagorean triples for side1, side2 and hypotenuse (such as 3, 4 and 5) all no larger than 20. Use a triple-nested for-loop that tries all possibilities. This is an example of “brute-force” computing. You’ll learn in more advanced computer science courses that there are many interesting problems for which there is no known algorithmic approach other than sheer brute force.

	

3.20 (Binary-to-Decimal Conversion) Input an integer containing 0s and 1s (i.e., a “binary” integer) and display its decimal equivalent. The online appendix, “Number Systems,” discusses the binary number system. [Hint: Use the modulus and division operators to pick off the “binary” number’s digits one at a time from right to left. Just as in the decimal number system, where the rightmost digit has the positional value 1 and the next digit to the left has the positional value 10, then 100, then 1000, etc., in the binary number system, the rightmost digit has the positional value 1, the next digit to the left has the positional value 2, then 4, then 8, etc. Thus, the decimal number 234 can be interpreted as 2 * 100 + 3 * 10 + 4 * 1. The decimal equivalent of binary 1101 is 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1.]

	

3.21 (Calculate Change Using Fewest Number of Coins) Write a script that inputs a purchase price of a dollar or less for an item. Assume the purchaser pays with a dollar bill. Determine the amount of change the cashier should give back to the purchaser. Display the change using the fewest number of pennies, nickels, dimes and quarters. For example, if the purchaser is due 73 cents in change, the script would output:

Your change is:

2 quarters

2 dimes

3 pennies

	

3.22 (Optional else Clause of a Loop) The while and

for statements each have an optional else clause. In a while statement, the else clause executes when the condition becomes False. In a for statement, the else clause executes when there are no more items to process. If you break out of a while or for that has an else, the else part does not execute. Execute the following code to see that the else clause executes only if the break statement does not:

for i in range(2):

 value = int(input('Enter an integer (-1 to break): '))

 print('You entered:', value)

 if value == -1:

 break

else:

 print('The loop terminated without executing the break')

For more information on loop else clauses, see

https://docs.python.org/3/tutorial/controlflow.html#break-and-continue-statements-and-else-clauses-on-loops

	

3.23 (Validating Indentation) The file validate_indents.py in this chapter’s ch03 examples folder contains the following code with incorrect indentation:

grade = 93

if grade >= 90:

 print('A')

 print('Great Job!')

 print('Take a break from studying')

The Python Standard Library includes a code indentation validator module named tabnanny, which you can run as a script to check your code for proper indentation—this is one of many static code analysis tools. Execute the following command in the ch03 folder to see the results of analyzing validate_indents.py:

python -m tabnanny validate_indents.py

Suppose you accidentally aligned the second print statement under the i in the if keyword. What kind of error would that be? Would you expect tabnanny to flag that as an error?

	

3.24 (Project: Using the prospector Static Code Analysis Tool) The prospector tool runs several popular static code analysis tools to check your Python code for common errors and to help you improve your code. Check that you’ve installed prospector (see the Before You Begin section that follows the Preface). Run prospector on each of the scripts in this chapter. To do so, open the folder containing the scripts in a Terminal (macOS/Linux), Command Prompt (Windows) or shell (Linux), then run the following command from that folder:

prospector --strictness veryhigh --doc-warnings

Study the output to see the kinds of issues prospector locates in Python code. In general, run prospector on all new code you create.

	

3.25 (Project: Using prospector to Analyze Open-Source Code on GitHub) Locate a Python open-source project on GitHub, download its source code and extract it into a folder on your system. Open that folder in a Terminal (macOS/Linux), Command Prompt (Windows) or shell (Linux), then run the following command from that folder:

prospector --strictness veryhigh --doc-warnings

Study the output to see more of the kinds of issues prospector locates in Python code.

	

3.26 (Research: Anscombe’s Quartet) In this book’s data science case studies, we’ll emphasize the importance of “getting to know your data.” The basic descriptive statistics that you’ve seen in this chapter’s and the previous chapter’s Intro to Data Science sections certainly help you know more about your data. One caution, though, is that different datasets can have identical or nearly identical descriptive statistics and yet the data can be significantly different. For an example of this phenomenon, research Anscombe’s Quartet. You should find four datasets and the associated visualizations. It’s the visualizations that convince you the datasets are quite different. In an exercise in a later chapter, you’ll create these visualizations.

	

3.27 (World Population Growth) World population has grown considerably over the centuries. Continued growth could eventually challenge the limits of breathable air, drinkable water, arable land and other limited resources. There’s evidence that growth has been slowing in recent years and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues. This is a controversial topic, so be sure to investigate various viewpoints. Get estimates for the current world population and its growth rate. Write a script that calculates world population growth each year for the next 100 years, using the simplifying assumption that the current growth rate will stay constant . Print the results in a table. The first column should display the year from 1 to 100. The second column should display the anticipated world population at the end of that year. The third column should display the numerical increase in the world population that would occur that year. Using your results, determine the years in which the population would be double and eventually quadruple what it is today.

	

3.28 (Intro to Data Science: Mean, Median and Mode) Calculate the mean, median and mode of the values 9, 11, 22, 34, 17, 22, 34, 22 and 40. Suppose the values included another 34. What problem might occur?

	

3.29 (Intro to Data Science: Problem with the Median) For an odd number of values, to get the median you simply arrange them in order and take the middle value. For an even number, you average the two middle values. What problem occurs if those two values are different?

	

3.30 (Intro to Data Science: Outliers) In statistics, outliers are values out of the ordinary and possibly way out of the ordinary. Sometimes, outliers are simply bad data. In the data science case studies, we’ll see that outliers can distort results. Which of the three measures of central tendency we discussed—mean, median and mode—is most affected by outliers? Why? Which of these measures are not affected or least affected? Why?

	

3.31 (Intro to Data Science: Categorical Data) Mean, median and mode work well with numerical values. You can use them in calculations and arrange them in meaningful order. Categorical values are descriptive names like Boxer, Poodle, Collie, Beagle, Bulldog and Chihuahua. Normally, you don’t use these in calculations nor associate an order with them. Which if any of the descriptive statistics are appropriate for categorical data?

4 Functions

Objectives

In this chapter you’ll:

	Create custom functions.

	Import and use Python Standard Library modules, such as random and math, to reuse code and avoid “reinventing the wheel.”

	Pass data between functions.

	Generate a range of random numbers.

	Learn simulation techniques using random-number generation.

	Pack values into a tuple and unpack values from a tuple.

	Return multiple values from a function via a tuple.

	Understand how an identifier’s scope determines where in your program you can use it.

	Create functions with default parameter values.

	Call functions with keyword arguments.

	Create functions that can receive any number of arguments.

	Use methods of an object.

Outline

	4.1 Introduction

	4.2 Defining Functions

	4.3 Functions with Multiple Parameters

	4.4 Random-Number Generation

	4.5 Case Study: A Game of Chance

	4.6 Python Standard Library

	4.7 math Module Functions

	4.8 Using IPython Tab Completion for Discovery

	4.9 Default Parameter Values

	4.10 Keyword Arguments

	4.11 Arbitrary Argument Lists

	4.12 Methods: Functions That Belong to Objects

	4.13 Scope Rules

	4.14 import: A Deeper Look

	4.15 Passing Arguments to Functions: A Deeper Look

	4.16 Function-Call Stack

	4.17 Functional-Style Programming

	4.18 Intro to Data Science: Measures of Dispersion

	4.19 Wrap-Up

	Exercises

4.8 Using IPython Tab Completion for Discovery

You can view a module’s documentation in IPython interactive mode via tab completion—a discovery feature that speeds your coding and learning processes. After you type a portion of an identifier and press Tab, IPython completes the identifier for you or provides a list of identifiers that begin with what you’ve typed so far. This may vary based on your operating system platform and what you have imported into your IPython session:

In [1]: import math

In [2]: ma<Tab>

 map %macro %%markdown

 math %magic %matplotlib

 max() %man

You can scroll through the identifiers with the up and down arrow keys. As you do, IPython highlights an identifier and shows it to the right of the In [] prompt.

Viewing Identifiers in a Module

To view a list of identifiers defined in a module, type the module’s name and a dot (.), then press Tab:

In [3]: math.<Tab>

 acos() atan() copysign() e expm1()

 acosh() atan2() cos() erf() fabs()

 asin() atanh() cosh() erfc() factorial() >

 asinh() ceil() degrees() exp() floor()

If there are more identifiers to display than are currently shown, IPython displays the > symbol (on some platforms) at the right edge, in this case to the right of factorial(). You can use the up and down arrow keys to scroll through the list. In the list of identifiers:

	Those followed by parentheses are functions (or methods, as you’ll see later).

	Single-word identifiers (such as Employee) that begin with an uppercase letter and multiword identifiers in which each word begins with an uppercase letter (such as CommissionEmployee) represent class names (there are none in the preceding list). This naming convention, which the Style Guide for Python Code recommends, is known as CamelCase because the uppercase letters stand out like a camel’s humps.

	Lowercase identifiers without parentheses, such as pi (not shown in the preceding list) and e, are variables. The identifier pi evaluates to 3.141592653589793, and the identifier e evaluates to 2.718281828459045. In the math module, pi and e represent the mathematical constants π and e, respectively.

Python does not have constants, although many objects in Python are immutable (nonmodifiable). So even though pi and e are real-world constants, you must not assign new values to them, because that would change their values. To help distinguish constants from other variables, the style guide recommends naming your custom constants with all capital letters.

Using the Currently Highlighted Function

As you navigate through the identifiers, if you wish to use a currently highlighted function, simply start typing its arguments in parentheses. IPython then hides the autocompletion list. If you need more information about the currently highlighted item, you can view its docstring by typing a question mark (?) following the name and pressing Enter to view the help documentation. The following shows the fabs function’s docstring:

In [4]: math.fabs?

Docstring:

fabs(x)

Return the absolute value of the float x.

Type: builtin_function_or_method

The builtin_function_or_method shown above indicates that fabs is part of a Python Standard Library module. Such modules are considered to be built into Python. In this case, fabs is a built-in function from the math module.

[image:] Self Check

	(True/False) In IPython interactive mode, to view a list of identifiers defined in a module, type the module’s name and a dot (.) then press Enter.

Answer: False. Press Tab, not Enter.

	(True/False) Python does not have constants.

Answer: True.

4.1 Introduction

Experience has shown that the best way to develop and maintain a large program is to construct it from smaller, more manageable pieces. This technique is called divide and conquer. Using existing functions as building blocks for creating new programs is a key aspect of software reusability—it’s also a major benefit of object-oriented programming. Packaging code as a function allows you to execute it from various locations in your program just by calling the function, rather than duplicating the possibly lengthy code. This also makes programs easier to modify. When you change a function’s code, all calls to the function execute the updated version.

4.2 Defining Functions

You’ve called many built-in functions (int, float, print, input, type, sum, len, min and max) and a few functions from the statistics module (mean, median and mode). Each performed a single, well-defined task. You’ll often define and call custom functions. The following session defines a square function that calculates the square of its argument. Then it calls the function twice—once to square the int value 7 (producing the int value 49) and once to square the float value 2.5 (producing the float value 6.25):

In [1]: def square(number):

 ...: """Calculate the square of number."""

 ...: return number ** 2

 ...:

In [2]: square(7)

Out[2]: 49

In [3]: square(2.5)

Out[3]: 6.25

The statements defining the function in the first snippet are written only once, but may be called “to do their job” from many points throughout a program and as often as you like. Calling square with a non-numeric argument like 'hello' causes a TypeError because the exponentiation operator (**) works only with numeric values.

Defining a Custom Function

A function definition (like square in snippet [1]) begins with the def keyword, followed by the function name (square), a set of parentheses and a colon (:). Like variable identifiers, by convention function names should begin with a lowercase letter and in multiword names underscores should separate each word.

The required parentheses contain the function’s parameter list—a comma-separated list of parameters representing the data that the function needs to perform its task. Function square has only one parameter named number—the value to be squared.

If the parentheses are empty, the function does not use parameters to perform its task. Exercise 4.7 asks you to write a parameterless date_and_time function that displays the current date and time by reading it from your computer’s system clock.

The indented lines after the colon (:) are the function’s block, which consists of an optional docstring followed by the statements that perform the function’s task. We’ll soon point out the difference between a function’s block and a control statement’s suite.

Specifying a Custom Function’s Docstring

The Style Guide for Python Code says that the first line in a function’s block should be a docstring that briefly explains the function’s purpose:

"""Calculate the square of number."""

To provide more detail, you can use a multiline docstring—the style guide recommends starting with a brief explanation, followed by a blank line and the additional details.

Returning a Result to a Function’s Caller

When a function finishes executing, it returns control to its caller—that is, the line of code that called the function. In square’s block, the return statement:

return number ** 2

first squares number, then terminates the function and gives the result back to the caller. In this example, the first caller is square(7) in snippet [2], so IPython displays the result in Out[2]. Think of the return value, 49, as simply replacing the call square(7). So after the call, you’d have In [2]: 49, and that would indeed produce Out[2]: 49. The second caller square(2.5) is in snippet [3], so IPython displays the result 6.25 in Out[3].

Function calls also can be embedded in expressions. The following code calls square first, then print displays the result:

In [4]: print('The square of 7 is', square(7))

The square of 7 is 49

Here, too, think of the return value, 49, as simply replacing the call square(7), which would indeed produce the output shown above.

There are two other ways to return control from a function to its caller:

	Executing a return statement without an expression terminates the function and implicitly returns the value None to the caller. The Python documentation states that None represents the absence of a value. None evaluates to False in conditions.

	When there’s no return statement in a function, it implicitly returns the value None after executing the last statement in the function’s block.

What Happens When You Call a Function

The expression square(7) passes the argument 7 to square’s parameter number. Then square calculates number ** 2 and returns the result. The parameter number exists only during the function call. It’s created on each call to the function to receive the argument value, and it’s destroyed when the function returns its result to the caller.

Though we did not define variables in square’s block, it is possible to do so. A function’s parameters and variables defined in its block are all local variables—they can be used only inside the function and exist only while the function is executing. Trying to access a local variable outside its function’s block causes a NameError, indicating that the variable is not defined. We’ll soon see how a behind-the-scenes mechanism called the function-call stack supports the automatic creation and destruction of a function’s local variables—and helps the function return to its caller.

Accessing a Function’s Docstring via IPython’s Help Mechanism

IPython can help you learn about the modules and functions you intend to use in your code, as well as IPython itself. For example, to view a function’s docstring to learn how to use the function, type the function’s name followed by a question mark (?):

In [5]: square?

Signature: square(number)

Docstring: Calculate the square of number.

File: ~/Documents/examples/ch04/<ipython-input-1-7268c8ff93a9>

Type: function

For our square function, the information displayed includes:

	The function’s name and parameter list—known as its signature.

	The function’s docstring.

	The name of the file containing the function’s definition. For a function in an interactive session, this line shows information for the snippet that defined the function—the 1 in "<ipython-input-1-7268c8ff93a9>" means snippet [1].

	The type of the item for which you accessed IPython’s help mechanism—in this case, a function.

If the function’s source code is accessible from IPython—such as a function defined in the current session or imported into the session from a .py file—you can use ?? to display the function’s full source-code definition:

In [6]: square??

Signature: square(number)

Source:

def square(number):

 """Calculate the square of number."""

 return number ** 2

File: ~/Documents/examples/ch04/<ipython-input-1-7268c8ff93a9>

Type: function

If the source code is not accessible from IPython, ?? simply shows the docstring.

If the docstring fits in the window, IPython displays the next In

[] prompt. If a docstring is too long to fit, IPython indicates that there’s more by displaying a colon (:) at the bottom of the window—press the Space key to display the next screen. You can navigate backwards and forwards through the docstring with the up and down arrow keys, respectively. IPython displays (END) at the end of the docstring. Press q (for “quit”) at any : or the (END) prompt to return to the next In

[] prompt. To get a sense of IPython’s features, type ? at any In

[] prompt, press Enter, then read the help documentation overview.

[image:] Self Check

	(True/False) The function body is referred to as its suite.

Answer: False. The function body is referred to as its block.

	(True/False) A function’s local variables exist after the function returns to its caller.

Answer: False. A function’s local variables exist until the function returns to its caller.

	(IPython Session) Define a function square_root that receives a number as a parameter and returns the square root of that number. Determine the square root of 6.25.

Answer:

In [1]: def square_root(number):

 ...: return number ** 0.5 # or number ** (1 / 2)

 ...:

In [2]: square_root(6.25)

Out[2]: 2.5

4.3 Functions with Multiple Parameters

Let’s define a maximum function that determines and returns the largest of three values—the following session calls the function three times with integers, floating-point numbers and strings, respectively.

In [1]: def maximum(value1, value2, value3):

 ...: """Return the maximum of three values."""

 ...: max_value = value1

 ...: if value2 > max_value:

 ...: max_value = value2

 ...: if value3 > max_value:

 ...: max_value = value3

 ...: return max_value

 ...:

In [2]: maximum(12, 27, 36)

Out[2]: 36

In [3]: maximum(12.3, 45.6, 9.7)

Out[3]: 45.6

In [4]: maximum('yellow', 'red', 'orange')

Out[4]: 'yellow'

We did not place blank lines above and below the if statements, because pressing return on a blank line in interactive mode completes the function’s definition.

You also may call maximum with mixed types, such as ints and floats:

In [5]: maximum(13.5, -3, 7)

Out[5]: 13.5

The call maximum(13.5, 'hello', 7) results in TypeError because strings and numbers cannot be compared to one another with the greater-than (>) operator.

Function maximum’s Definition

Function maximum specifies three parameters in a comma-separated list. Snippet [2]’s arguments 12, 27 and 36 are assigned to the parameters value1, value2 and value3, respectively.

To determine the largest value, we process one value at a time:

	Initially, we assume that value1 contains the largest value, so we assign it to the local variable max_value. Of course, it’s possible that value2 or value3 contains the actual largest value, so we still must compare each of these with max_value.

	The first if statement then tests value2 > max_value, and if this condition is True assigns value2 to max_value.

	The second if statement then tests value3 > max_value, and if this condition is True assigns value3 to max_value.

Now, max_value contains the largest value, so we return it. When control returns to the caller, the parameters value1, value2 and value3 and the variable max_value in the function’s block—which are all local variables—no longer exist.

Python’s Built-In max and min Functions

For many common tasks, the capabilities you need already exist in Python. For example, built-in max and min functions know how to determine the largest and smallest of their two or more arguments, respectively:

In [6]: max('yellow', 'red', 'orange', 'blue', 'green')

Out[6]: 'yellow'

In [7]: min(15, 9, 27, 14)

Out[7]: 9

Each of these functions also can receive an iterable argument, such as a list or a string. Using built-in functions or functions from the Python Standard Library’s modules rather than writing your own can reduce development time and increase program reliability, portability and performance. For a list of Python’s built-in functions and modules, see

https://docs.python.org/3/library/index.html

[image:] Self Check

	(Fill-In) A function with multiple parameters specifies them in a(n) .

Answer: comma-separated list.

	(True/False) When defining a function in IPython interactive mode, pressing Enter on a blank line causes IPython to display another continuation prompt so you can continue defining the function’s block.

Answer: False. When defining a function in IPython interactive mode, pressing Enter on a blank line terminates the function definition.

	(IPython Session) Call function max with the list [14, 27, 5, 3] as an argument, then call function min with the string 'orange' as an argument.

Answer:

In [1]: max([14, 27, 5, 3])

Out[1]: 27

In [2]: min('orange')

Out[2]: 'a'

4.4 Random-Number Generation

We now take a brief diversion into a popular type of programming application—simulation and game playing. You can introduce the element of chance via the Python Standard Library’s random module.

Rolling a Six-Sided Die

Let’s produce 10 random integers in the range 1–6 to simulate rolling a six-sided die:

In [1]: import random

In [2]: for roll in range(10):

 ...: print(random.randrange(1, 7), end=' ')

 ...:

4 2 5 5 4 6 4 6 1 5

First, we import random so we can use the module’s capabilities. The

randrange function generates an integer from the first argument value up to, but not including, the second argument value. Let’s use the up arrow key to recall the for statement, then press Enter to re-execute it. Notice that different values are displayed:

In [3]: for roll in range(10):

 ...: print(random.randrange(1, 7), end=' ')

 ...:

4 5 4 5 1 4 1 4 6 5

Sometimes, you may want to guarantee reproducibility of a random sequence—for debugging, for example. At the end of this section, we’ll show how to do this with the random module’s seed function.

Rolling a Six-Sided Die 6,000,000 Times

If randrange truly produces integers at random, every number in its range has an equal probability (or chance or likelihood) of being returned each time we call it. To show that the die faces 1–6 occur with equal likelihood, the following script simulates 6,000,000 die rolls. When you run the script, each die face should occur approximately 1,000,000 times, as in the sample output.

Fig. 4.1 | Roll a six-sided die 6,000,000 times.

 1 # fig04_01.py

 2 """Roll a six-sided die 6,000,000 times."""

 3 import random

 4

 5 # face frequency counters

 6 frequency1 = 0

 7 frequency2 = 0

 8 frequency3 = 0

 9 frequency4 = 0

10 frequency5 = 0

11 frequency6 = 0

12

13 # 6,000,000 die rolls

14 for roll in range(6_000_000): # note underscore separators

15 face = random.randrange(1, 7)

16

17 # increment appropriate face counter

18 if face == 1:

19 frequency1 += 1

20 elif face == 2:

21 frequency2 += 1

22 elif face == 3:

23 frequency3 += 1

24 elif face == 4:

25 frequency4 += 1

26 elif face == 5:

27 frequency5 += 1

28 elif face == 6:

29 frequency6 += 1

30

31 print(f'Face{"Frequency":>13}')

32 print(f'{1:>4}{frequency1:>13}')

33 print(f'{2:>4}{frequency2:>13}')

34 print(f'{3:>4}{frequency3:>13}')

35 print(f'{4:>4}{frequency4:>13}')

36 print(f'{5:>4}{frequency5:>13}')

37 print(f'{6:>4}{frequency6:>13}')

Face Frequency

 1 998686

 2 1001481

 3 999900

 4 1000453

 5 999953

 6 999527

The script uses nested control statements (an if…elif statement nested in the for statement) to determine the number of times each die face appears. The for statement iterates 6,000,000 times. We used Python’s underscore (_) digit separator to make the value 6000000 more readable. The expression range(6,000,000) would be incorrect. Commas separate arguments in function calls, so Python would treat range(6,000,000) as a call to range with the three arguments 6, 0 and 0.

For each die roll, the script adds 1 to the appropriate counter variable. Run the program, and observe the results. This program might take a few seconds to complete execution. As you’ll see, each execution produces different results.

Note that we did not provide an else clause in the if…elif statement. Exercise 4.1 asks you to comment on the possible consequences of this.

Seeding the Random-Number Generator for Reproducibility

Function randrange actually generates pseudorandom numbers, based on an internal calculation that begins with a numeric value known as a seed. Repeatedly calling randrange produces a sequence of numbers that appear to be random, because each time you start a new interactive session or execute a script that uses the random module’s functions, Python internally uses a different seed value.1 When you’re debugging logic errors in programs that use randomly generated data, it can be helpful to use the same sequence of random numbers until you’ve eliminated the logic errors, before testing the program with other values. To do this, you can use the random module’s

seed function to seed the random-number generator yourself—this forces randrange to begin calculating its pseudorandom number sequence from the seed you specify. In the following session, snippets [5] and [8] produce the same results, because snippets [4] and [7] use the same seed (32):
1. According to the documentation, Python bases the seed value on the system clock or an operating-system-dependent randomness source. For applications requiring secure random numbers, such as cryptography, the documentation recommends using the secrets module, rather than the random module.

In [4]: random.seed(32)

In [5]: for roll in range(10):

 ...: print(random.randrange(1, 7), end=' ')

 ...:

1 2 2 3 6 2 4 1 6 1

In [6]: for roll in range(10):

 ...: print(random.randrange(1, 7), end=' ')

 ...:

1 3 5 3 1 5 6 4 3 5

In [7]: random.seed(32)

In [8]: for roll in range(10):

 ...: print(random.randrange(1, 7), end=' ')

 ...:

1 2 2 3 6 2 4 1 6 1

Snippet [6] generates different values because it simply continues the pseudorandom number sequence that began in snippet [5].

[image:] Self Check

	(Fill-In) The element of chance can be introduced into computer applications using module .

Answer:

random

.

	(Fill-In) The random module’s function enables reproducibility of random sequences.

Answer:

seed

.

	(IPython Session) Requirements statement: Use a for statement, randrange and a conditional expression (introduced in the preceding chapter) to simulate 20 coin flips, displaying H for heads and T for tails all on the same line, each separated by a space.

Answer:

In [1]: import random

In [2]: for i in range(20):

 ...: print('H' if random.randrange(2) == 0 else 'T', end=' ')

 ...:

T H T T H T T T T H T H H T H T H H H H

In snippet [2]’s output, an equal number of Ts and Hs appeared—that will not always be the case with random-number generation.

4.5 Case Study: A Game of Chance

In this section, we simulate the popular dice game known as “craps.” Here is the requirements statement:

You roll two six-sided dice, each with faces containing one, two, three, four, five and six spots, respectively. When the dice come to rest, the sum of the spots on the two upward faces is calculated. If the sum is 7 or 11 on the first roll, you win. If the sum is 2, 3 or 12 on the first roll (called “craps”), you lose (i.e., the “house” wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first roll, that sum becomes your “point.” To win, you must continue rolling the dice until you “make your point” (i.e., roll that same point value). You lose by rolling a 7 before making your point.

The following script simulates the game and shows several sample executions, illustrating winning on the first roll, losing on the first roll, winning on a subsequent roll and losing on a subsequent roll.

Fig. 4.2 | Game of craps.

 1 # fig04_02.py

 2 """Simulating the dice game Craps."""

 3 import random

 4

 5 def roll_dice():

 6 """Roll two dice and return their face values as a tuple."""

 7 die1 = random.randrange(1, 7)

 8 die2 = random.randrange(1, 7)

 9 return (die1, die2) # pack die face values into a tuple

10

11 def display_dice(dice):

12 """Display one roll of the two dice."""

13 die1, die2 = dice # unpack the tuple into variables die1 and die2

14 print(f'Player rolled {die1} + {die2} = {sum(dice)}')

15

16 die_values = roll_dice() # first roll

17 display_dice(die_values)

18

19 # determine game status and point, based on first roll

20 sum_of_dice = sum(die_values)

21

22 if sum_of_dice in (7, 11): # win

23 game_status = 'WON'

24 elif sum_of_dice in (2, 3, 12): # lose

25 game_status = 'LOST'

26 else: # remember point

27 game_status = 'CONTINUE'

28 my_point = sum_of_dice

29 print('Point is', my_point)

30

31 # continue rolling until player wins or loses

32 while game_status == 'CONTINUE':

33 die_values = roll_dice()

34 display_dice(die_values)

35 sum_of_dice = sum(die_values)

36

37 if sum_of_dice == my_point: # win by making point

38 game_status = 'WON'

39 elif sum_of_dice == 7: # lose by rolling 7

40 game_status = 'LOST'

41

42 # display "wins" or "loses" message

43 if game_status == 'WON':

44 print('Player wins')

45 else:

46 print('Player loses')

Player rolled 2 + 5 = 7

Player wins

Player rolled 1 + 2 = 3

Player loses

Player rolled 5 + 4 = 9

Point is 9

Player rolled 4 + 4 = 8

Player rolled 2 + 3 = 5

Player rolled 5 + 4 = 9

Player wins

Player rolled 1 + 5 = 6

Point is 6

Player rolled 1 + 6 = 7

Player loses

Function roll_dice—Returning Multiple Values Via a Tuple

Function roll_dice (lines 5–9) simulates rolling two dice on each roll. The function is defined once, then called from several places in the program (lines 16 and 33). The empty parameter list indicates that roll_dice does not require arguments to perform its task.

The built-in and custom functions you’ve called so far each return one value. Sometimes it’s useful to return more than one value, as in roll_dice, which returns both die values (line 9) as a tuple—an immutable (that is, unmodifiable) sequences of values. To create a tuple, separate its values with commas, as in line 9:

(die1, die2)

This is known as packing a tuple. The parentheses are optional, but we recommend using them for clarity. We discuss tuples in depth in the next chapter.

Function display_dice

To use a tuple’s values, you can assign them to a comma-separated list of variables, which unpacks the tuple. To display each roll of the dice, the function display_dice (defined in lines 11–14 and called in lines 17 and 34) unpacks the tuple argument it receives (line 13). The number of variables to the left of = must match the number of elements in the tuple; otherwise, a ValueError occurs. Line 14 prints a formatted string containing both die values and their sum. We calculate the sum of the dice by passing the tuple to the built-in sum function—like a list, a tuple is a sequence.

Note that functions roll_dice and display_dice each begin their blocks with a docstring that states what the function does. Also, both functions contain local variables die1 and die2. These variables do not “collide,” because they belong to different functions’ blocks. Each local variable is accessible only in the block that defined it.

First Roll

When the script begins executing, lines 16–17 roll the dice and display the results. Line 20 calculates the sum of the dice for use in lines 22–29. You can win or lose on the first roll or any subsequent roll. The variable game_status keeps track of the win/loss status.

The in operator in line 22

sum_of_dice in (7, 11)

tests whether the tuple (7, 11) contains sum_of_dice’s value. If this condition is True, you rolled a 7 or an 11. In this case, you won on the first roll, so the script sets game_status to 'WON'. The operator’s right operand can be any iterable. There’s also a not in operator to determine whether a value is not in an iterable. The preceding concise condition is equivalent to

(sum_of_dice == 7) or (sum_of_dice == 11)

Similarly, the condition in line 24

sum_of_dice in (2, 3, 12)

tests whether the tuple (2, 3, 12) contains sum_of_dice’s value. If so, you lost on the first roll, so the script sets game_status to 'LOST'.

For any other sum of the dice (4, 5, 6, 8, 9 or 10):

	line 27 sets game_status to 'CONTINUE' so you can continue rolling

	line 28 stores the sum of the dice in my_point to keep track of what you must roll to win and

	line 29 displays my_point.

Subsequent Rolls

If game_status is equal to 'CONTINUE' (line 32), you did not win or lose, so the while statement’s suite (lines 33–40) executes. Each loop iteration calls roll_dice, displays the die values and calculates their sum. If sum_of_dice is equal to my_point (line 37) or 7 (line 39), the script sets game_status to 'WON' or 'LOST', respectively, and the loop terminates. Otherwise, the while loop continues executing with the next roll.

Displaying the Final Results

When the loop terminates, the script proceeds to the if…else statement (lines 43–46), which prints 'Player wins' if game_status is 'WON', or 'Player loses' otherwise.

[image:] Self Check

	(Fill-In) The operator tests whether its right operand’s iterable contains its left operand’s value.

Answer: in.

	(IPython Session) Pack a student tuple with the name 'Sue' and the list [89, 94, 85], display the tuple, then unpack it into variables name and grades, and display their values.

Answer:

In [1]: student = ('Sue', [89, 94, 85])

In [2]: student

Out[2]: ('Sue', [89, 94, 85])

In [3]: name, grades = student

In [4]: print(f'{name}: {grades}')

Sue: [89, 94, 85]

4.6 Python Standard Library

Typically, you write Python programs by combining functions and classes (that is, custom types) that you create with preexisting functions and classes defined in modules, such as those in the Python Standard Library and other libraries. A key programming goal is to avoid “reinventing the wheel.”

A module is a file that groups related functions, data and classes. The type Decimal from the Python Standard Library’s decimal module is actually a class. We introduced classes briefly in Chapter 1 and discuss them in detail in the “Object-Oriented Programming” chapter. A package groups related modules. In this book, you’ll work with many preexisting modules and packages, and you’ll create your own modules—in fact, every Python source-code (.py) file you create is a module. Creating packages is beyond this book’s scope. They’re typically used to organize a large library’s functionality into smaller subsets that are easier to maintain and can be imported separately for convenience. For example, the matplotlib visualization library that we use in Section 5.17 has extensive functionality (its documentation is over 2300 pages), so we’ll import only the subsets we need in our examples (pyplot and animation).

The Python Standard Library is provided with the core Python language. Its packages and modules contain capabilities for a wide variety of everyday programming tasks.2 You can see a complete list of the standard library modules at
2. The Python Tutorial refers to this as the “batteries included” approach.

https://docs.python.org/3/library/

You’ve already used capabilities from the decimal, statistics and random modules. In the next section, you’ll use mathematics capabilities from the math module. You’ll see many other Python Standard Library modules throughout the book’s examples and exercises, including many of those in the following table:

Some popular Python Standard Library modules

	collections—Data structures beyond lists, tuples, dictionaries and sets.

	Cryptography modules—Encrypting data for secure transmission.

	csv—Processing comma-separated value files (like those in Excel).

	datetime—Date and time manipulations. Also modules time and calendar.

	decimal—Fixed-point and floating-point arithmetic, including monetary calculations.

	doctest—Embed validation tests and expected results in docstrings for simple unit testing.

	gettext and locale—Internationalization and localization modules.

	json—JavaScript Object Notation (JSON) processing used with web services and NoSQL document databases.

	math—Common math constants and operations.

	os—Interacting with the operating system.

	profile, pstats, timeit—Performance analysis.

	random—Pseudorandom numbers.

	re—Regular expressions for pattern matching.

	sqlite3—SQLite relational database access.

	statistics—Mathematical statistics functions such as mean, median, mode and variance.

	string—String processing.

	sys—Command-line argument processing; standard input, standard output and standard error streams.

	tkinter—Graphical user interfaces (GUIs) and canvas-based graphics.

	turtle—Turtle graphics.

	webbrowser—For conveniently displaying web pages in Python apps.

[image:] Self Check

	(Fill-In) A(n) defines related functions, data and classes. A(n) groups related modules.

Answer: module, package.

	(Fill-In) Every Python source code (.py) file you create is a(n) .

Answer: module.

4.7 math Module Functions

The math module defines functions for performing various common mathematical calculations. Recall from the previous chapter that an import statement of the following form enables you to use a module’s definitions via the module’s name and a dot (.):

In [1]: import math

For example, the following snippet calculates the square root of 900 by calling the math module’s sqrt function, which returns its result as a float value:

In [2]: math.sqrt(900)

Out[2]: 30.0

Similarly, the following snippet calculates the absolute value of -10 by calling the math module’s fabs function, which returns its result as a float value:

In [3]: math.fabs(-10)

Out[3]: 10.0

Some math module functions are summarized below—you can view the complete list at

https://docs.python.org/3/library/math.html

[image: A table that shows Python standard library modules.]

4.7-1 Full Alternative Text

4.9 Default Parameter Values

When defining a function, you can specify that a parameter has a default parameter value. When calling the function, if you omit the argument for a parameter with a default parameter value, the default value for that parameter is automatically passed. Let’s define a function rectangle_area with default parameter values:

In [1]: def rectangle_area(length=2, width=3):

 ...: """Return a rectangle's area."""

 ...: return length * width

 ...:

You specify a default parameter value by following a parameter’s name with an = and a value—in this case, the default parameter values are 2 and 3 for length and width, respectively. Any parameters with default parameter values must appear in the parameter list to the right of parameters that do not have defaults.

The following call to rectangle_area has no arguments, so IPython uses both default parameter values as if you had called rectangle_area(2, 3):

In [2]: rectangle_area()

Out[2]: 6

The following call to rectangle_area has only one argument. Arguments are assigned to parameters from left to right, so 10 is used as the length. The interpreter passes the default parameter value 3 for the width as if you had called rectangle_area(10, 3):

In [3]: rectangle_area(10)

Out[3]: 30

The following call to rectangle_area has arguments for both length and width, so IPython ignores the default parameter values:

In [4]: rectangle_area(10, 5)

Out[4]: 50

[image:] Self Check

	(True/False) When an argument with a default parameter value is omitted in a function call, the interpreter automatically passes the default parameter value in the call.

Answer: True.

	(True/False) Parameters with default parameter values must be the leftmost arguments in a function’s parameter list.

Answer: False. Parameters with default parameter values must appear to the right of parameters that do not have defaults.

4.10 Keyword Arguments

When calling functions, you can use keyword arguments to pass arguments in any order. To demonstrate keyword arguments, we redefine the rectangle_area function—this time without default parameter values:

In [1]: def rectangle_area(length, width):

 ...: """Return a rectangle's area."""

 ...: return length * width

 ...:

Each keyword argument in a call has the form parametername

=

value. The following call shows that the order of keyword arguments does not matter—they do not need to match the corresponding parameters’ positions in the function definition:

In [2]: rectangle_area(width=5, length=10)

Out[3]: 50

In each function call, you must place keyword arguments after a function’s positional arguments—that is, any arguments for which you do not specify the parameter name. Such arguments are assigned to the function’s parameters left-to-right, based on the argument’s positions in the argument list. Keyword arguments are also helpful for improving the readability of function calls, especially for functions with many arguments.

[image:] Self Check

	(True/False) You must pass keyword arguments in the same order as their corresponding parameters in the function definition’s parameter list.

Answer: False. The order of keyword arguments does not matter.

4.11 Arbitrary Argument Lists

Functions with arbitrary argument lists, such as built-in functions min and max, can receive any number of arguments. Consider the following min call:

min(88, 75, 96, 55, 83)

The function’s documentation states that min has two required parameters (named arg1 and arg2) and an optional third parameter of the form *args, indicating that the function can receive any number of additional arguments. The * before the parameter name tells Python to pack any remaining arguments into a tuple that’s passed to the args parameter. In the call above, parameter arg1 receives 88, parameter arg2 receives 75 and parameter args receives the tuple (96, 55, 83).

Defining a Function with an Arbitrary Argument List

Let’s define an average function that can receive any number of arguments:

In [1]: def average(*args):

 ...: return sum(args) / len(args)

 ...:

The parameter name args is used by convention, but you may use any identifier. If the function has multiple parameters, the *args parameter must be the rightmost parameter.

Now, let’s call average several times with arbitrary argument lists of different lengths:

In [2]: average(5, 10)

Out[2]: 7.5

In [3]: average(5, 10, 15)

Out[3]: 10.0

In [4]: average(5, 10, 15, 20)

Out[4]: 12.5

To calculate the average, divide the sum of the args tuple’s elements (returned by built-in function sum) by the tuple’s number of elements (returned by built-in function len). Note in our average definition that if the length of args is 0, a ZeroDivisionError occurs. In the next chapter, you’ll see how to access a tuple’s elements without unpacking them.

Passing an Iterable’s Individual Elements as Function Arguments

You can unpack a tuple’s, list’s or other iterable’s elements to pass them as individual function arguments. The * operator, when applied to an iterable argument in a function call, unpacks its elements. The following code creates a five-element grades list, then uses the expression *grades to unpack its elements as average’s arguments:

In [5]: grades = [88, 75, 96, 55, 83]

In [6]: average(*grades)

Out[6]: 79.4

The call shown above is equivalent to average(88, 75, 96, 55, 83).

[image:] Self Check

	(Fill-In) To define a function with an arbitrary argument list, specify a parameter of the form .

Answer: *args (again, the name args is used by convention, but is not required).

	(IPython Session) Create a function named calculate_product that receives an arbitrary argument list and returns the product of all the arguments. Call the function with the arguments 10, 20 and 30, then with the sequence of integers produced by range(1, 6, 2).

Answer:

In [1]: def calculate_product(*args):

 ...: product = 1

 ...: for value in args:

 ...: product *= value

 ...: return product

 ...:

In [2]: calculate_product(10, 20, 30)

Out[2]: 6000

In [3]: calculate_product(*range(1, 6, 2))

Out[3]: 15

4.12 Methods: Functions That Belong to Objects

A method is simply a function that you call on an object using the form

object_name.method_name(arguments)

For example, the following session creates the string variable s and assigns it the string object 'Hello'. Then the session calls the object’s lower and upper methods, which produce new strings containing all-lowercase and all-uppercase versions of the original string, leaving s unchanged:

In [1]: s = 'Hello'

In [2]: s.lower() # call lower method on string object s

Out[2]: 'hello'

In [3]: s.upper()

Out[3]: 'HELLO'

In [4]: s

Out[4]: 'Hello'

The Python Standard Library reference at

https://docs.python.org/3/library/index.html

describes the methods of built-in types and the types in the Python Standard Library. In the “Object-Oriented Programming” chapter, you’ll create custom types called classes and define custom methods that you can call on objects of those classes.

4.13 Scope Rules

Each identifier has a scope that determines where you can use it in your program. For that portion of the program, the identifier is said to be “in scope.”

Local Scope

A local variable’s identifier has local scope. It’s “in scope” only from its definition to the end of the function’s block. It “goes out of scope” when the function returns to its caller. So, a local variable can be used only inside the function that defines it.

Global Scope

Identifiers defined outside any function (or class) have global scope—these may include functions, variables and classes. Variables with global scope are known as global variables. Identifiers with global scope can be used in a .py file or interactive session anywhere after they’re defined.

Accessing a Global Variable from a Function

You can access a global variable’s value inside a function:

In [1]: x = 7

In [2]: def access_global():

 ...: print('x printed from access_global:', x)

 ...:

In [3]: access_global()

x printed from access_global: 7

However, by default, you cannot modify a global variable in a function—when you first assign a value to a variable in a function’s block, Python creates a new local variable:

In [4]: def try_to_modify_global():

 ...: x = 3.5

 ...: print('x printed from try_to_modify_global:', x)

 ...:

In [5]: try_to_modify_global()

x printed from try_to_modify_global: 3.5

In [6]: x

Out[6]: 7

In function try_to_modify_global’s block, the local x shadows the global x, making it inaccessible in the scope of the function’s block. Snippet [6] shows that global variable x still exists and has its original value (7) after function try_to_modify_global executes.

To modify a global variable in a function’s block, you must use a global statement to declare that the variable is defined in the global scope:

In [7]: def modify_global():

 ...: global x

 ...: x = 'hello'

 ...: print('x printed from modify_global:', x)

 ...:

In [8]: modify_global()

x printed from modify_global: hello

In [9]: x

Out[9]: 'hello'

Blocks vs. Suites

You’ve now defined function blocks and control statement suites. When you create a variable in a block, it’s local to that block. However, when you create a variable in a control statement’s suite, the variable’s scope depends on where the control statement is defined:

	If the control statement is in the global scope, then any variables defined in the control statement have global scope.

	If the control statement is in a function’s block, then any variables defined in the control statement have local scope.

We’ll continue our scope discussion in the “Object-Oriented Programming” chapter when we introduce custom classes.

Shadowing Functions

In the preceding chapters, when summing values, we stored the sum in a variable named total. The reason we did this is that sum is a built-in function. If you define a variable named sum, it shadows the built-in function, making it inaccessible in your code. When you execute the following assignment, Python binds the identifier sum to the int object containing 15. At this point, the identifier sum no longer references the built-in function. So, when you try to use sum as a function, a TypeError occurs:

In [10]: sum = 10 + 5

In [11]: sum

Out[11]: 15

In [12]: sum([10, 5])

TypeError Traceback (most recent call last)

<ipython-input-12-1237d97a65fb> in <module>()

----> 1 sum([10, 5])

TypeError: 'int' object is not callable

Statements at Global Scope

In the scripts you’ve seen so far, we’ve written some statements outside functions at the global scope and some statements inside function blocks. Script statements at global scope execute as soon as they’re encountered by the interpreter, whereas statements in a block execute only when the function is called.

[image:] Self Check

	(Fill-In) An identifier’s describes the region of a program in which the identifier’s value can be accessed.

Answer: scope.

	(True/False) Once a code block terminates (e.g., when a function returns), all identifiers defined in that block “go out of scope” and can no longer be accessed.

Answer: True.

4.14 import: A Deeper Look

You’ve imported modules (such as math and random) with a statement like:

import module_name

then accessed their features via each module’s name and a dot (.). Also, you’ve imported a specific identifier from a module (such as the decimal module’s Decimal type) with a statement like:

from module_name import identifier

then used that identifier without having to precede it with the module name and a dot (.).

Importing Multiple Identifiers from a Module

Using the from…import statement you can import a comma-separated list of identifiers from a module then use them in your code without having to precede them with the module name and a dot (.):

In [1]: from math import ceil, floor

In [2]: ceil(10.3)

Out[2]: 11

In [3]: floor(10.7)

Out[3]: 10

Trying to use a function that’s not imported causes a NameError, indicating that the name is not defined.

Caution: Avoid Wildcard Imports

You can import all identifiers defined in a module with a wildcard import of the form

from modulename import *

This makes all of the module’s identifiers available for use in your code. Importing a module’s identifiers with a wildcard import can lead to subtle errors—it’s considered a dangerous practice that you should avoid. Consider the following snippets:

In [4]: e = 'hello'

In [5]: from math import *

In [6]: e

Out[6]: 2.718281828459045

Initially, we assign the string 'hello' to a variable named e. After executing snippet [5] though, the variable e is replaced, possibly by accident, with the math module’s constant e, representing the mathematical floating-point value e.

Binding Names for Modules and Module Identifiers

Sometimes it’s helpful to import a module and use an abbreviation for it to simplify your code. The import statement’s as clause allows you to specify the name used to reference the module’s identifiers. For example, in Section 3.17 we could have imported the statistics module and accessed its mean function as follows:

In [7]: import statistics as stats

In [8]: grades = [85, 93, 45, 87, 93]

In [9]: stats.mean(grades)

Out[9]: 80.6

As you’ll see in later chapters, import…as is frequently used to import Python libraries with convenient abbreviations, like stats for the statistics module. As another example, we’ll use the numpy module which typically is imported with

import numpy as np

Library documentation often mentions popular shorthand names.

Typically, when importing a module, you should use import or import…as statements, then access the module through the module name or the abbreviation following the as keyword, respectively. This ensures that you do not accidentally import an identifier that conflicts with one in your code.

[image:] Self Check

	(True/False) You must always import all the identifiers of a given module.

Answer: False. You can import only the identifiers you need by using a from…import statement.

	(IPython Session) Import the decimal module with the shorthand name dec, then create a Decimal object with the value 2.5 and square its value.

Answer:

In [1]: import decimal as dec

In [2]: dec.Decimal('2.5') ** 2

Out[2]: Decimal('6.25')

4.15 Passing Arguments to Functions: A Deeper Look

Let’s take a closer look at how arguments are passed to functions. In many programming languages, there are two ways to pass arguments—pass-by-value and pass-by-reference (sometimes called call-by-value and call-by-reference, respectively):

	With pass-by-value, the called function receives a copy of the argument’s value and works exclusively with that copy. Changes to the function’s copy do not affect the original variable’s value in the caller.

	With pass-by-reference, the called function can access the argument’s value in the caller directly and modify the value if it’s mutable.

Python arguments are always passed by reference. Some people call this pass-by-object-reference, because “everything in Python is an object.”3 When a function call provides an argument, Python copies the argument object’s reference—not the object itself—into the corresponding parameter. This is important for performance. Functions often manipulate large objects—frequently copying them would consume large amounts of computer memory and significantly slow program performance.
3. Even the functions you defined in this chapter and the classes (custom types) you’ll define in later chapters are objects in Python.

Memory Addresses, References and “Pointers”

You interact with an object via a reference, which behind the scenes is that object’s address (or location) in the computer’s memory—sometimes called a “pointer” in other languages. After an assignment like

x = 7

the variable x does not actually contain the value 7. Rather, it contains a reference to an object containing 7 (and some other data we’ll discuss in later chapters) stored elsewhere in memory. You might say that x “points to” (that is, references) the object containing 7, as in the diagram below:

[image: Diagram shows variable x with a dot in a square and an arrow points to an object which is a rectangle with a 7 in the rectangle.]

Built-In Function id and Object Identities

Let’s consider how we pass arguments to functions. First, let’s create the integer variable x mentioned above—shortly we’ll use x as a function argument:

In [1]: x = 7

Now x refers to (or “points to”) the integer object containing 7. No two separate objects can reside at the same address in memory, so every object in memory has a unique address. Though we can’t see an object’s address, we can use the built-in id function to obtain a unique int value which identifies only that object while it remains in memory (you’ll likely get a different value when you run this on your computer):

In [2]: id(x)

Out[2]: 4350477840

The integer result of calling id is known as the object’s identity.4 No two objects in memory can have the same identity. We’ll use object identities to demonstrate that objects are passed by reference.
4. According to the Python documentation, depending on the Python implementation you’re using, an object’s identity may be the object’s actual memory address, but this is not required.

Passing an Object to a Function

Let’s define a cube function that displays its parameter’s identity, then returns the parameter’s value cubed:

In [3]: def cube(number):

 ...: print('id(number):', id(number))

 ...: return number ** 3

 ...:

Next, let’s call cube with the argument x, which refers to the integer object containing 7:

In [4]: cube(x)

id(number): 4350477840

Out[4]: 343

The identity displayed for cube’s parameter number—4350477840—is the same as that displayed for x previously. Since every object has a unique identity, both the argument x and the parameter number refer to the same object while cube executes. So when function cube uses its parameter number in its calculation, it gets the value of number from the original object in the caller.

Testing Object Identities with the is Operator

You also can prove that the argument and the parameter refer to the same object with Python’s is operator, which returns True if its two operands have the same identity:

In [5]: def cube(number):

 ...: print('number is x:', number is x) # x is a global variable

 ...: return number ** 3

 ...:

In [6]: cube(x)

number is x: True

Out[6]: 343

Immutable Objects as Arguments

When a function receives as an argument a reference to an

immutable (unmodifiable) object—such as an int, float, string or tuple—even though you have direct access to the original object in the caller, you cannot modify the original immutable object’s value. To prove this, first let’s have cube display id(number) before and after assigning a new object to the parameter number via an augmented assignment:

In [7]: def cube(number):

 ...: print('id(number) before modifying number:', id(number))

 ...: number **= 3

 ...: print('id(number) after modifying number:', id(number))

 ...: return number

 ...:

In [8]: cube(x)

id(number) before modifying number: 4350477840

id(number) after modifying number: 4396653744

Out[8]: 343

When we call cube(x), the first print statement shows that id(number) initially is the same as id(x) in snippet [2]. Numeric values are immutable, so the statement

number **= 3

actually creates a new object containing the cubed value, then assigns that object’s reference to parameter number. Recall that if there are no more references to the original object, it will be garbage collected. Function cube’s second print statement shows the new object’s identity. Object identities must be unique, so number must refer to a different object. To show that x was not modified, we display its value and identity again:

In [9]: print(f'x = {x}; id(x) = {id(x)}')

x = 7; id(x) = 4350477840

Mutable Objects as Arguments

In the next chapter, we’ll show that when a reference to a mutable object like a list is passed to a function, the function can modify the original object in the caller.

[image:] Self Check

	(Fill-In) The built-in function returns an object’s unique identifier.

Answer: id.

	(True/False) Attempts to modify mutable objects create new objects.

Answer: False. This is true for immutable objects.

	(IPython Session) Create a variable width with the value 15.5, then show that modifying the variable creates a new object. Display width’s identity and value before and after modifying its value.

Answer:

In [1]: width = 15.5

In [2]: print('id:', id(width), ' value:', width)

id: 4397553776 value: 15.5

In [3]: width = width * 3

In [4]: print('id:', id(width), ' value:', width)

id: 4397554208 value: 46.5

4.16 Function-Call Stack

To understand how Python performs function calls, consider a data structure (that is, a collection of related data items) known as a stack, which is like a pile of dishes. When you add a dish to the pile, you place it on the top. Similarly, when you remove a dish from the pile, you take it from the top. Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (that is, placed) onto the stack is the first item popped (that, is removed) from the stack.

Stacks and Your Web Browser’s Back Button

A stack is working for you when you visit websites with your web browser. A stack of web-page addresses supports a browser’s back button. For each new web page you visit, the browser pushes the address of the page you were viewing onto the back button’s stack. This allows the browser to “remember” the web page you came from if you decide to go back to it later. Pushing onto the back button’s stack may happen many times before you decide to go back to a previous web page. When you press the browser’s back button, the browser pops the top stack element to get the prior web page’s address, then displays that web page. Each time you press the back button the browser pops the top stack element and displays that page. This continues until the stack is empty, meaning that there are no more pages for you to go back to via the back button.

Stack Frames

Similarly, the function-call stack supports the function call/return mechanism. Eventually, each function must return program control to the point at which it was called. For each function call, the interpreter pushes an entry called a stack frame (or an activation record) onto the stack. This entry contains the return location that the called function needs so it can return control to its caller. When the function finishes executing, the interpreter pops the function’s stack frame, and control transfers to the return location that was popped.

The top stack frame always contains the information the currently executing function needs to return control to its caller. If before a function returns it makes a call to another function, the interpreter pushes a stack frame for that function call onto the stack. Thus, the return address required by the newly called function to return to its caller is now on top of the stack.

Local Variables and Stack Frames

Most functions have one or more parameters and possibly local variables that need to:

	exist while the function is executing,

	remain active if the function makes calls to other functions, and

	“go away” when the function returns to its caller.

A called function’s stack frame is the perfect place to reserve memory for the function’s local variables. That stack frame is pushed when the function is called and exists while the function is executing. When that function returns, it no longer needs its local variables, so its stack frame is popped from the stack, and its local variables no longer exist.

Stack Overflow

Of course, the amount of memory in a computer is finite, so only a certain amount of memory can be used to store stack frames on the function-call stack. If the function-call stack runs out of memory as a result of too many function calls, a fatal error known as stack overflow occurs.5 Stack overflows actually are rare unless you have a logic error that keeps calling functions that never return.
5. This is how the website stackoverflow.com got its name—a good website for getting answers to your programming questions.

Principle of Least Privilege

The principle of least privilege is fundamental to good software engineering. It states that code should be granted only the amount of privilege and access that it needs to accomplish its designated task, but no more. An example of this is the scope of a local variable, which should not be visible when it’s not needed. This is why a function’s local variables are placed in stack frames on the function-call stack, so they can be used by that function while it executes and go away when it returns. Once the stack frame is popped, the memory that was occupied by it can be reused for new stack frames. Also, there is no access between stack frames, so functions cannot see each other’s local variables. The principle of least privilege makes your programs more robust by preventing code from accidentally (or maliciously) modifying variable values that should not be accessible to it.

[image:] Self Check

	(Fill-In) The stack operations for adding an item to a stack and removing an item from a stack are known as and , respectively.

Answer: push, pop.

	(Fill-In) A stack’s items are removed in order.

Answer: last-in, first-out (LIFO).

4.17 Functional-Style Programming

Like other popular languages, such as Java and C#, Python is not a purely functional language. Rather, it offers “functional-style” features that help you write code which is less likely to contain errors, more concise and easier to read, debug and modify. Functional-style programs also can be easier to parallelize to get better performance on today’s multi-core processors. The chart below lists most of Python’s key functional-style programming capabilities and shows in parentheses the chapters in which we initially cover many of them.

Functional-style programming topics

	avoiding side effects

	closures

	declarative programming (4)

	decorators (10)

	dictionary comprehensions (6)

	filter/map/reduce (5)

	functools module

	generator expressions (5)

	generator functions (12)

	higher-order functions (5)

	immutability (4)

	internal iteration (4)

	iterators (3)

	itertools module (18)

	lambda expressions (5)

	lazy evaluation (5)

	list comprehensions (5)

	operator module (5, 13, 18)

	pure functions (4)

	range function (3, 4)

	reductions (3, 5)

	set comprehensions (6)

We cover most of these features throughout the book—many with code examples and others from a literacy perspective. You’ve already used list, string and built-in function range iterators with the for statement, and several reductions (functions sum, len, min and max). We discuss declarative programming, immutability and internal iteration below.

What vs. How

As the tasks you perform get more complicated, your code can become harder to read, debug and modify, and more likely to contain errors. Specifying how the code works can become complex.

Functional-style programming lets you simply say what you want to do. It hides many details of how to perform each task. Typically, library code handles the how for you. As you’ll see, this can eliminate many errors.

Consider the for statement in many other programming languages. Typically, you must specify all the details of counter-controlled iteration: a control variable, its initial value, how to increment it and a loop-continuation condition that uses the control variable to determine whether to continue iterating. This style of iteration is known as external iteration and is error-prone. For example, you might provide an incorrect initializer, increment or loop-continuation condition. External iteration mutates (that is, modifies) the control variable, and the for statement’s suite often mutates other variables as well. Every time you modify variables you could introduce errors. Functional-style programming emphasizes immutability. That is, it avoids operations that modify variables’ values. We’ll say more in the next chapter.

Python’s for statement and range function hide most counter-controlled iteration details. You specify what values range should produce and the variable that should receive each value as it’s produced. Function range

 knows how to produce those values. Similarly, the for statement knows how to get each value from range and how to stop iterating when there are no more values. Specifying what, but not how, is an important aspect of internal iteration—a key functional-style programming concept.

The Python built-in functions sum, min and max each use internal iteration. To total the elements of the list grades, you simply declare what you want to do—that is, sum(grades). Function sum knows how to iterate through the list and add each element to the running total. Stating what you want done rather than programming how to do it is known as declarative programming.

Pure Functions

In pure functional programming language you focus on writing pure functions. A pure function’s result depends only on the argument(s) you pass to it. Also, given a particular argument (or arguments), a pure function always produces the same result. For example, built-in function sum’s return value depends only on the iterable you pass to it. Given a list [1, 2, 3], sum always returns 6 no matter how many times you call it. Also, a pure function does not have side effects. For example, even if you pass a mutable list to a pure function, the list will contain the same values before and after the function call. When you call the pure function sum, it does not modify its argument.

In [1]: values = [1, 2, 3]

In [2]: sum(values)

Out[2]: 6

In [3]: sum(values) # same call always returns same result

Out[3]: 6

In [4]: values

Out[5]: [1, 2, 3]

In the next chapter, we’ll continue using functional-style programming concepts. Also, you’ll see that functions are objects that you can pass to other functions as data.

4.18 Intro to Data Science: Measures of Dispersion

In our discussion of descriptive statistics, we’ve considered the measures of central tendency—mean, median and mode. These help us categorize typical values in a group—such as the mean height of your classmates or the most frequently purchased car brand (the mode) in a given country.

When we’re talking about a group, the entire group is called the population. Sometimes a population is quite large, such as the people likely to vote in the next U.S. presidential election, which is a number in excess of 100,000,000 people. For practical reasons, the polling organizations trying to predict who will become the next president work with carefully selected small subsets of the population known as samples. Many of the polls in the 2016 election had sample sizes of about 1000 people.

In this section, we continue discussing basic descriptive statistics. We introduce measures of dispersion (also called measures of variability) that help you understand how spread out the values are. For example, in a class of students, there may be a bunch of students whose height is close to the average, with smaller numbers of students who are considerably shorter or taller.

For our purposes, we’ll calculate each measure of dispersion both by hand and with functions from the module statistics, using the following population of 10 six-sided die rolls:

1, 3, 4, 2, 6, 5, 3, 4, 5, 2

Variance

To determine the variance,6 we begin with the mean of these values—3.5. You obtain this result by dividing the sum of the face values, 35, by the number of rolls, 10. Next, we subtract the mean from every die value (this produces some negative results):
6. Reviewer note: For simplicity, we’re calculating the population variance. There is a subtle difference between the population variance and the sample variance. Instead of dividing by n (the number of die rolls in our example), sample variance divides by n – 1. The difference is pronounced for small samples and becomes insignificant as the sample size increases. The statistics module provides the functions pvariance and variance to calculate the population variance and sample variance, respectively. Similarly, the statistics module provides the functions pstdev and stdev to calculate the population standard deviation and sample standard deviation, respectively.

-2.5, -0.5, 0.5, -1.5, 2.5, 1.5, -0.5, 0.5, 1.5, -1.5

Then, we square each of these results (yielding only positives):

6.25, 0.25, 0.25, 2.25, 6.25, 2.25, 0.25, 0.25, 2.25, 2.25

Finally, we calculate the mean of these squares, which is 2.25 (22.5 / 10)—this is the population variance. Squaring the difference between each die value and the mean of all die values emphasizes outliers—the values that are farthest from the mean. As we get deeper into data analytics, sometimes we’ll want to pay careful attention to outliers, and sometimes we’ll want to ignore them. The following code uses the statistics module’s pvariance function to confirm our manual result:

In [1]: import statistics

In [2]: statistics.pvariance([1, 3, 4, 2, 6, 5, 3, 4, 5, 2])

Out[2]: 2.25

Standard Deviation

The standard deviation is the square root of the variance (in this case, 1.5), which tones down the effect of the outliers. The smaller the variance and standard deviation are, the closer the data values are to the mean and the less overall dispersion (that is, spread) there is between the values and the mean. The following code calculates the population standard deviation with the statistics module’s pstdev function, confirming our manual result:

In [3]: statistics.pstdev([1, 3, 4, 2, 6, 5, 3, 4, 5, 2])

Out[3]: 1.5

Passing the pvariance function’s result to the math module’s sqrt function confirms our result of 1.5:

In [4]: import math

In [5]: math.sqrt(statistics.pvariance([1, 3, 4, 2, 6, 5, 3, 4, 5, 2]))

Out[5]: 1.5

Advantage of Population Standard Deviation vs. Population Variance

Suppose you’ve recorded the March Fahrenheit temperatures in your area. You might have 31 numbers such as 19, 32, 28 and 35. The units for these numbers are degrees. When you square your temperatures to calculate the population variance, the units of the population variance become “degrees squared.” When you take the square root of the population variance to calculate the population standard deviation, the units once again become degrees, which are the same units as your temperatures.

[image:] Self Check

	(Discussion) Why do we often work with a sample rather than the full population?

Answer: Because often the full population is unmanageably large.

	(True/False) An advantage of the population variance over the population standard deviation is that its units are the same as the sample values’ units.

Answer: False. This an advantage of population standard deviation over population variance.

	(IPython Session) In this section, we worked with population variance and population standard deviation. There is a subtle difference between the population variance and the sample variance. In our example, instead of dividing by 10 (the number of die rolls), sample variance would divide by 9 (which is one less than the sample size). The difference is pronounced for small samples but becomes insignificant as the sample size increases. The statistics module provides the functions variance and stdev to calculate the sample variance and sample standard deviation, respectively. Redo the manual calculations, then use the statistics module’s functions to confirm this difference between the two methods of calculation.

Answer:

In [1]: import statistics

In [2]: statistics.variance([1, 3, 4, 2, 6, 5, 3, 4, 5, 2])

Out[2]: 2.5

In [3]: statistics.stdev([1, 3, 4, 2, 6, 5, 3, 4, 5, 2])

Out[3]: 1.5811388300841898

4.19 Wrap-Up

In this chapter, we created custom functions. We imported capabilities from the random and math modules. We introduced random-number generation and used it to simulate rolling a six-sided die. We packed multiple values into tuples to return more than one value from a function. We also unpacked a tuple to access its values. We discussed using the Python Standard Library’s modules to avoid “reinventing the wheel.”

We created functions with default parameter values and called functions with keyword arguments. We also defined functions with arbitrary argument lists. We called methods of objects. We discussed how an identifier’s scope determines where in your program you can use it.

You learned more about importing modules. You saw that arguments are passed-by-reference to functions, and how the function-call stack and stack frames support the function-call-and-return mechanism. We’ve introduced basic list and tuple capabilities over the last two chapters—in the next chapter, we’ll discuss them in detail.

Finally, we continued our discussion of descriptive statistics by introducing measures of dispersion—variance and standard deviation—and calculating them with functions from the Python Standard Library’s statistics module.

For some types of problems, it’s useful to have functions call themselves. A recursive function calls itself, either directly or indirectly through another function. Recursion is an important topic discussed at length in upper-level computer science courses. We include a detailed treatment in the chapter “Computer Science Thinking: Recursion, Searching, Sorting and Big O.”

Exercises

Unless specified otherwise, use IPython sessions for each exercise.

	4.1 (Discussion: else Clause) In the script of Fig4.1. , we did not include an else clause in the if…elif statement. What are the possible consequences of this choice?

	4.2 (Discussion: Function-Call Stack) What happens if you keep pushing onto a stack, without enough popping?

	4.3 (What’s Wrong with This Code?) What is wrong with the following cube function’s definition?

def cube(x):

 """Calculate the cube of x."""

 x ** 3

print('The cube of 2 is', cube(2))

	4.4 (What’s Does This Code Do?) What does the following mystery function do? Assume you pass the list [1, 2, 3, 4, 5] as an argument.

def mystery(x):

 y = 0

 for value in x:

 y += value ** 2

 return y

	4.5 (Fill in the Missing Code?) Replace the ***s in the seconds_since_midnight function so that it returns the number of seconds since midnight. The function should receive three integers representing the current time of day. Assume that the hour is a value from 0 (midnight) through 23 (11 PM) and that the minute and second are values from 0 to 59. Test your function with actual times. For example, if you call the function for 1:30:45 PM by passing 13, 30 and 45, the function should return 48645.

def seconds_since_midnight(***):

 hour_in_seconds = ***

 minute_in_seconds = ***

 return ***

	4.6 (Modified average Function) The average function we defined in Section 4.11 can receive any number of arguments. If you call it with no arguments, however, the function causes a ZeroDivisionError. Reimplement average to receive one required argument and the arbitrary argument list argument *args, and update its calculation accordingly. Test your function. The function will always require at least one argument, so you’ll no longer be able to get a ZeroDivisionError. When you call average with no arguments, Python should issue a TypeError indicating "average() missing 1 required positional argument."

	4.7 (Date and Time) Python’s datetime module contains a datetime type with a method today that returns the current date and time as a datetime object. Write a parameterless date_and_time function containing the following statement, then call that function to display the current date and time:

print(datetime.datetime.today())

On our system, the date and time display in the following format:

2018-06-08 13:04:19.214180

	4.8 (Rounding Numbers) Investigate built-in function round at

https://docs.python.org/3/library/functions.html#round

then use it to round the float value 13.56449 to the nearest integer, tenths, hundredths and thousandths positions.

	4.9 (Temperature Conversion) Implement a fahrenheit function that returns the Fahrenheit equivalent of a Celsius temperature. Use the following formula:

F = (9 / 5) * C + 32

Use this function to print a chart showing the Fahrenheit equivalents of all Celsius temperatures in the range 0–100 degrees. Use one digit of precision for the results. Print the outputs in a neat tabular format.

	4.10 (Guess the Number) Write a script that plays “guess the number.” Choose the number to be guessed by selecting a random integer in the range 1 to 1000. Do not reveal this number to the user. Display the prompt "Guess my number between 1 and 1000 with the fewest guesses:". The player inputs a first guess. If the guess is incorrect, display "Too high. Try again." or "Too low. Try again." as appropriate to help the player “zero in” on the correct answer, then prompt the user for the next guess. When the user enters the correct answer, display "Congratulations. You guessed the number!", and allow the user to choose whether to play again.

	4.11 (Guess-the-Number Modification) Modify the previous exercise to count the number of guesses the player makes. If the number is 10 or fewer, display "Either you know the secret or you got lucky!" If the player makes more than 10 guesses, display "You should be able to do better!" Why should it take no more than 10 guesses? Well, with each “good guess,” the player should be able to eliminate half of the numbers, then half of the remaining numbers, and so on. Doing this 10 times narrows down the possibilities to a single number. This kind of “halving” appears in many computer science applications. For example, in the “Computer Science Thinking: Recursion, Searching, Sorting and Big O” chapter, we’ll present the high-speed binary search and merge sort algorithms, and you’ll attempt the quicksort exercise—each of these cleverly uses halving to achieve high performance.

	4.12 (Simulation: The Tortoise and the Hare) In this problem, you’ll re-create the classic race of the tortoise and the hare. You’ll use random-number generation to develop a simulation of this memorable event.

Our contenders begin the race at square 1 of 70 squares. Each square represents a position along the race course. The finish line is at square 70. The first contender to reach or pass square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side of a slippery mountain, so occasionally the contenders lose ground.

A clock ticks once per second. With each tick of the clock, your application should adjust the position of the animals according to the rules in the table below. Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70). Start each animal at position 1 (the “starting gate”). If an animal slips left before square 1, move it back to square 1.

[image: A table shows calculations to use in a simulation for the Tortoise and the Hare problem.]

4.1-3 Full Alternative Text

Create two functions that generate the percentages in the table for the tortoise and the hare, respectively, by producing a random integer i in the range 1 ≤ i ≤ 10. In the function for the tortoise, perform a “fast plod” when 1 ≤ i ≤ 5, a “slip” when 6 ≤ i ≤ 7 or a “slow plod” when 8 ≤ i ≤ 10. Use a similar technique in the function for the hare.

Begin the race by displaying

BANG !!!!!

AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each iteration of a loop), display a 70-position line showing the letter "T" in the position of the tortoise and the letter "H" in the position of the hare. Occasionally, the contenders will land on the same square. In this case, the tortoise bites the hare, and your application should display "OUCH!!!" at that position. All positions other than the "T", the "H" or the "OUCH!!!" (in case of a tie) should be blank.

After each line is displayed, test for whether either animal has reached or passed square 70. If so, display the winner and terminate the simulation. If the tortoise wins, display TORTOISE WINS!!!

YAY!!! If the hare wins, display Hare wins. Yuch. If both animals win on the same tick of the clock, you may want to favor the tortoise (the “underdog”), or you may want to display "It's a tie". If neither animal wins, perform the loop again to simulate the next tick of the clock. When you’re ready to run your application, assemble a group of fans to watch the race. You’ll be amazed at how involved your audience gets!

	4.13 (Arbitrary Argument List) Calculate the product of a series of integers that are passed to the function product, which receives an arbitrary argument list. Test your function with several calls, each with a different number of arguments.

	4.14 (Computer-Assisted Instruction)

Computer-assisted instruction (CAI) refers to the use of computers in education. Write a script to help an elementary school student learn multiplication. Create a function that randomly generates and returns a tuple of two positive one-digit integers. Use that function’s result in your script to prompt the user with a question, such as

How much is 6 times 7?

For a correct answer, display the message "Very good!" and ask another multiplication question. For an incorrect answer, display the message "No. Please try again." and let the student try the same question repeatedly until the student finally gets it right.

	4.15 (Computer-Assisted Instruction: Reducing Student Fatigue) Varying the computer’s responses can help hold the student’s attention. Modify the previous exercise so that various comments are displayed for each answer. Possible responses to a correct answer should include 'Very good!', 'Nice work!' and 'Keep up the good work!' Possible responses to an incorrect answer should include 'No. Please try again.', 'Wrong. Try once more.' and 'No. Keep trying.' Choose a number from 1 to 3, then use that value to select one of the three appropriate responses to each correct or incorrect answer.

	4.16 (Computer-Assisted Instruction: Difficulty Levels) Modify the previous exercise to allow the user to enter a difficulty level. At a difficulty level of 1, the program should use only single-digit numbers in the problems and at a difficulty level of 2, numbers as large as two digits.

	4.17 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the previous exercise to allow the user to pick a type of arithmetic problem to study—1 means addition problems only, 2 means subtraction problems only, 3 means multiplication problems only, 4 means division problems only (avoid dividing by 0) and 5 means a random mixture of all these types.

	4.18 (Functional-Style Programming: Internal vs. External Iteration) Why is internal iteration preferable to external iteration in functional-style programming?

	4.19 (Functional-Style Programming: What vs. How) Why is programming that emphasizes “what” preferable to programming that emphasizes “how”? What is it that makes “what” programming feasible?

	4.20 (Intro to Data Science: Population Variance vs. Sample Variance) We mentioned in the Intro to Data Science section that there’s a slight difference between the way the statistics module’s functions calculate the population variance and the sample variance. The same is true for the population standard deviation and the sample standard deviation. Research the reason for these differences.

5 Sequences: Lists and Tuples

Objectives

In this chapter you’ll:

	Create and initialize lists and tuples.

	Refer to elements of lists, tuples and strings.

	Sort and search lists, and search tuples.

	Pass lists and tuples to functions and methods.

	Use list methods to perform common manipulations, such as searching for items, sorting a list, inserting items and removing items.

	Use additional Python functional-style programming capabilities, including lambdas and the functional-style programming operations filter, map and reduce.

	Use functional-style list comprehensions to create lists quickly and easily, and use generator expressions to generate values on demand.

	Use two-dimensional lists.

	Enhance your analysis and presentation skills with the Seaborn and Matplotlib visualization libraries.

Outline

	5.1 Introduction

	5.2 Lists

	5.3 Tuples

	5.4 Unpacking Sequences

	5.5 Sequence Slicing

	5.6 del Statement

	5.7 Passing Lists to Functions

	5.8 Sorting Lists

	5.9 Searching Sequences

	5.10 Other List Methods

	5.11 Simulating Stacks with Lists

	5.12 List Comprehensions

	5.13 Generator Expressions

	5.14 Filter, Map and Reduce

	5.15 Other Sequence Processing Functions

	5.16 Two-Dimensional Lists

	5.17 Intro to Data Science: Simulation and Static Visualizations

	5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls

	5.17.2 Visualizing Die-Roll Frequencies and Percentages

	5.18 Wrap-Up

	Exercises

5.1 Introduction

In the last two chapters, we briefly introduced the list and tuple sequence types for representing ordered collections of items. Collections are prepackaged data structures consisting of related data items. Examples of collections include your favorite songs on your smartphone, your contacts list, a library’s books, your cards in a card game, your favorite sports team’s players, the stocks in an investment portfolio, patients in a cancer study and a shopping list. Python’s built-in collections enable you to store and access data conveniently and efficiently. In this chapter, we discuss lists and tuples in more detail.

We’ll demonstrate common list and tuple manipulations. You’ll see that lists (which are modifiable) and tuples (which are not) have many common capabilities. Each can hold items of the same or different types. Lists can dynamically resize as necessary, growing and shrinking at execution time. We discuss one-dimensional and two-dimensional lists.

In the preceding chapter, we demonstrated random-number generation and simulated rolling a six-sided die. We conclude this chapter with our next Intro to Data Science section, which uses the visualization libraries Seaborn and Matplotlib to interactively develop static bar charts containing the die frequencies. In the next chapter’s Intro to Data Science section, we’ll present an animated visualization in which the bar chart changes dynamically as the number of die rolls increases—you’ll see the law of large numbers “in action.”

5.2 Lists

Here, we discuss lists in more detail and explain how to refer to particular list elements. Many of the capabilities shown in this section apply to all sequence types.

Creating a List

Lists typically store homogeneous data, that is, values of the same data type. Consider the list c, which contains five integer elements:

In [1]: c = [-45, 6, 0, 72, 1543]

In [2]: c

Out[2]: [-45, 6, 0, 72, 1543]

They also may store heterogeneous data, that is, data of many different types. For example, the following list contains a student’s first name (a string), last name (a string), grade point average (a float) and graduation year (an int):

['Mary', 'Smith', 3.57, 2022]

Accessing Elements of a List

You reference a list element by writing the list’s name followed by the element’s index (that is, its position number) enclosed in square brackets ([], known as the subscription operator). The following diagram shows the list c labeled with its element names:

[image: An image shows a list element by writing the list’s name followed by the element’s index position number enclosed in square brackets.]

5.2-1 Full Alternative Text

The first element in a list has the index 0. So, in the five-element list c, the first element is named c[0] and the last is c[4]:

In [3]: c[0]

Out[3]: -45

In [4]: c[4]

Out[4]: 1543

Determining a List’s Length

To get a list’s length, use the built-in len function:

In [5]: len(c)

Out[5]: 5

Accessing Elements from the End of the List with Negative Indices

Lists also can be accessed from the end by using negative indices:

[image: An image shows lists also can be accessed from the end by using negative indices.]

5.2-2 Full Alternative Text

So, list c’s last element (c[4]), can be accessed with c[-1] and its first element with c[-5]:

In [6]: c[-1]

Out[6]: 1543

In [7]: c[-5]

Out[7]: -45

Indices Must Be Integers or Integer Expressions

An index must be an integer or integer expression (or a slice, as we’ll soon see):

In [8]: a = 1

In [9]: b = 2

In [10]: c[a + b]

Out[10]: 72

Using a non-integer index value causes a TypeError.

Lists Are Mutable

Lists are mutable—their elements can be modified:

In [11]: c[4] = 17

In [12]: c

Out[12]: [-45, 6, 0, 72, 17]

You’ll soon see that you also can insert and delete elements, changing the list’s length.

Some Sequences Are Immutable

Python’s string and tuple sequences are immutable—they cannot be modified. You can get the individual characters in a string, but attempting to assign a new value to one of the characters causes a TypeError:

In [13]: s = 'hello'

In [14]: s[0]

Out[14]: 'h'

In [15]: s[0] = 'H'

TypeError Traceback (most recent call last)

<ipython-input-15-812ef2514689> in <module>()

----> 1 s[0] = 'H'

TypeError: 'str' object does not support item assignment

Attempting to Access a Nonexistent Element

Using an out-of-range list, tuple or string index causes an IndexError:

In [16]: c[100]

IndexError Traceback (most recent call last)

<ipython-input-19-9a31ea1e1a13> in <module>()

----> 1 c[100]

IndexError: list index out of range

Using List Elements in Expressions

List elements may be used as variables in expressions:

In [17]: c[0] + c[1] + c[2]

Out[17]: -39

Appending to a List with +=

Let’s start with an empty list [], then use a for statement and += to append the values 1 through 5 to the list—the list grows dynamically to accommodate each item:

In [18]: a_list = []

In [19]: for number in range(1, 6):

 ...: a_list += [number]

 ...:

In [20]: a_list

Out[20]: [1, 2, 3, 4, 5]

When the left operand of += is a list, the right operand must be an iterable; otherwise, a TypeError occurs. In snippet [19]’s suite, the square brackets around number create a one-element list, which we append to a_list. If the right operand contains multiple elements, += appends them all. The following appends the characters of 'Python' to the list letters:

In [21]: letters = []

In [22]: letters += 'Python'

In [23]: letters

Out[23]: ['P', 'y', 't', 'h', 'o', 'n']

If the right operand of += is a tuple, its elements also are appended to the list. Later in the chapter, we’ll use the list method append to add items to a list.

Concatenating Lists with +

You can concatenate two lists, two tuples or two strings using the + operator. The result is a new sequence of the same type containing the left operand’s elements followed by the right operand’s elements. The original sequences are unchanged:

In [24]: list1 = [10, 20, 30]

In [25]: list2 = [40, 50]

In [26]: concatenated_list = list1 + list2

In [27]: concatenated_list

Out[27]: [10, 20, 30, 40, 50]

A TypeError occurs if the + operator’s operands are difference sequence types—for example, concatenating a list and a tuple is an error.

Using for and range to Access List Indices and Values

List elements also can be accessed via their indices and the subscription operator ([]):

In [28]: for i in range(len(concatenated_list)):

 ...: print(f'{i}: {concatenated_list[i]}')

 ...:

0: 10

1: 20

2: 30

3: 40

4: 50

The function call range(len(concatenated_list)) produces a sequence of integers representing concatenated_list’s indices (in this case, 0 through 4). When looping in this manner, you must ensure that indices remain in range. Soon, we’ll show a safer way to access element indices and values using built-in function enumerate.

Comparison Operators

You can compare entire lists element-by-element using comparison operators:

In [29]: a = [1, 2, 3]

In [30]: b = [1, 2, 3]

In [31]: c = [1, 2, 3, 4]

In [32]: a == b # True: corresponding elements in both are equal

Out[32]: True

In [33]: a == c # False: a and c have different elements and lengths

Out[33]: False

In [34]: a < c # True: a has fewer elements than c

Out[34]: True

In [35]: c >= b # True: elements 0-2 are equal but c has more elements

Out[35]: True

[image: tick mark] Self Check

	(Fill-In) Python’s string and tuple sequences are _____—they cannot be modified.

Answer: immutable.

	(True/False) The + operator’s sequence operands may be of any sequence type.

Answer: False. The + operator’s operand sequences must have the same type; otherwise, a TypeError occurs.

	(IPython Session) Create a function cube_list that cubes each element of a list. Call the function with the list numbers containing 1 through 10. Show numbers after the call.

Answer:

In [1]: def cube_list(values):

 ...: for i in range(len(values)):

 ...: values[i] **= 3

 ...:

In [2]: numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [3]: cube_list(numbers)

In [4]: numbers

Out[4]: [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

	(IPython Session) Use an empty list named characters and a += augmented assignment statement to convert the string 'Birthday' into a list of its characters.

Answer:

In [5]: characters = []

In [6]: characters += 'Birthday'

In [7]: characters

Out[7]: ['B', 'i', 'r', 't', 'h', 'd', 'a', 'y']

5.3 Tuples

As discussed in the preceding chapter, tuples are immutable and typically store heterogeneous data, but the data can be homogeneous. A tuple’s length is its number of elements and cannot change during program execution.

Creating Tuples

To create an empty tuple, use empty parentheses:

In [1]: student_tuple = ()

In [2]: student_tuple

Out[2]: ()

In [3]: len(student_tuple)

Out[3]: 0

Recall that you can pack a tuple by separating its values with commas:

In [4]: student_tuple = 'John', 'Green', 3.3

In [5]: student_tuple

Out[5]: ('John', 'Green', 3.3)

In [6]: len(student_tuple)

Out[6]: 3

When you output a tuple, Python always displays its contents in parentheses. You may surround a tuple’s comma-separated list of values with optional parentheses:

In [7]: another_student_tuple = ('Mary', 'Red', 3.3)

In [8]: another_student_tuple

Out[8]: ('Mary', 'Red', 3.3)

The following code creates a one-element tuple:

In [9]: a_singleton_tuple = ('red',) # note the comma

In [10]: a_singleton_tuple

Out[10]: ('red',)

The comma (,) that follows the string 'red' identifies a_singleton_tuple as a tuple—the parentheses are optional. If the comma were omitted, the parentheses would be redundant, and a_singleton_tuple would simply refer to the string 'red' rather than a tuple.

Accessing Tuple Elements

A tuple’s elements, though related, are often of multiple types. Usually, you do not iterate over them. Rather, you access each individually. Like list indices, tuple indices start at 0. The following code creates time_tuple representing an hour, minute and second, displays the tuple, then uses its elements to calculate the number of seconds since midnight—note that we perform a different operation with each value in the tuple:

In [11]: time_tuple = (9, 16, 1)

In [12]: time_tuple

Out[12]: (9, 16, 1)

In [13]: time_tuple[0] * 3600 + time_tuple[1] * 60 + time_tuple[2]

Out[13]: 33361

Assigning a value to a tuple element causes a TypeError.

Adding Items to a String or Tuple

As with lists, the += augmented assignment statement can be used with strings and tuples, even though they’re immutable. In the following code, after the two assignments, tuple1 and tuple2 refer to the same tuple object:

In [14]: tuple1 = (10, 20, 30)

In [15]: tuple2 = tuple1

In [16]: tuple2

Out[16]: (10, 20, 30)

Concatenating the tuple (40, 50) to tuple1 creates a new tuple, then assigns a reference to it to the variable tuple1—tuple2 still refers to the original tuple:

In [17]: tuple1 += (40, 50)

In [18]: tuple1

Out[18]: (10, 20, 30, 40, 50)

In [19]: tuple2

Out[19]: (10, 20, 30)

For a string or tuple, the item to the right of += must be a string or tuple, respectively—mixing types causes a TypeError.

Appending Tuples to Lists

You can use += to append a tuple to a list:

In [20]: numbers = [1, 2, 3, 4, 5]

In [21]: numbers += (6, 7)

In [22]: numbers

Out[22]: [1, 2, 3, 4, 5, 6, 7]

Tuples May Contain Mutable Objects

Let’s create a student_tuple with a first name, last name and list of grades:

In [23]: student_tuple = ('Amanda', 'Blue', [98, 75, 87])

Even though the tuple is immutable, its list element is mutable:

In [24]: student_tuple[2][1] = 85

In [25]: student_tuple

Out[25]: ('Amanda', 'Blue', [98, 85, 87])

In the double-subscripted name student_tuple[2][1], Python views student_tuple[2] as the element of the tuple containing the list [98, 75, 87], then uses [1] to access the list element containing 75. The assignment in snippet [24] replaces that grade with 85.

[image: tick mark] Self Check

	(True/False) A += augmented assignment statement may not be used with strings and tuples, because they’re immutable.

Answer: False. A += augmented assignment statement also may be used with strings and tuples, even though they’re immutable. The result is a new string or tuple, respectively.

	(True/False) Tuples can contain only immutable objects.

Answer: False. Even though a tuple is immutable, its elements can be mutable objects, such as lists.

	(IPython Session) Create a single-element tuple containing 123.45, then display it.

Answer:

In [1]: single = (123.45,)

In [2]: single

Out[2]: (123.45,)

	(IPython Session) Show what happens when you attempt to concatenate sequences of different types—the list [1, 2, 3] and the tuple (4, 5, 6)—using the + operator.

Answer:

In [3]: [1, 2, 3] + (4, 5, 6)

TypeError Traceback (most recent call last)

<ipython-input-3-1ac3d3041bfa> in <module>()

----> 1 [1, 2, 3] + (4, 5, 6)

TypeError: can only concatenate list (not "tuple") to list

5.4 Unpacking Sequences

The previous chapter introduced tuple unpacking. You can unpack any sequence’s elements by assigning the sequence to a comma-separated list of variables. A ValueError occurs if the number of variables to the left of the assignment symbol is not identical to the number of elements in the sequence on the right:

In [1]: student_tuple = ('Amanda', [98, 85, 87])

In [2]: first_name, grades = student_tuple

In [3]: first_name

Out[3]: 'Amanda'

In [4]: grades

Out[4]: [98, 85, 87]

The following code unpacks a string, a list and a sequence produced by range:

In [5]: first, second = 'hi'

In [6]: print(f'{first} {second}')

h i

In [7]: number1, number2, number3 = [2, 3, 5]

In [8]: print(f'{number1} {number2} {number3}')

2 3 5

In [9]: number1, number2, number3 = range(10, 40, 10)

In [10]: print(f'{number1} {number2} {number3}')

10 20 30

Swapping Values Via Packing and Unpacking

You can swap two variables’ values using sequence packing and unpacking:

In [11]: number1 = 99

In [12]: number2 = 22

In [13]: number1, number2 = (number2, number1)

In [14]: print(f'number1 = {number1}; number2 = {number2}')

number1 = 22; number2 = 99

Accessing Indices and Values Safely with Built-in Function enumerate

Earlier, we called range to produce a sequence of index values, then accessed list elements in a for loop using the index values and the subscription operator ([]). This is error-prone because you could pass the wrong arguments to range. If any value produced by range is an out-of-bounds index, using it as an index causes an IndexError.

The preferred mechanism for accessing an element’s index and value is the built-in function enumerate. This function receives an iterable and creates an iterator that, for each element, returns a tuple containing the element’s index and value. The following code uses the built-in function list to create a list containing enumerate’s results:

In [15]: colors = ['red', 'orange', 'yellow']

In [16]: list(enumerate(colors))

Out[16]: [(0, 'red'), (1, 'orange'), (2, 'yellow')]

Similarly the built-in function tuple creates a tuple from a sequence:

In [17]: tuple(enumerate(colors))

Out[17]: ((0, 'red'), (1, 'orange'), (2, 'yellow'))

The following for loop unpacks each tuple returned by enumerate into the variables index and value and displays them:

In [18]: for index, value in enumerate(colors):

 ...: print(f'{index}: {value}')

 ...:

0: red

1: orange

2: yellow

Creating a Primitive Bar Chart

The script in Fig. 5.1 creates a primitive bar chart where each bar’s length is made of asterisks (*) and is proportional to the list’s corresponding element value. We use the function enumerate to access the list’s indices and values safely. To run this example, change to this chapter’s ch05 examples folder, then enter:

ipython fig05_01.py

or, if you’re in IPython already, use the command:

run fig05_01.py

Fig. 5.1 | Displaying a bar chart.

 1 # fig05_01.py

 2 """Displaying a bar chart"""

 3 numbers = [19, 3, 15, 7, 11]

 4

 5 print('\nCreating a bar chart from numbers:')

 6 print(f'Index{"Value":>8} Bar')

 7

 8 for index, value in enumerate(numbers):

 9 print(f'{index:>5}{value:>8} {"*" * value}')

Creating a bar chart from numbers:

Index Value Bar

 0 19 *******************

 1 3 ***

 2 15 ***************

 3 7 *******

 4 11 ***********

The for statement uses enumerate to get each element’s index and value, then displays a formatted line containing the index, the element value and the corresponding bar of asterisks. The expression

"*" * value

creates a string consisting of value asterisks. When used with a sequence, the multiplication operator (*) repeats the sequence—in this case, the string "*"—value times. Later in this chapter, we’ll use the open-source Seaborn and Matplotlib libraries to display a publication-quality bar chart visualization.

[image: tick mark] Self Check

	(Fill-In) A sequence’s elements can be _____ by assigning the sequence to a comma-separated list of variables.

Answer: unpacked.

	(True/False) The following expression causes an error:

'-' * 10

Answer: False: In this context, the multiplication operator (*) repeats the string ('-') 10 times.

	(IPython Session) Create a tuple high_low representing a day of the week (a string) and its high and low temperatures (integers), display its string representation, then perform the following tasks in an interactive IPython session:

	Use the [] operator to access and display the high_low tuple’s elements.

	Unpack the high_low tuple into the variables day and high. What happens and why?

Answer: For Part (b) an error occurs because you must unpack all the elements of a sequence.

In [1]: high_low = ('Monday', 87, 65)

In [2]: high_low

Out[2]: ('Monday', 87, 65)

In [3]: print(f'{high_low[0]}: High={high_low[1]}, Low={high_low[2]}')

Monday: High=87, Low=65

In [4]: day, high = high_low

ValueError Traceback (most recent call last)

<ipython-input-3-0c3ad5c97284> in <module>()

----> 1 day, high = high_low

ValueError: too many values to unpack (expected 2)

	(IPython Session) Create the list names containing three name strings. Use a for loop and the enumerate function to iterate through the elements and display each element’s index and value.

Answer:

In [4]: names = ['Amanda', 'Sam', 'David']

In [5]: for i, name in enumerate(names):

 ...: print(f'{i}: {name}')

 ...:

0: Amanda

1: Sam

2: David

5.5 Sequence Slicing

You can slice sequences to create new sequences of the same type containing subsets of the original elements. Slice operations can modify mutable sequences—those that do not modify a sequence work identically for lists, tuples and strings.

Specifying a Slice with Starting and Ending Indices

Let’s create a slice consisting of the elements at indices 2 through 5 of a list:

In [1]: numbers = [2, 3, 5, 7, 11, 13, 17, 19]

In [2]: numbers[2:6]

Out[2]: [5, 7, 11, 13]

The slice copies elements from the starting index to the left of the colon (2) up to, but not including, the ending index to the right of the colon (6). The original list is not modified.

Specifying a Slice with Only an Ending Index

If you omit the starting index, 0 is assumed. So, the slice numbers[:6] is equivalent to the slice numbers[0:6]:

In [3]: numbers[:6]

Out[3]: [2, 3, 5, 7, 11, 13]

In [4]: numbers[0:6]

Out[4]: [2, 3, 5, 7, 11, 13]

Specifying a Slice with Only a Starting Index

If you omit the ending index, Python assumes the sequence’s length (8 here), so snippet [5]’s slice contains the elements of numbers at indices 6 and 7:

In [5]: numbers[6:]

Out[5]: [17, 19]

In [6]: numbers[6:len(numbers)]

Out[6]: [17, 19]

Specifying a Slice with No Indices

Omitting both the start and end indices copies the entire sequence:

In [7]: numbers[:]

Out[7]: [2, 3, 5, 7, 11, 13, 17, 19]

Though slices create new objects, slices make shallow copies of the elements—that is, they copy the elements’ references but not the objects they point to. So, in the snippet above, the new list’s elements refer to the same objects as the original list’s elements, rather than to separate copies. In the “Array-Oriented Programming with NumPy” chapter, we’ll explain deep copying, which actually copies the referenced objects themselves, and we’ll point out when deep copying is preferred.

Slicing with Steps

The following code uses a step of 2 to create a slice with every other element of numbers:

In [8]: numbers[::2]

Out[8]: [2, 5, 11, 17]

We omitted the start and end indices, so 0 and len(numbers) are assumed, respectively.

Slicing with Negative Indices and Steps

You can use a negative step to select slices in reverse order. The following code concisely creates a new list in reverse order:

In [9]: numbers[::-1]

Out[9]: [19, 17, 13, 11, 7, 5, 3, 2]

This is equivalent to:

In [10]: numbers[-1:-9:-1]

Out[10]: [19, 17, 13, 11, 7, 5, 3, 2]

Modifying Lists Via Slices

You can modify a list by assigning to a slice of it—the rest of the list is unchanged. The following code replaces numbers’ first three elements, leaving the rest unchanged:

In [11]: numbers[0:3] = ['two', 'three', 'five']

In [12]: numbers

Out[12]: ['two', 'three', 'five', 7, 11, 13, 17, 19]

The following deletes only the first three elements of numbers by assigning an empty list to the three-element slice:

In [13]: numbers[0:3] = []

In [14]: numbers

Out[14]: [7, 11, 13, 17, 19]

The following assigns a list’s elements to a slice of every other element of numbers:

In [15]: numbers = [2, 3, 5, 7, 11, 13, 17, 19]

In [16]: numbers[::2] = [100, 100, 100, 100]

In [17]: numbers

Out[17]: [100, 3, 100, 7, 100, 13, 100, 19]

In [18]: id(numbers)

Out[18]: 4434456648

Let’s delete all the elements in numbers, leaving the existing list empty:

In [19]: numbers[:] = []

In [20]: numbers

Out[20]: []

In [21]: id(numbers)

Out[21]: 4434456648

Deleting numbers’ contents (snippet [19]) is different from assigning numbers a new empty list [] (snippet [22]). To prove this, we display numbers’ identity after each operation. The identities are different, so they represent separate objects in memory:

In [22]: numbers = []

In [23]: numbers

Out[23]: []

In [24]: id(numbers)

Out[24]: 4406030920

[image: tick mark] Self Check

	(True/False) Slice operations that modify a sequence work identically for lists, tuples and strings.

Answer: False. Slice operations that do not modify a sequence work identically for lists, tuples and strings.

	(Fill-In) Assume you have a list called names. The slice expression _____ creates a new list with the elements of names in reverse order.

Answer: names[::-1]

	(IPython Session) Create a list called numbers containing the values from 1 through 15, then use slices to perform the following operations consecutively:

 	

Select number’s even integers.

	

Replace the elements at indices 5 through 9 with 0s, then show the resulting list.

 	

Keep only the first five elements, then show the resulting list.

	

Delete all the remaining elements by assigning to a slice. Show the resulting list.

 Answer:

In [1]: numbers = list(range(1, 16))

In [2]: numbers

Out[2]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

In [3]: numbers[1:len(numbers):2]

Out[3]: [2, 4, 6, 8, 10, 12, 14]

In [4]: numbers[5:10] = [0] * len(numbers[5:10])

In [5]: numbers

Out[5]: [1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 11, 12, 13, 14, 15]

In [6]: numbers[5:] = []

In [7]: numbers

Out[7]: [1, 2, 3, 4, 5]

In [8]: numbers[:] = []

In [9]: numbers

Out[9]: []

Recall that multiplying a sequence repeats that sequence the specified number of times.

5.6 del Statement

The del statement also can be used to remove elements from a list and to delete variables from the interactive session. You can remove the element at any valid index or the element(s) from any valid slice.

Deleting the Element at a Specific List Index

Let’s create a list, then use del to remove its last element:

In [1]: numbers = list(range(0, 10))

In [2]: numbers

Out[2]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [3]: del numbers[-1]

In [4]: numbers

Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8]

Deleting a Slice from a List

The following deletes the list’s first two elements:

In [5]: del numbers[0:2]

In [6]: numbers

Out[6]: [2, 3, 4, 5, 6, 7, 8]

The following uses a step in the slice to delete every other element from the entire list:

In [7]: del numbers[::2]

In [8]: numbers

Out[8]: [3, 5, 7]

Deleting a Slice Representing the Entire List

The following code deletes all of the list’s elements:

In [9]: del numbers[:]

In [10]: numbers

Out[10]: []

Deleting a Variable from the Current Session

The del statement can delete any variable. Let’s delete numbers from the interactive session, then attempt to display the variable’s value, causing a NameError:

In [11]: del numbers

In [12]: numbers

NameError Traceback (most recent call last)

<ipython-input-12-426f8401232b> in <module>()

----> 1 numbers

NameError: name 'numbers' is not defined

[image: tick mark] Self Check

	(Fill-In) Given a list numbers containing 1 through 10, del numbers[-2] removes the value _____ from the list.

Answer: 9.

	(IPython Session) Create a list called numbers containing the values from 1 through 15, then use the del statement to perform the following operations consecutively:

 	

Delete a slice containing the first four elements, then show the resulting list.

 	

Starting with the first element, use a slice to delete every other element of the list, then show the resulting list.

Answer:

In [1]: numbers = list(range(1, 16))

In [2]: numbers

Out[2]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

In [3]: del numbers[0:4]

In [4]: numbers

Out[4]: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

In [5]: del numbers[::2]

In [6]: numbers

Out[6]: [6, 8, 10, 12, 14]

5.7 Passing Lists to Functions

In the last chapter, we mentioned that all objects are passed by reference and demonstrated passing an immutable object as a function argument. Here, we discuss references further by examining what happens when a program passes a mutable list object to a function.

Passing an Entire List to a Function

Consider the function modify_elements, which receives a reference to a list and multiplies each of the list’s element values by 2:

In [1]: def modify_elements(items):

 ...: """"Multiplies all element values in items by 2."""

 ...: for i in range(len(items)):

 ...: items[i] *= 2

 ...:

In [2]: numbers = [10, 3, 7, 1, 9]

In [3]: modify_elements(numbers)

In [4]: numbers

Out[4]: [20, 6, 14, 2, 18]

Function modify_elements’ items parameter receives a reference to the original list, so the statement in the loop’s suite modifies each element in the original list object.

Passing a Tuple to a Function

When you pass a tuple to a function, attempting to modify the tuple’s immutable elements results in a TypeError:

In [5]: numbers_tuple = (10, 20, 30)

In [6]: numbers_tuple

Out[6]: (10, 20, 30)

In [7]: modify_elements(numbers_tuple)

TypeError Traceback (most recent call last)

<ipython-input-27-9339741cd595> in <module>()

----> 1 modify_elements(numbers_tuple)

<ipython-input-25-27acb8f8f44c> in modify_elements(items)

 2 """"Multiplies all element values in items by 2."""

 3 for i in range(len(items)):

----> 4 items[i] *= 2

 5

 6

TypeError: 'tuple' object does not support item assignment

Recall that tuples may contain mutable objects, such as lists. Those objects still can be modified when a tuple is passed to a function.

A Note Regarding Tracebacks

The previous traceback shows the two snippets that led to the TypeError. The first is snippet [7]’s function call. The second is snippet [1]’s function definition. Line numbers precede each snippet’s code. We’ve demonstrated mostly single-line snippets. When an exception occurs in such a snippet, it’s always preceded by ----> 1, indicating that line 1 (the snippet’s only line) caused the exception. Multiline snippets like the definition of modify_elements show consecutive line numbers starting at 1. The notation ----> 4 above indicates that the exception occurred in line 4 of modify_elements. No matter how long the traceback is, the last line of code with ----> caused the exception.

[image: tick mark] Self Check

	(True/False) You cannot modify a list’s contents when you pass it to a function.

Answer: False. When you pass a list (a mutable object) to a function, the function receives a reference to the original list object and can use that reference to modify the original list’s contents.

	(True/False) Tuples can contain lists and other mutable objects. Those mutable objects can be modified when a tuple is passed to a function.

Answer: True.

5.8 Sorting Lists

A common computing task called sorting enables you to arrange data either in ascending or descending order. Sorting is an intriguing problem that has attracted intense computer-science research efforts. It’s studied in detail in data-structures and algorithms courses. We discuss sorting in more detail in the “Computer Science Thinking: Recursion, Searching, Sorting and Big O” chapter.

Sorting a List in Ascending Order

List method sort modifies a list to arrange its elements in ascending order:

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: numbers.sort()

In [3]: numbers

Out[3]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Sorting a List in Descending Order

To sort a list in descending order, call list method sort with the optional keyword argument reverse set to True (False is the default):

In [4]: numbers.sort(reverse=True)

In [5]: numbers

Out[5]: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Built-In Function sorted

Built-in function sorted returns a new list containing the sorted elements of its argument sequence—the original sequence is unmodified. The following code demonstrates function sorted for a list, a string and a tuple:

In [6]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: ascending_numbers = sorted(numbers)

In [8]: ascending_numbers

Out[8]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [9]: numbers

Out[9]: [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [10]: letters = 'fadgchjebi'

In [11]: ascending_letters = sorted(letters)

In [12]: ascending_letters

Out[12]: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

In [13]: letters

Out[13]: 'fadgchjebi'

In [14]: colors = ('red', 'orange', 'yellow', 'green', 'blue')

In [15]: ascending_colors = sorted(colors)

In [16]: ascending_colors

Out[16]: ['blue', 'green', 'orange', 'red', 'yellow']

In [17]: colors

Out[17]: ('red', 'orange', 'yellow', 'green', 'blue')

Use the optional keyword argument reverse with the value True to sort the elements in descending order.

[image: tick mark] Self Check

	(Fill-In) To sort a list in descending order, call list method sort with the optional keyword argument _____ set to True.

Answer: reverse.

	(True/False) All sequences provide a sort method.

Answer: False. Immutable sequences like tuples and strings do not provide a sort method. However, you can sort any sequence without modifying it by using built-in function sorted, which returns a new list containing the sorted elements of its argument sequence.

	(IPython Session) Create a foods list containing 'Cookies', 'pizza', 'Grapes', 'apples', 'steak' and 'Bacon'. Use list method sort to sort the list in ascending order. Are the strings in alphabetical order?

Answer:

In [1]: foods = ['Cookies', 'pizza', 'Grapes',

 ...: 'apples', 'steak', 'Bacon']

 ...:

In [2]: foods.sort()

In [3]: foods

Out[3]: ['Bacon', 'Cookies', 'Grapes', 'apples', 'pizza', 'steak']

They’re probably not in what you’d consider alphabetical order, but they are in order as defined by the underlying character set—known as lexicographical order. As you’ll see later in the chapter, strings are compared by their character’s numerical values, not their letters, and the values of uppercase letters are lower than the values of lowercase letters.

5.9 Searching Sequences

Often, you’ll want to determine whether a sequence (such as a list, tuple or string) contains a value that matches a particular key value. Searching is the process of locating a key.

List Method index

List method index takes as an argument a search key—the value to locate in the list—then searches through the list from index 0 and returns the index of the first element that matches the search key:

In [1]: numbers = [3, 7, 1, 4, 2, 8, 5, 6]

In [2]: numbers.index(5)

Out[2]: 6

A ValueError occurs if the value you’re searching for is not in the list.

Specifying the Starting Index of a Search

Using method index’s optional arguments, you can search a subset of a list’s elements. You can use *= to multiply a sequence—that is, append a sequence to itself multiple times. After the following snippet, numbers contains two copies of the original list’s contents:

In [3]: numbers *= 2

In [4]: numbers

Out[4]: [3, 7, 1, 4, 2, 8, 5, 6, 3, 7, 1, 4, 2, 8, 5, 6]

The following code searches the updated list for the value 5 starting from index 7 and continuing through the end of the list:

In [5]: numbers.index(5, 7)

Out[5]: 14

Specifying the Starting and Ending Indices of a Search

Specifying the starting and ending indices causes index to search from the starting index up to but not including the ending index location. The call to index in snippet [5]:

numbers.index(5, 7)

assumes the length of numbers as its optional third argument and is equivalent to:

numbers.index(5, 7, len(numbers))

The following looks for the value 7 in the range of elements with indices 0 through 3:

In [6]: numbers.index(7, 0, 4)

Out[6]: 1

Operators in and not in

Operator in tests whether its right operand’s iterable contains the left operand’s value:

In [7]: 1000 in numbers

Out[7]: False

In [8]: 5 in numbers

Out[8]: True

Similarly, operator not in tests whether its right operand’s iterable does not contain the left operand’s value:

In [9]: 1000 not in numbers

Out[9]: True

In [10]: 5 not in numbers

Out[10]: False

Using Operator in to Prevent a ValueError

You can use the operator in to ensure that calls to method index do not result in ValueErrors for search keys that are not in the corresponding sequence:

In [11]: key = 1000

In [12]: if key in numbers:

 ...: print(f'found {key} at index {numbers.index(search_key)}')

 ...: else:

 ...: print(f'{key} not found')

 ...:

1000 not found

Built-In Functions any and all

Sometimes you simply need to know whether any item in an iterable is True or whether all the items are True. The built-in function any returns True if any item in its iterable argument is True. The built-in function all returns True if all items in its iterable argument are True. Recall that nonzero values are True and 0 is False. Non-empty iterable objects also evaluate to True, whereas any empty iterable evaluates to False. Functions any and all are additional examples of internal iteration in functional-style programming.

[image: tick mark] Self Check

	(Fill-In) The _____ operator can be used to extend a list with copies of itself.

Answer: *=.

	(Fill-In) Operators _____ and _____ determine whether a sequence contains or does not contain a value, respectively.

Answer: in, not in.

	(IPython Session) Create a five-element list containing 67, 12, 46, 43 and 13, then use list method index to search for a 43 and 44. Ensure that no ValueError occurs when searching for 44.

Answer:

In [1]: numbers = [67, 12, 46, 43, 13]

In [2]: numbers.index(43)

Out[2]: 3

In [3]: if 44 in numbers:

 ...: print(f'Found 44 at index: {numbers.index(44)}')

 ...: else:

 ...: print('44 not found')

 ...:

44 not found

5.10 Other List Methods

Lists also have methods that add and remove elements. Consider the list color_names:

In [1]: color_names = ['orange', 'yellow', 'green']

Inserting an Element at a Specific List Index

Method insert adds a new item at a specified index. The following inserts 'red' at index 0:

In [2]: color_names.insert(0, 'red')

In [3]: color_names

Out[3]: ['red', 'orange', 'yellow', 'green']

Adding an Element to the End of a List

You can add a new item to the end of a list with method

append:

In [4]: color_names.append('blue')

In [5]: color_names

Out[5]: ['red', 'orange', 'yellow', 'green', 'blue']

Adding All the Elements of a Sequence to the End of a List

Use list method

extend to add all the elements of another sequence to the end of a list:

In [6]: color_names.extend(['indigo', 'violet'])

In [7]: color_names

Out[7]: ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']

This is the equivalent of using +=. The following code adds all the characters of a string then all the elements of a tuple to a list:

In [8]: sample_list = []

In [9]: s = 'abc'

In [10]: sample_list.extend(s)

In [11]: sample_list

Out[11]: ['a', 'b', 'c']

In [12]: t = (1, 2, 3)

In [13]: sample_list.extend(t)

In [14]: sample_list

Out[14]: ['a', 'b', 'c', 1, 2, 3]

Rather than creating a temporary variable, like t, to store a tuple before appending it to a list, you might want to pass a tuple directly to extend. In this case, the tuple’s parentheses are required, because extend expects one iterable argument:

In [15]: sample_list.extend((4, 5, 6)) # note the extra parentheses

In [16]: sample_list

Out[16]: ['a', 'b', 'c', 1, 2, 3, 4, 5, 6]

A TypeError occurs if you omit the required parentheses.

Removing the First Occurrence of an Element in a List

Method

remove deletes the first element with a specified value—a ValueError occurs if remove’s argument is not in the list:

In [17]: color_names.remove('green')

In [18]: color_names

Out[18]: ['red', 'orange', 'yellow', 'blue', 'indigo', 'violet']

Emptying a List

To delete all the elements in a list, call method

clear:

In [19]: color_names.clear()

In [20]: color_names

Out[20]: []

This is the equivalent of the previously shown slice assignment

color_names[:] = []

Counting the Number of Occurrences of an Item

List method count searches for its argument and returns the number of times it is found:

In [21]: responses = [1, 2, 5, 4, 3, 5, 2, 1, 3, 3,

 ...: 1, 4, 3, 3, 3, 2, 3, 3, 2, 2]

 ...:

In [22]: for i in range(1, 6):

 ...: print(f'{i} appears {responses.count(i)} times in responses')

 ...:

1 appears 3 times in responses

2 appears 5 times in responses

3 appears 8 times in responses

4 appears 2 times in responses

5 appears 2 times in responses

Reversing a List’s Elements

List method

reverse reverses the contents of a list in place, rather than creating a reversed copy, as we did with a slice previously:

In [23]: color_names = ['red', 'orange', 'yellow', 'green', 'blue']

In [24]: color_names.reverse()

In [25]: color_names

Out[25]: ['blue', 'green', 'yellow', 'orange', 'red']

Copying a List

List method copy returns a new list containing a shallow copy of the original list:

In [26]: copied_list = color_names.copy()

In [27]: copied_list

Out[27]: ['blue', 'green', 'yellow', 'orange', 'red']

This is equivalent to the previously demonstrated slice operation:

copied_list = color_names[:]

[image: tick mark] Self Check

	(Fill-In) To add all the elements of a sequence to the end of a list, use list method _____, which is equivalent to using +=.

Answer: extend.

	(Fill-In) For a list numbers, calling method _____ is equivalent to numbers[:] = [].

Answer: clear.

	(IPython Session) Create a list called rainbow containing 'green', 'orange' and 'violet'. Perform the following operations consecutively using list methods and show the list’s contents after each operation:

	Determine the index of 'violet', then use it to insert 'red' before 'violet'.

	Append 'yellow' to the end of the list.

	Reverse the list’s elements.

	Remove the element 'orange'.

Answer:

In [1]: rainbow = ['green', 'orange', 'violet']

In [2]: rainbow.insert(rainbow.index('violet'), 'red')

In [3]: rainbow

Out[3]: ['green', 'orange', 'red', 'violet']

In [4]: rainbow.append('yellow')

In [5]: rainbow

Out[5]: ['green', 'orange', 'red', 'violet', 'yellow']

In [6]: rainbow.reverse()

In [7]: rainbow

Out[7]: ['yellow', 'violet', 'red', 'orange', 'green']

In [8]: rainbow.remove('orange')

In [9]: rainbow

Out[9]: ['yellow', 'violet', 'red', 'green']

5.11 Simulating Stacks with Lists

The preceding chapter introduced the function-call stack. Python does not have a built-in stack type, but you can think of a stack as a constrained list. You push using list method append, which adds a new element to the end of the list. You pop using list method pop with no arguments, which removes and returns the item at the end of the list.

Let’s create an empty list called stack, push (append) two strings onto it, then pop the strings to confirm they’re retrieved in last-in, first-out (LIFO) order:

In [1]: stack = []

In [2]: stack.append('red')

In [3]: stack

Out[3]: ['red']

In [4]: stack.append('green')

In [5]: stack

Out[5]: ['red', 'green']

In [6]: stack.pop()

Out[6]: 'green'

In [7]: stack

Out[7]: ['red']

In [8]: stack.pop()

Out[8]: 'red'

In [9]: stack

Out[9]: []

In [10]: stack.pop()

IndexError Traceback (most recent call last)

<ipython-input-10-50ea7ec13fbe> in <module>()

----> 1 stack.pop()

IndexError: pop from empty list

For each pop snippet, the value that pop removes and returns is displayed. Popping from an empty stack causes an IndexError, just like accessing a nonexistent list element with []. To prevent an IndexError, ensure that len(stack) is greater than 0 before calling pop. You can run out of memory if you keep pushing items faster than you pop them.

In the exercises, you’ll use a list to simulate another popular collection called a queue in which you insert at the back and delete from the front. Items are retrieved from queues in first-in, first-out (FIFO) order.

[image: tick mark] Self Check

	(Fill-In) You can simulate a stack with a list, using methods _____ and _____ to add and remove elements, respectively, only at the end of the list.

Answer: append, pop.

	(Fill-In) To prevent an IndexError when calling pop on a list, first ensure that _____.

Answer: the list’s length is greater than 0.

5.12 List Comprehensions

Here, we continue discussing functional-style features with list comprehensions—a concise and convenient notation for creating new lists. List comprehensions can replace many for statements that iterate over existing sequences and create new lists, such as:

In [1]: list1 = []

In [2]: for item in range(1, 6):

 ...: list1.append(item)

 ...:

In [3]: list1

Out[3]: [1, 2, 3, 4, 5]

Using a List Comprehension to Create a List of Integers

We can accomplish the same task in a single line of code with a list comprehension:

In [4]: list2 = [item for item in range(1, 6)]

In [5]: list2

Out[5]: [1, 2, 3, 4, 5]

Like snippet [2]’s for statement, the list comprehension’s for clause

for item in range(1, 6)

iterates over the sequence produced by range(1, 6). For each item, the list comprehension evaluates the expression to the left of the for clause and places the expression’s value (in this case, the item itself) in the new list. Snippet [4]’s particular comprehension could have been expressed more concisely using the function list:

list2 = list(range(1, 6))

Mapping: Performing Operations in a List Comprehension’s Expression

A list comprehension’s expression can perform tasks, such as calculations, that map elements to new values (possibly of different types). Mapping is a common functional-style programming operation that produces a result with the same number of elements as the original data being mapped. The following comprehension maps each value to its cube with the expression item ** 3:

In [6]: list3 = [item ** 3 for item in range(1, 6)]

In [7]: list3

Out[7]: [1, 8, 27, 64, 125]

Filtering: List Comprehensions with if Clauses

Another common functional-style programming operation is filtering elements to select only those that match a condition. This typically produces a list with fewer elements than the data being filtered. To do this in a list comprehension, use the if clause. The following includes in list4 only the even values produced by the for clause:

In [8]: list4 = [item for item in range(1, 11) if item % 2 == 0]

In [9]: list4

Out[9]: [2, 4, 6, 8, 10]

List Comprehension That Processes Another List’s Elements

The for clause can process any iterable. Let’s create a list of lowercase strings and use a list comprehension to create a new list containing their uppercase versions:

In [10]: colors = ['red', 'orange', 'yellow', 'green', 'blue']

In [11]: colors2 = [item.upper() for item in colors]

In [12]: colors2

Out[12]: ['RED', 'ORANGE', 'YELLOW', 'GREEN', 'BLUE']

In [13]: colors

Out[13]: ['red', 'orange', 'yellow', 'green', 'blue']

[image: tick mark] Self Check

	(Fill-In) A list comprehension’s _____ clause iterates over the specified sequence.

Answer: for.

	(Fill-In) A list comprehension’s _____ clause filters sequence elements to select only those that match a condition.

Answer: if.

	(IPython Session) Use a list comprehension to create a list of tuples containing the numbers 1–5 and their cubes—that is, [(1, 1), (2, 8), (3, 27), …]. To create tuples, place parentheses around the expression to the left of the list comprehension’s for clause.

Answer:

In [1]: cubes = [(x, x ** 3) for x in range(1, 6)]

In [2]: cubes

Out[2]: [(1, 1), (2, 8), (3, 27), (4, 64), (5, 125)]

	(IPython Session) Use a list comprehension and the range function with a step to create a list of the multiples of 3 that are less than 30.

Answer:

In [3]: multiples = [x for x in range(3, 30, 3)]

In [4]: multiples

Out[4]: [3, 6, 9, 12, 15, 18, 21, 24, 27]

5.13 Generator Expressions

A generator expression is similar to a list comprehension, but creates an iterable generator object that produces values on demand. This is known as lazy evaluation. List comprehensions use greedy evaluation—they create lists immediately when you execute them. For large numbers of items, creating a list can take substantial memory and time. So generator expressions can reduce your program’s memory consumption and improve performance if the whole list is not needed at once.

Generator expressions have the same capabilities as list comprehensions, but you define them in parentheses instead of square brackets. The generator expression in snippet [2] squares and returns only the odd values in numbers:

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: for value in (x ** 2 for x in numbers if x % 2 != 0):

 ...: print(value, end=' ')

 ...:

9 49 1 81 25

To show that a generator expression does not create a list, let’s assign the preceding snippet’s generator expression to a variable and evaluate the variable:

In [3]: squares_of_odds = (x ** 2 for x in numbers if x % 2 != 0)

In [3]: squares_of_odds

Out[3]: <generator object <genexpr> at 0x1085e84c0>

The text "generator object <genexpr>" indicates that square_of_odds is a generator object that was created from a generator expression (genexpr).

[image: tick mark] Self Check

	(Fill-In) A generator expression is _____—it produces values on demand.

Answer: lazy.

	(IPython Session) Create a generator expression that cubes the even integers in a list containing 10, 3, 7, 1, 9, 4 and 2. Use function list to create a list of the results. Note that the function call’s parentheses also act as the generator expression’s parentheses.

Answer:

In [1]: list(x ** 3 for x in [10, 3, 7, 1, 9, 4, 2] if x % 2 == 0)

Out[1]: [1000, 64, 8]

5.14 Filter, Map and Reduce

The preceding section introduced several functional-style features—list comprehensions, filtering and mapping. Here we demonstrate the built-in filter and map functions for filtering and mapping, respectively. We continue discussing reductions in which you process a collection of elements into a single value, such as their count, total, product, average, minimum or maximum.

Filtering a Sequence’s Values with the Built-In filter Function

Let’s use built-in function filter to obtain the odd values in numbers:

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: def is_odd(x):

 ...: """Returns True only if x is odd."""

 ...: return x % 2 != 0

 ...:

In [3]: list(filter(is_odd, numbers))

Out[3]: [3, 7, 1, 9, 5]

Like data, Python functions are objects that you can assign to variables, pass to other functions and return from functions. Functions that receive other functions as arguments are a functional-style capability called higher-order functions. For example, filter’s first argument must be a function that receives one argument and returns True if the value should be included in the result. The function is_odd returns True if its argument is odd. The filter function calls is_odd once for each value in its second argument’s iterable (numbers). Higher-order functions may also return a function as a result.

Function filter returns an iterator, so filter’s results are not produced until you iterate through them. This is another example of lazy evaluation. In snippet [3], function list iterates through the results and creates a list containing them. We can obtain the same results as above by using a list comprehension with an if clause:

In [4]: [item for item in numbers if is_odd(item)]

Out[4]: [3, 7, 1, 9, 5]

Using a lambda Rather than a Function

For simple functions like is_odd that return only a single expression’s value, you can use a lambda expression (or simply a lambda) to define the function inline where it’s needed—typically as it’s passed to another function:

In [5]: list(filter(lambda x: x % 2 != 0, numbers))

Out[5]: [3, 7, 1, 9, 5]

We pass filter’s return value (an iterator) to function list here to convert the results to a list and display them.

A lambda expression is an anonymous function—that is, a function without a name. In the filter call

filter(lambda x: x % 2 != 0, numbers)

the first argument is the lambda

lambda x: x % 2 != 0

A lambda begins with the lambda keyword followed by a comma-separated parameter list, a colon (:) and an expression. In this case, the parameter list has one parameter named x. A lambda implicitly returns its expression’s value. So any simple function of the form

def function_name(parameter_list):

 return expression

may be expressed as a more concise lambda of the form

lambda parameter_list: expression

Mapping a Sequence’s Values to New Values

Let’s use built-in function map with a lambda to square each value in numbers:

In [6]: numbers

Out[6]: [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: list(map(lambda x: x ** 2, numbers))

Out[7]: [100, 9, 49, 1, 81, 16, 4, 64, 25, 36]

Function map’s first argument is a function that receives one value and returns a new value—in this case, a lambda that squares its argument. The second argument is an iterable of values to map. Function map uses lazy evaluation. So, we pass to the list function the iterator that map returns. This enables us to iterate through and create a list of the mapped values. Here’s an equivalent list comprehension:

In [8]: [item ** 2 for item in numbers]

Out[8]: [100, 9, 49, 1, 81, 16, 4, 64, 25, 36]

Combining filter and map

You can combine the preceding filter and map operations as follows:

In [9]: list(map(lambda x: x ** 2,

 ...: filter(lambda x: x % 2 != 0, numbers)))

 ...:

Out[9]: [9, 49, 1, 81, 25]

There is a lot going on in snippet [9], so let’s take a closer look at it. First, filter returns an iterable representing only the odd values of numbers. Then map returns an iterable representing the squares of the filtered values. Finally, list uses map’s iterable to create the list. You might prefer the following list comprehension to the preceding snippet:

In [10]: [x ** 2 for x in numbers if x % 2 != 0]

Out[10]: [9, 49, 1, 81, 25]

For each value of x in numbers, the expression x ** 2 is performed only if the condition x % 2 != 0 is True.

Reduction: Totaling the Elements of a Sequence with sum

As you know reductions process a sequence’s elements into a single value. You’ve performed reductions with the built-in functions len, sum, min and max. You also can create custom reductions using the functools module’s reduce function. See https://docs.python.org/3/library/functools.html for a code example. When we investigate big data and Hadoop (introduced briefly in Chapter 1), we’ll demonstrate MapReduce programming, which is based on the filter, map and reduce operations in functional-style programming.

[image: tick mark] Self Check

	(Fill-In)

_____, _____ and _____ are common operations used in functional-style programming.

Answer: Filter, map, reduce.

	(Fill-In) A(n) _____ processes a sequence’s elements into a single value, such as their count, total or average.

Answer: reduction.

	(IPython Session) Create a list called numbers containing 1 through 15, then perform the following tasks:

	Use the built-in function filter with a lambda to select only numbers’ even elements. Create a new list containing the result.

	Use the built-in function map with a lambda to square the values of numbers’ elements. Create a new list containing the result.

	Filter numbers’ even elements, then map them to their squares. Create a new list containing the result.

Answer:

In [1]: numbers = list(range(1, 16))

In [2]: numbers

Out[2]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

In [3]: list(filter(lambda x: x % 2 == 0, numbers))

Out[3]: [2, 4, 6, 8, 10, 12, 14]

In [4]: list(map(lambda x: x ** 2, numbers))

Out[4]: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225]

In [5]: list(map(lambda x: x**2, filter(lambda x: x % 2 == 0, numbers)))

Out[5]: [4, 16, 36, 64, 100, 144, 196]

	(IPython Session) Map a list of the three Fahrenheit temperatures 41, 32 and 212 to a list of tuples containing the Fahrenheit temperatures and their Celsius equivalents. Convert Fahrenheit temperatures to Celsius with the following formula:

Celsius = (Fahrenheit – 32) * (5 / 9)

Answer:

In [6]: fahrenheit = [41, 32, 212]

In [7]: list(map(lambda x: (x, (x - 32) * 5 / 9), fahrenheit))

Out[7]: [(41, 5.0), (32, 0.0), (212, 100.0)]

The lambda’s expression—(x, (x - 32) * 5 / 9)—uses parentheses to create a tuple containing the original Fahrenheit temperature (x) and the corresponding Celsius temperature, as calculated by (x - 32) * 5 / 9.

5.15 Other Sequence Processing Functions

Python provides other built-in functions for manipulating sequences.

Finding the Minimum and Maximum Values Using a Key Function

We’ve previously shown the built-in reduction functions min and max using arguments, such as ints or lists of ints. Sometimes you’ll need to find the minimum and maximum of more complex objects, such as strings. Consider the following comparison:

In [1]: 'Red' < 'orange'

Out[1]: True

The letter 'R' “comes after” 'o' in the alphabet, so you might expect 'Red' to be less than 'orange' and the condition above to be False. However, strings are compared by their characters’ underlying numerical values, and lowercase letters have higher numerical values than uppercase letters. You can confirm this with built-in function ord, which returns the numerical value of a character:

In [2]: ord('R')

Out[2]: 82

In [3]: ord('o')

Out[3]: 111

Consider the list colors, which contains strings with uppercase and lowercase letters:

In [4]: colors = ['Red', 'orange', 'Yellow', 'green', 'Blue']

Let’s assume that we’d like to determine the minimum and maximum strings using alphabetical order, not numerical (lexicographical) order. If we arrange colors alphabetically

'Blue', 'green', 'orange', 'Red', 'Yellow'

you can see that 'Blue' is the minimum (that is, closest to the beginning of the alphabet), and 'Yellow' is the maximum (that is, closest to the end of the alphabet).

Since Python compares strings using numerical values, you must first convert each string to all lowercase or all uppercase letters. Then their numerical values will also represent alphabetical ordering. The following snippets enable min and max to determine the minimum and maximum strings alphabetically:

In [5]: min(colors, key=lambda s: s.lower())

Out[5]: 'Blue'

In [6]: max(colors, key=lambda s: s.lower())

Out[6]: 'Yellow'

The key keyword argument must be a one-parameter function that returns a value. In this case, it’s a lambda that calls string method lower to get a string’s lowercase version. Functions min and max call the key argument’s function for each element and use the results to compare the elements.

Iterating Backward Through a Sequence

Built-in function reversed returns an iterator that enables you to iterate over a sequence’s values backward. The following list comprehension creates a new list containing the squares of numbers’ values in reverse order:

In [7]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: reversed_numbers = [item for item in reversed(numbers)]

In [8]: reversed_numbers

Out[8]: [36, 25, 64, 4, 16, 81, 1, 49, 9, 100]

Combining Iterables into Tuples of Corresponding Elements

Built-in function zip enables you to iterate over multiple iterables of data at the same time. The function receives as arguments any number of iterables and returns an iterator that produces tuples containing the elements at the same index in each. For example, snippet [11]’s call to zip produces the tuples ('Bob', 3.5), ('Sue', 4.0) and ('Amanda', 3.75) consisting of the elements at index 0, 1 and 2 of each list, respectively:

In [9]: names = ['Bob', 'Sue', 'Amanda']

In [10]: grade_point_averages = [3.5, 4.0, 3.75]

In [11]: for name, gpa in zip(names, grade_point_averages):

 ...: print(f'Name={name}; GPA={gpa}')

 ...:

Name=Bob; GPA=3.5

Name=Sue; GPA=4.0

Name=Amanda; GPA=3.75

We unpack each tuple into name and gpa and display them. Function zip’s shortest argument determines the number of tuples produced. Here both have the same length.

[image: tick mark] Self Check

	(True/False) The letter 'V' “comes after” the letter 'g' in the alphabet, so the comparison 'Violet' < 'green' yields False.

Answer: False. Strings are compared by their characters’ underlying numerical values. Lowercase letters have higher numerical values than uppercase. So, the comparison is True.

	(Fill-In) Built-in function _____ returns an iterator that enables you to iterate over a sequence’s values backward.

Answer: reversed.

	(IPython Session) Create the list foods containing 'Cookies', 'pizza', 'Grapes', 'apples', 'steak' and 'Bacon'. Find the smallest string with min, then reimplement the min call using the key function to ignore the strings’ case. Do you get the same results? Why or why not?

Answer: The min result was different because 'apples' is the smallest string when you compare them without case sensitivity.

In [1]: foods = ['Cookies', 'pizza', 'Grapes',

 ...: 'apples', 'steak', 'Bacon']

 ...:

In [2]: min(foods)

Out[2]: 'Bacon'

In [3]: min(foods, key=lambda s: s.lower())

Out[3]: 'apples'

	(IPython Session) Use zip with two integer lists to create a new list containing the sum of the elements from corresponding indices in both lists (that is, add the elements at index 0, add the elements at index 1, …).

Answer:

In [4]: [(a + b) for a, b in zip([10, 20, 30], [1, 2, 3])]

Out[4]: [11, 22, 33]

5.16 Two-Dimensional Lists

Lists can contain other lists as elements. A typical use of such nested (or multidimensional) lists is to represent tables of values consisting of information arranged in rows and columns. To identify a particular table element, we specify two indices—by convention, the first identifies the element’s row, the second the element’s column.

Lists that require two indices to identify an element are called two-dimensional lists

(or double-indexed lists

or double-subscripted lists

). Multidimensional lists can have more than two indices. Here, we introduce two-dimensional lists.

Creating a Two-Dimensional List

Consider a two-dimensional list with three rows and four columns (i.e., a 3-by-4 list) that might represent the grades of three students who each took four exams in a course:

In [1]: a = [[77, 68, 86, 73], [96, 87, 89, 81], [70, 90, 86, 81]]

Writing the list as follows makes its row and column tabular structure clearer:

a = [[77, 68, 86, 73], # first student's grades

 [96, 87, 89, 81], # second student's grades

 [70, 90, 86, 81]] # third student's grades

Illustrating a Two-Dimensional List

The diagram below shows the list a, with its rows and columns of exam grade values:

[image: A diagram of a 2 dimensional list with rows and columns for exam grades.]

5.16-3 Full Alternative Text

Identifying the Elements in a Two-Dimensional List

The following diagram shows the names of list a’s elements:

[image: A 2 dimensional list diagram shows the elements.]

5.16-4 Full Alternative Text

Every element is identified by a name of the form a[

i

][

j

]—a is the list’s name, and i and j are the indices that uniquely identify each element’s row and column, respectively. The element names in row 0 all have 0 as the first index. The element names in column 3 all have 3 as the second index.

In the two-dimensional list a:

	77, 68, 86 and 73 initialize a[0][0], a[0][1], a[0][2] and a[0][3], respectively,

	96, 87, 89 and 81 initialize a[1][0], a[1][1], a[1][2] and a[1][3], respectively, and

	70, 90, 86 and 81 initialize a[2][0], a[2][1], a[2][2] and a[2][3], respectively.

A list with m rows and n columns is called an m-by-n list and has m × n elements.

The following nested for statement outputs the rows of the preceding two-dimensional list one row at a time:

In [2]: for row in a:

 ...: for item in row:

 ...: print(item, end=' ')

 ...: print()

 ...:

77 68 86 73

96 87 89 81

70 90 86 81

How the Nested Loops Execute

Let’s modify the nested loop to display the list’s name and the row and column indices and value of each element:

In [3]: for i, row in enumerate(a):

 ...: for j, item in enumerate(row):

 ...: print(f'a[{i}][{j}]={item} ', end=' ')

 ...: print()

 ...:

a[0][0]=77 a[0][1]=68 a[0][2]=86 a[0][3]=73

a[1][0]=96 a[1][1]=87 a[1][2]=89 a[1][3]=81

a[2][0]=70 a[2][1]=90 a[2][2]=86 a[2][3]=81

The outer for statement iterates over the two-dimensional list’s rows one row at a time. During each iteration of the outer for statement, the inner for statement iterates over each column in the current row. So in the first iteration of the outer loop, row 0 is

[77, 68, 86, 73]

and the nested loop iterates through this list’s four elements a[0][0]=77, a[0][1]=68, a[0][2]=86 and a[0][3]=73.

In the second iteration of the outer loop, row 1 is

[96, 87, 89, 81]

and the nested loop iterates through this list’s four elements a[1][0]=96, a[1][1]=87, a[1][2]=89 and a[1][3]=81.

In the third iteration of the outer loop, row 2 is

[70, 90, 86, 81]

and the nested loop iterates through this list’s four elements a[2][0]=70, a[2][1]=90, a[2][2]=86 and a[2][3]=81.

In the “Array-Oriented Programming with NumPy” chapter, we’ll cover the NumPy library’s ndarray collection and the Pandas library’s DataFrame collection. These enable you to manipulate multidimensional collections more concisely and conveniently than the two-dimensional list manipulations you’ve seen in this section.

[image: tick mark] Self Check

	(Fill-In) In a two-dimensional list, the first index by convention identifies the _____ of an element and the second index identifies the _____ of an element.

Answer: row, column.

	(Label the Elements) Label the elements of the two-by-three list sales to indicate the order in which they’re set to zero by the following program segment:

for row in range(len(sales)):

 for col in range(len(sales[row])):

 sales[row][col] = 0

Answer: sales[0][0], sales[0][1], sales[0][2], sales[1][0], sales[1][1], sales[1][1].

	(Two-Dimensional Array) Consider a two-by-three integer list t.

	How many rows does t have?

	How many columns does t have?

	How many elements does t have?

	What are the names of the elements in row 1?

	What are the names of the elements in column 2?

	Set the element in row 0 and column 1 to 10.

	Write a nested for statement that sets each element to the sum of its indices.

Answer:

	2.

	3.

	6.

	t[1][0], t[1][1], t[1][2].

	t[0][2], t[1][2].

	t[0][1] = 10.

	

for row in range(len(t)):

 for column in range(len(t[row])):

 t[row][column] = row + column

	(IPython Session) Given the two-by-three integer list t

t = [[10, 7, 3], [20, 4, 17]]

	Determine and display the average of t’s elements using nested for statements to iterate through the elements.

	Write a for statement that determines and displays the average of t’s elements using the reductions sum and len to calculate the sum of each row’s elements and the number of elements in each row.

Answer:

In [1]: t = [[10, 7, 3], [20, 4, 17]]

In [2]: total = 0

In [3]: items = 0

In [4]: for row in t:

 ...: for item in row:

 ...: total += item

 ...: items += 1

 ...:

In [5]: total / items

Out[5]: 10.166666666666666

In [6]: total = 0

In [7]: items = 0

In [8]: for row in t:

 ...: total += sum(row)

 ...: items += len(row)

 ...:

In [9]: total / items

Out[9]: 10.166666666666666

5.17 Intro to Data Science: Simulation and Static Visualizations

The last few chapters’ Intro to Data Science sections discussed basic descriptive statistics. Here, we focus on visualizations, which help you “get to know” your data. Visualizations give you a powerful way to understand data that goes beyond simply looking at raw data.

We use two open-source visualization libraries—Seaborn and Matplotlib—to display static bar charts showing the final results of a six-sided-die-rolling simulation. The Seaborn visualization library is built over the Matplotlib visualization library and simplifies many Matplotlib operations. We’ll use aspects of both libraries, because some of the Seaborn operations return objects from the Matplotlib library.

In the next chapter’s Intro to Data Science section, we’ll make things “come alive” with dynamic visualizations. In this chapter’s exercises, you’ll use simulation techniques and explore the characteristics of some popular card and dice games.

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls

The screen capture below shows a vertical bar chart that for 600 die rolls summarizes the frequencies with which each of the six faces appear, and their percentages of the total. Seaborn refers to this type of graph as a bar plot:

[image: A Bar Graph titled Rolling a 6 sided die 600.]

5.17-5 Full Alternative Text

Here we expect about 100 occurrences of each die face. However, with such a small number of rolls, none of the frequencies is exactly 100 (though several are close) and most of the percentages are not close to 16.667% (about 1/6th). As we run the simulation for 60,000 die rolls, the bars will become much closer in size. At 6,000,000 die rolls, they’ll appear to be exactly the same size. This is the “law of large numbers” at work. The next chapter will show the lengths of the bars changing dynamically.

We’ll discuss how to control the plot’s appearance and contents, including:

	the graph title inside the window (Rolling a Six-Sided Die 600 Times),

	the descriptive labels Die Value for the x-axis and Frequency for the y-axis,

	the text displayed above each bar, representing the frequency and percentage of the total rolls, and

	the bar colors.

We’ll use various Seaborn default options. For example, Seaborn determines the text labels along the x-axis from the die face values 1–6 and the text labels along the y-axis from the actual die frequencies. Behind the scenes, Matplotlib determines the positions and sizes of the bars, based on the window size and the magnitudes of the values the bars represent. It also positions the Frequency axis’s numeric labels based on the actual die frequencies that the bars represent. There are many more features you can customize. You should tweak these attributes to your personal preferences.

The first screen capture below shows the results for 60,000 die rolls—imagine trying to do this by hand. In this case, we expect about 10,000 of each face. The second screen capture below shows the results for 6,000,000 rolls—surely something you’d never do by hand!1 In this case, we expect about 1,000,000 of each face, and the frequency bars appear to be identical in length (they’re close but not exactly the same length). Note that with more die rolls, the frequency percentages are much closer to the expected 16.667%.
1. When we taught die rolling in our first programming book in the mid-1970s, computers were so much slower that we had to limit our simulations to 6000 rolls. In writing this book’s examples, we went to 6,000,000 rolls, which the program completed in a few seconds. We then went to 60,000,000 rolls, which took about a minute.

[image: 2 Bar Graphs show rolling a 6 sided die 60 thousand times and 6 million times.]

5.17-6 Full Alternative Text

[image: tick mark] Self Check

	(Discussion) If you toss a coin a large odd number of times and associate the value 1 with heads and 2 with tails, what would you expect the mean to be? What would you expect the median and mode to be?

Answer: We’d expect the mean to be 1.5, which seems strange because it’s not one of the possible outcomes. As the number of coin tosses increases, the percentages of heads and tails should each approach 50% of the total. However, at any given time, they are not likely to be identical. You’re just as likely to have a few more heads than tails as vice versa, and as the number of rolls increases, the face with the larger number of rolls could change repeatedly. There are only two possible outcomes, so the median and mode values will be whichever value there is more of at a given time. So if there are currently more heads than tails, both the median and mode will be heads; otherwise, they’ll both be tails. Similar observations apply to die rolling.

5.17.2 Visualizing Die-Roll Frequencies and Percentages

In this section, you’ll interactively develop the bar plots shown in the preceding section.

Launching IPython for Interactive Matplotlib Development

IPython has built-in support for interactively developing Matplotlib graphs, which you also need to develop Seaborn graphs. Simply launch IPython with the command:

ipython --matplotlib

Importing the Libraries

First, let’s import the libraries we’ll use:

In [1]: import matplotlib.pyplot as plt

In [2]: import numpy as np

In [3]: import random

In [4]: import seaborn as sns

 	The matplotlib.pyplot module contains the Matplotlib library’s graphing capabilities that we use. This module typically is imported with the name plt.

	The NumPy (Numerical Python) library includes the function unique that we’ll use to summarize the die rolls. The numpy module typically is imported as np.

	The random module contains Python’s random-number generation functions.

	The seaborn module contains the Seaborn library’s graphing capabilities we use. This module typically is imported with the name sns. Search for why this curious abbreviation was chosen.

Rolling the Die and Calculating Die Frequencies

Next, let’s use a list comprehension to create a list of 600 random die values, then use NumPy’s unique function to determine the unique roll values (most likely all six possible face values) and their frequencies:

In [5]: rolls = [random.randrange(1, 7) for i in range(600)]

In [6]: values, frequencies = np.unique(rolls, return_counts=True)

The NumPy library provides the high-performance ndarray collection, which is typically much faster than lists.2 Though we do not use ndarray directly here, the NumPy unique function expects an ndarray argument and returns an ndarray. If you pass a list (like rolls), NumPy converts it to an ndarray for better performance. The ndarray that unique returns we’ll simply assign to a variable for use by a Seaborn plotting function.
2. We’ll run a performance comparison in Chapter 7 where we discuss ndarray in depth.

Specifying the keyword argument return_counts=True tells unique to count each unique value’s number of occurrences. In this case, unique returns a tuple of two one-dimensional ndarrays containing the sorted unique values and the corresponding frequencies, respectively. We unpack the tuple’s ndarrays into the variables values and frequencies. If return_counts is False, only the list of unique values is returned.

Creating the Initial Bar Plot

Let’s create the bar plot’s title, set its style, then graph the die faces and frequencies:

In [7]: title = f'Rolling a Six-Sided Die {len(rolls):,} Times'

In [8]: sns.set_style('whitegrid')

In [9]: axes = sns.barplot(x=values, y=frequencies, palette='bright')

Snippet [7]’s f-string includes the number of die rolls in the bar plot’s title. The comma (,) format specifier in

{len(rolls):,}

displays the number with thousands separators—so, 60000 would be displayed as 60,000.

By default, Seaborn plots graphs on a plain white background, but it provides several styles to choose from ('darkgrid', 'whitegrid', 'dark', 'white' and 'ticks'). Snippet [8] specifies the 'whitegrid' style, which displays light-gray horizontal lines in the vertical bar plot. These help you see more easily how each bar’s height corresponds to the numeric frequency labels at the bar plot’s left side.

Snippet [9] graphs the die frequencies using Seaborn’s barplot function. When you execute this snippet, the following window appears (because you launched IPython with the --matplotlib option):

[image: An image of snippet that adds labels to each axis. Vertical is frequency from 0 to 100 in increments of 20. Horizontal is the 6 sides of the die. Title reads Rolling a six sided die 600 times.]

5.17-7 Full Alternative Text

Seaborn interacts with Matplotlib to display the bars by creating a Matplotlib Axes object, which manages the content that appears in the window. Behind the scenes, Seaborn uses a Matplotlib Figure object to manage the window in which the Axes will appear. Function barplot’s first two arguments are ndarrays containing the x-axis and y-axis values, respectively. We used the optional palette keyword argument to choose Seaborn’s predefined color palette 'bright'. You can view the palette options at:

https://seaborn.pydata.org/tutorial/color_palettes.html

Function barplot returns the Axes object that it configured. We assign this to the variable axes so we can use it to configure other aspects of our final plot. Any changes you make to the bar plot after this point will appear immediately when you execute the corresponding snippet.

Setting the Window Title and Labeling the x- and y-Axes

The next two snippets add some descriptive text to the bar plot:

In [10]: axes.set_title(title)

Out[10]: Text(0.5,1,'Rolling a Six-Sided Die 600 Times')

In [11]: axes.set(xlabel='Die Value', ylabel='Frequency')

Out[11]: [Text(92.6667,0.5,'Frequency'), Text(0.5,58.7667,'Die Value')]

Snippet [10] uses the axes object’s set_title method to display the title string centered above the plot. This method returns a Text object containing the title and its location in the window, which IPython simply displays as output for confirmation. You can ignore the Out[]s in the snippets above.

Snippet [11] add labels to each axis. The set method receives keyword arguments for the Axes object’s properties to set. The method displays the xlabel text along the x-axis, and the ylabel text along the y-axis, and returns a list of Text objects containing the labels and their locations. The bar plot now appears as follows:

[image: A bar plot for rolling a 6 sided die 600 times. The snippet bar graph shows approximate measurements of the bars as follows 1 with a frequency of 100. Bar 2 at 90. Bar 3 at 95. 4 at 93. Bar 6 at 80. Bar 6 at 100.]

Finalizing the Bar Plot

The next two snippets complete the graph by making room for the text above each bar, then displaying it:

In [12]: axes.set_ylim(top=max(frequencies) * 1.10)

Out[12]: (0.0, 122.10000000000001)

In [13]: for bar, frequency in zip(axes.patches, frequencies):

 ...: text_x = bar.get_x() + bar.get_width() / 2.0

 ...: text_y = bar.get_height()

 ...: text = f'{frequency:,}\n{frequency / len(rolls):.3%}'

 ...: axes.text(text_x, text_y, text,

 ...: fontsize=11, ha='center', va='bottom')

 ...:

To make room for the text above the bars, snippet [12] scales the y-axis by 10%. We chose this value via experimentation. The Axes object’s set_ylim method has many optional keyword arguments. Here, we use only top to change the maximum value represented by the y-axis. We multiplied the largest frequency by 1.10 to ensure that the y-axis is 10% taller than the tallest bar.

Finally, snippet [13] displays each bar’s frequency value and percentage of the total rolls. The axes object’s patches collection contains two-dimensional colored shapes that represent the plot’s bars. The for statement uses zip to iterate through the patches and their corresponding frequency values. Each iteration unpacks into bar and frequency one of the tuples zip returns. The for statement’s suite operates as follows:

	The first statement calculates the center x-coordinate where the text will appear. We calculate this as the sum of the bar’s left-edge x-coordinate (bar.get_x()) and half of the bar’s width (bar.get_width() / 2.0).

	The second statement gets the y-coordinate where the text will appear—bar.get_y() represents the bar’s top.

	The third statement creates a two-line string containing that bar’s frequency and the corresponding percentage of the total die rolls.

	The last statement calls the Axes object’s text method to display the text above the bar. This method’s first two arguments specify the text’s x–y position, and the third argument is the text to display. The keyword argument ha specifies the horizontal alignment—we centered text horizontally around the x-coordinate. The keyword argument va specifies the vertical alignment—we aligned the bottom of the text with at the y-coordinate. The final bar plot is shown below:

[image: A sample bar graph that shows Axes object’s text method to display the text above the bar.]

5.17-9 Full Alternative Text

Rolling Again and Updating the Bar Plot—Introducing IPython Magics

Now that you’ve created a nice bar plot, you probably want to try a different number of die rolls. First, clear the existing graph by calling Matplotlib’s cla (clear axes) function:

In [14]: plt.cla()

IPython provides special commands called magics for conveniently performing various tasks. Let’s use the %recall magic to get snippet [5], which created the rolls list, and place the code at the next In [] prompt:

In [15]: %recall 5

In [16]: rolls = [random.randrange(1, 7) for i in range(600)]

You can now edit the snippet to change the number of rolls to 60000, then press Enter to create a new list:

In [16]: rolls = [random.randrange(1, 7) for i in range(60000)]

Next, recall snippets [6] through [13]. This displays all the snippets in the specified range in the next In [] prompt. Press Enter to re-execute these snippets:

In [17]: %recall 6-13

In [18]: values, frequencies = np.unique(rolls, return_counts=True)

 ...: title = f'Rolling a Six-Sided Die {len(rolls):,} Times'

 ...: sns.set_style('whitegrid')

 ...: axes = sns.barplot(x=values, y=frequencies, palette='bright')

 ...: axes.set_title(title)

 ...: axes.set(xlabel='Die Value', ylabel='Frequency')

 ...: axes.set_ylim(top=max(frequencies) * 1.10)

 ...: for bar, frequency in zip(axes.patches, frequencies):

 ...: text_x = bar.get_x() + bar.get_width() / 2.0

 ...: text_y = bar.get_height()

 ...: text = f'{frequency:,}\n{frequency / len(rolls):.3%}'

 ...: axes.text(text_x, text_y, text,

 ...: fontsize=11, ha='center', va='bottom')

 ...:

The updated bar plot is shown below:

[image: A bar graph shows the rolling a 6 sided die 60 thousand times.]

5.17-10 Full Alternative Text

Saving Snippets to a File with the %save Magic

Once you’ve interactively created a plot, you may want to save the code to a file so you can turn it into a script and run it in the future. Let’s use the %save magic to save snippets 1 through 13 to a file named RollDie.py. IPython indicates the file to which the lines were written, then displays the lines that it saved:

In [19]: %save RollDie.py 1-13

The following commands were written to file `RollDie.py`:

import matplotlib.pyplot as plt

import numpy as np

import random

import seaborn as sns

rolls = [random.randrange(1, 7) for i in range(600)]

values, frequencies = np.unique(rolls, return_counts=True)

title = f'Rolling a Six-Sided Die {len(rolls):,} Times'

sns.set_style("whitegrid")

axes = sns.barplot(values, frequencies, palette='bright')

axes.set_title(title)

axes.set(xlabel='Die Value', ylabel='Frequency')

axes.set_ylim(top=max(frequencies) * 1.10)

for bar, frequency in zip(axes.patches, frequencies):

 text_x = bar.get_x() + bar.get_width() / 2.0

 text_y = bar.get_height()

 text = f'{frequency:,}\n{frequency / len(rolls):.3%}'

 axes.text(text_x, text_y, text,

 fontsize=11, ha='center', va='bottom')

Command-Line Arguments; Displaying a Plot from a Script

Provided with this chapter’s examples is an edited version of the RollDie.py file you saved above. We added comments and a two modifications so you can run the script with an argument that specifies the number of die rolls, as in:

ipython RollDie.py 600

The Python Standard Library’s sys module enables a script to receive command-line arguments that are passed into the program. These include the script’s name and any values that appear to the right of it when you execute the script. The sys module’s argv list contains the arguments. In the command above, argv[0] is the string 'RollDie.py' and argv[1] is the string '600'. To control the number of die rolls with the command-line argument’s value, we modified the statement that creates the rolls list as follows:

rolls = [random.randrange(1, 7) for i in range(int(sys.argv[1]))]

Note that we converted the argv[1] string to an int.

Matplotlib and Seaborn do not automatically display the plot for you when you create it in a script. So at the end of the script we added the following call to Matplotlib’s show function, which displays the window containing the graph:

plt.show()

[image: tick mark] Self Check

	(Fill-In) The _____ format specifier indicates that a number should be displayed with thousands separators.

Answer: comma (,).

	(Fill-In) A Matplotlib _____ object manages the content that appears in a Matplotlib window.

Answer: Axes.

	(Fill-In) The Seaborn function _____ displays data as a bar chart.

Answer: barplot.

	(Fill-In) The Matplotlib function _____ displays a plot window from a script.

Answer: show.

	(IPython Session) Use the %recall magic to repeat the steps in snippets [14] through [18] to redraw the bar plot for 6,000,000 die rolls. This exercise assumes that you’re continuing this section’s IPython session. Notice that the heights of the six bars look the same, although each frequency is close to 1,000,000 and each percentage is close to 16.667%.

Answer:

In [20]: plt.cla()

In [21]: %recall 5

In [22]: rolls = [random.randrange(1, 7) for i in range(6000000)]

In [23]: %recall 6-13

In [24]: values, frequencies = np.unique(rolls, return_counts=True)

 ...: title = f'Rolling a Six-Sided Die {len(rolls):,} Times'

 ...: sns.set_style('whitegrid')

 ...: axes = sns.barplot(values, frequencies, palette='bright')

 ...: axes.set_title(title)

 ...: axes.set(xlabel='Die Value', ylabel='Frequency')

 ...: axes.set_ylim(top=max(frequencies) * 1.10)

 ...: for bar, frequency in zip(axes.patches, frequencies):

 ...: text_x = bar.get_x() + bar.get_width() / 2.0

 ...: text_y = bar.get_height()

 ...: text = f'{frequency:,}\n{frequency / len(rolls):.3%}'

 ...: axes.text(text_x, text_y, text,

 ...: fontsize=11, ha='center', va='bottom')

 ...:

[image: A bar graph shows rolling a 6 sided die 6 million times. The heights of the 6 bars look the same, although each frequency is close to 1 million and each percentage is close to 16.667%.]

5.17-11 Full Alternative Text

5.18 Wrap-Up

This chapter presented more details of the list and tuple sequences. You created lists, accessed their elements and determined their length. You saw that lists are mutable, so you can modify their contents, including growing and shrinking the lists as your programs execute. You saw that accessing a nonexistent element causes an IndexError. You used for statements to iterate through list elements.

We discussed tuples, which like lists are sequences, but are immutable. You unpacked a tuple’s elements into separate variables. You used enumerate to create an iterable of tuples, each with a list index and corresponding element value.

You learned that all sequences support slicing, which creates new sequences with subsets of the original elements. You used the del statement to remove elements from lists and delete variables from interactive sessions. We passed lists, list elements and slices of lists to functions. You saw how to search and sort lists, and how to search tuples. We used list methods to insert, append and remove elements, and to reverse a list’s elements and copy lists.

We showed how to simulate stacks with lists—in an exercise, you’ll use the same list methods to simulate a queue with a list. We used the concise list-comprehension notation to create new lists. We used additional built-in methods to sum list elements, iterate backward through a list, find the minimum and maximum values, filter values and map values to new values. We showed how nested lists can represent two-dimensional tables in which data is arranged in rows and columns. You saw how nested for loops process two-dimensional lists.

The chapter concluded with an Intro to Data Science section that presented a die-rolling simulation and static visualizations. A detailed code example used the Seaborn and Matplotlib visualization libraries to create a static bar plot visualization of the simulation’s final results. In the next Intro to Data Science section, we use a die-rolling simulation with a dynamic bar plot visualization to make the plot “come alive.”

In the next chapter, “Dictionaries and Sets,” we’ll continue our discussion of Python’s built-in collections. We’ll use dictionaries to store unordered collections of key–value pairs that map immutable keys to values, just as a conventional dictionary maps words to definitions. We’ll use sets to store unordered collections of unique elements.

 In the “Array-Oriented Programming with NumPy” chapter, we’ll discuss NumPy’s ndarray collection in more detail. You’ll see that while lists are fine for small amounts of data, they are not efficient for the large amounts of data you’ll encounter in big data analytics applications. For such cases, the NumPy library’s highly optimized ndarray collection should be used. ndarray (n-dimensional array) can be much faster than lists. We’ll run Python profiling tests to see just how much faster. As you’ll see, NumPy also includes many capabilities for conveniently and efficiently manipulating arrays of many dimensions. In big data analytics applications, the processing demands can be humongous, so everything we can do to improve performance significantly matters. In our “Big Data: Hadoop, Spark, NoSQL and IoT” chapter, you’ll use one of the most popular big-data databases—MongoDB.3

3. The database’s name is rooted in the word “humongous.”

Exercises

Use IPython sessions for each exercise where practical.

	5.1 (What’s Wrong with This Code?) What, if anything, is wrong with each of the following code segments?

	

day, high_temperature = ('Monday', 87, 65)

	

numbers = [1, 2, 3, 4, 5]

numbers[10]

	

name = 'amanda'

name[0] = 'A'

	

numbers = [1, 2, 3, 4, 5]

numbers[3.4]

	

student_tuple = ('Amanda', 'Blue', [98, 75, 87])

student_tuple[0] = 'Ariana'

	

('Monday', 87, 65) + 'Tuesday'

	

'A' += ('B', 'C')

	

x = 7

del x

print(x)

	

numbers = [1, 2, 3, 4, 5]

numbers.index(10)

	

numbers = [1, 2, 3, 4, 5]

numbers.extend(6, 7, 8)

	

numbers = [1, 2, 3, 4, 5]

numbers.remove(10)

	

values = []

values.pop()

	5.2 (What’s Does This Code Do?) What does the following function do, based on the sequence it receives as an argument?

def mystery(sequence):

 return sequence == sorted(sequence)

	5.3 (Fill in the Missing Code) Replace the ***s in the following list comprehension and map function call, such that given a list of heights in inches, the code maps the list to a list of tuples containing the original height values and their corresponding values in meters. For example, if one element in the original list contains the height 69 inches, the corresponding element in the new list will contain the tuple (69, 1.7526), representing both the height in inches and the height in meters. There are 0.0254 meters per inch.

[*** for x in [69, 77, 54]]

list(map(lambda ***, [69, 77, 54]))

	5.4 (Iteration Order) Create a 2-by-3 list, then use a nested loop to:

	Set each element’s value to an integer indicating the order in which it was processed by the nested loop.

	Display the elements in tabular format. Use the column indices as headings across the top, and the row indices to the left of each row.

	5.5 (IPython Session: Slicing) Create a string called alphabet containing 'abcdefghijklmnopqrstuvwxyz', then perform the following separate slice operations to obtain:

	The first half of the string using starting and ending indices.

	The first half of the string using only the ending index.

	The second half of the string using starting and ending indices.

	The second half of the string using only the starting index.

	Every second letter in the string starting with 'a'.

	The entire string in reverse.

	Every third letter of the string in reverse starting with 'z'.

	5.6 (Functions Returning Tuples) Define a function rotate that receives three arguments and returns a tuple in which the first argument is at index 1, the second argument is at index 2 and the third argument is at index 0. Define variables a, b and c containing 'Doug', 22 and 1984. Then call the function three times. For each call, unpack its result into a, b and c, then display their values.

	5.7 (Duplicate Elimination) Create a function that receives a list and returns a (possibly shorter) list containing only the unique values in sorted order. Test your function with a list of numbers and a list of strings.

	5.8 (Sieve of Eratosthenes) A prime number is an integer greater than 1 that’s evenly divisible only by itself and 1. The Sieve of Eratosthenes is an elegant, straightforward method of finding prime numbers. The process for finding all primes less than 1000 is:

	Create a 1000-element list primes with all elements initialized to True. List elements with prime indices (like 2, 3, 5, 7, 11, …) will remain True. All other list elements will eventually be set to False.

	Starting with index 2, if a given element is True iterate through the rest of the list and set to False every element in primes whose index is a multiple of the index for the element we’re currently processing. For list index 2, all elements beyond element 2 in the list that have indices which are multiples of 2 (i.e., 4, 6, 8, 10, …, 998) will be set to False.

	Repeat Step (b) for the next True element. For list index 3 (which was initialized to True), all elements beyond element 3 in the list that have indices which are multiples of 3 (i.e., 6, 9, 12, 15, …, 999) will be set to False; and so on. A subtle observation (think about why this is true): The square root of 999 is 31.6, you’ll need to test and set to False only all multiples of 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29 and 31. This will significantly improve the performance of your algorithm, especially if you decide to look for large prime numbers.

When this process completes, the list elements that are still True indicate that the index is a prime number. These indices can be displayed. Use a list of 1000 elements to determine and display the prime numbers less than 1000. Ignore list elements 0 and 1. [As you work through the book, you’ll discover other Python capabilities that will enable you to cleverly reimplement this exercise.]

	5.9 (Palindrome Tester) A string that’s spelled identically backward and forward, like 'radar', is a palindrome. Write a function is_palindrome that takes a string and returns True if it’s a palindrome and False otherwise. Use a stack (simulated with a list as we did in Section 5.11) to help determine whether a string is a palindrome. Your function should ignore case sensitivity (that is, 'a' and 'A' are the same), spaces and punctuation.

	5.10 (Anagrams) An anagram of a string is another string formed by rearranging the letters in the first. Write a script that produces all possible anagrams of a given string using only techniques that you’ve seen to this point in the book. [The itertools module provides many functions, including one that produces permutations.]

	5.11 (Summarizing Letters in a String) Write a function summarize_letters that receives a string and returns a list of tuples containing the unique letters and their frequencies in the string. Test your function and display each letter with its frequency. Your function should ignore case sensitivity (that is, 'a' and 'A' are the same) and ignore spaces and punctuation. When done, write a statement that says whether the string has all the letters of the alphabet.

	5.12 (Telephone-Number Word Generator) You should find this exercise to be entertaining. Standard telephone keypads contain the digits zero through nine. The numbers two through nine each have three letters associated with them, as shown in the following table:

[image: A table shows telephone numbers 2 through 9 with corresponding three letters associated with each number. 2, A B C. 3 D E F. 4 G H I. 5 J K L. 6 M N O. 7 P R S. 8 T U V. 9 W X Y.]

Many people find it difficult to memorize phone numbers, so they use the correspondence between digits and letters to develop seven-letter words (or phrases) that correspond to their phone numbers. For example, a person whose telephone number is 686-2377 might use the correspondence indicated in the preceding table to develop the seven-letter word “NUMBERS.” Every seven-letter word or phrase corresponds to exactly one seven-digit telephone number. A budding data science entrepreneur might like to reserve the phone number 244-3282 (“BIGDATA”).

Every seven-digit phone number without 0s or 1s corresponds to many different seven-letter words, but most of these words represent unrecognizable gibberish. A veterinarian with the phone number 738-2273 would be pleased to know that the number corresponds to the letters “PETCARE.”

Write a script that, given a seven-digit number, generates every possible seven-letter word combination corresponding to that number. There are 2,187 (37) such combinations. Avoid phone numbers with the digits 0 and 1 (to which no letters correspond). See if your phone number corresponds to meaningful words.

	5.13 (Word or Phrase to Phone-Number Generator) Just as people would enjoy knowing what word or phrase their phone number corresponds to, they might choose a word or phrase appropriate for their business and determine what phone numbers correspond to it. These are sometimes called vanity phone numbers, and various websites sell such phone numbers. Write a script similar to the one in the previous exercise that produces the possible phone number for the given seven-letter string.

	5.14 (Is a Sequence Sorted?) Create a function is_ordered that receives a sequence and returns True if the elements are in sorted order. Test your function with sorted and unsorted lists, tuples and strings.

	5.15 (Tuples Representing Invoices)

 When you purchase products or services from a company, you typically receive an invoice listing what you purchased and the total amount of money due. Use tuples to represent hardware store invoices that consist of four pieces of data—a part ID string, a part description string, an integer quantity of the item being purchased and, for simplicity, a float item price (in general, Decimal should be used for monetary amounts). Use the sample hardware data shown in the following table.

[image: A table shows lists and tuples sequences with four pieces of data, part number, part description, quantity and price.]

5.1-13 Full Alternative Text

Perform the following tasks on a list of invoice tuples:

	Use function sorted with a key argument to sort the tuples by part description, then display the results. To specify the element of the tuple that should be used for sorting, first import the itemgetter function from the operator module as in

from operator import itemgetter

Then, for sorted’s key argument specify itemgetter(

index

) where index specifies which element of the tuple should be used for sorting purposes.

	Use the sorted function with a key argument to sort the tuples by price, then display the results.

	Map each invoice tuple to a tuple containing the part description and quantity, sort the results by quantity, then display the results.

	Map each invoice tuple to a tuple containing the part description and the value of the invoice (the product of the quantity and the item price), sort the results by the invoice value, then display the results.

	Modify Part (d) to filter the results to invoice values in the range $200 to $500.

	Calculate the total of all the invoices.

	5.16 (Sorting Letters and Removing Duplicates) Insert 20 random letters in the range 'a' through 'f' into a list. Perform the following tasks and display your results:

	Sort the list in ascending order.

	Sort the list in descending order.

	Get the unique values sort them in ascending order.

	5.17 (Filter/Map Performance) With regard to the following code:

numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

list(map(lambda x: x ** 2,

 filter(lambda x: x % 2 != 0, numbers)))

	How many times does the filter operation call its lambda argument?

	How many times does the map operation call its lambda argument?

	If you reverse the filter and map operations, how many times does the map operation call its lambda argument?

To help you answer the preceding questions, define functions that perform the same tasks as the lambdas. In each function, include a print statement so you can see each time the function is called. Finally, replace the lambdas in the preceding code with the names of your functions.

	5.18 (Summing the Triples of the Even Integers from 2 through 10) Starting with a list containing 1 through 10, use filter, map and sum to calculate the total of the triples of the even integers from 2 through 10. Reimplement your code with list comprehensions rather than filter and map.

	5.19 (Finding the People with a Specified Last Name) Create a list of tuples containing first and last names. Use filter to locate the tuples containing the last name Jones. Ensure that several tuples in your list have that last name.

	5.20 (Display a Two-Dimensional List in Tabular Format) Define a function named display_table that receives a two-dimensional list and displays its contents in tabular format. List the column indices as headings across the top, and list the row indices at the left of each row.

	5.21 (Computer-Assisted Instruction: Reducing Student Fatigue) Re-implement Exercise 4.15 to store the computer’s responses in lists. Use random-number generation to select responses using random list indices.

	5.22 (Simulating a Queue with a List) In this chapter, you simulated a stack using a list. You also can simulate a queue collection with a list. Queues represent waiting lines similar to a checkout line in a supermarket. The cashier services the person at the front of the line first. Other customers enter the line only at the end and wait for service.

In a queue, you insert items at the back (known as the tail) and delete items from the front (known as the head). For this reason, queues are first-in, first-out (FIFO) collections. The insert and remove operations are commonly known as enqueue and dequeue.

Queues have many uses in computer systems, such as sharing CPUs among a potentially large number of competing applications and the operating system itself. Applications not currently being serviced sit in a queue until a CPU becomes available. The application at the front of the queue is the next to receive service. Each application gradually advances to the front as the applications before it receive service.

Simulate a queue of integers using list methods append (to simulate enqueue) and

pop with the argument 0 (to simulate dequeue). Enqueue the values 3, 2 and 1, then dequeue them to show that they’re removed in FIFO order.

	5.23 (Functional-Style Programming: Order of filter and map Calls) When combining filter and map operations, the order in which they’re performed matters. Consider a list numbers containing 10, 3, 7, 1, 9, 4, 2, 8, 5, 6 and the following code:

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: list(map(lambda x: x * 2,

 ...: filter(lambda x: x % 2 == 0, numbers)))

 ...:

Out[3]: [20, 8, 4, 16, 12]

Reorder this code to call map first and filter second. What happens and why?

Exercises 5.24 through 5.26 are reasonably challenging. Once you’ve done them, you ought to be able to implement many popular card games.

	5.24 (Card Shuffling and Dealing) In Exercises 5.24 through 5.26, you’ll use lists of tuples in scripts that simulate card shuffling and dealing. Each tuple represents one card in the deck and contains a face (e.g., 'Ace', 'Deuce', 'Three', …, 'Jack', 'Queen', 'King') and a suit (e.g., 'Hearts', 'Diamonds', 'Clubs', 'Spades'). Create an initialize_deck function to initialize the deck of card tuples with 'Ace' through 'King' of each suit, as in

deck = [('Ace', 'Hearts'), …, ('King', 'Hearts'),

 ('Ace', 'Diamonds'), …, ('King', 'Diamonds'),

 ('Ace', 'Clubs'), …, ('King', 'Clubs'),

 ('Ace', 'Spades'), …, ('King', 'Spades')]

Before returning the list, use the random module’s shuffle function to randomly order the list elements. Output the shuffled cards in the following four-column format:

[image: A screen shot of an image that shows the use of a random module’s shuffle function and the output of the shuffled cards in a 4 column format.]

5.1-14 Full Alternative Text

	5.25 (Card Playing: Evaluating Poker Hands) Modify Exercise 5.24 to deal a five-card poker hand as a list of five card tuples. Then create functions (i.e., is_pair, is_two_pair, is_three_of_a_kind, …) that determine whether the hand they receive as an argument contains groups of cards, such as:

	one pair

	two pairs

	three of a kind (e.g., three jacks)

	a straight (i.e., five cards of consecutive face values)

	a flush (i.e., all five cards of the same suit)

	a full house (i.e., two cards of one face value and three cards of another)

	four of a kind (e.g., four aces)

	straight flush (i.e., a straight with all five cards of the same suit)

	… and others.

See https://en.wikipedia.org/wiki/List_of_poker_hands for poker-hand types and how they rank with respect to one another. For example, three of a kind beats two pairs.

	5.26 (Card Playing: Determining the Winning Hand) Use the methods developed in Exercise 5.25 to write a script that deals two five-card poker hands (i.e., two lists of five card tuples each), evaluates each hand and determines which wins. As each card is dealt, it should be removed from the list of tuples representing the deck.

	5.27 (Intro to Data Science: Duplicate Elimination and Counting Frequencies) Use a list comprehension to create a list of 50 random values in the range 1 through 10. Use NumPy’s unique function to obtain the unique values and their frequencies. Display the results.

	5.28 (Intro to Data Science: Survey Response Statistics) Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses in a list

1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3, 2, 3, 3, 2, 5

Determine and display the frequency of each rating. Use the built-in functions, statistics module functions and NumPy functions demonstrated in Section 5.17.2 to display the following response statistics: minimum, maximum, range, mean, median, mode, variance and standard deviation.

	5.29 (Intro to Data Science: Visualizing Survey Response Statistics) Using the list in Exercise 5.28 and the techniques you learned in Section 5.17.2, display a bar chart showing the response frequencies and their percentages of the total responses.

	5.30 (Intro to Data Science: Removing the Text Above the Bars) Modify the die-rolling simulation in Section 5.17.2 to omit displaying the frequencies and percentages above each bar. Try to minimize the number of lines of code.

	5.31 (Intro to Data Science: Coin Tossing) Modify the die-rolling simulation in Section 5.17.2 to simulate the flipping a coin. Use randomly generated 1s and 2s to represent heads and tails, respectively. Initially, do not include the frequencies and percentages above the bars. Then modify your code to include the frequencies and percentages. Run simulations for 200, 20,000 and 200,000 coin flips. Do you get approximately 50% heads and 50% tails? Do you see the “law of large numbers” in operation here?

	5.32 (Intro to Data Science: Rolling Two Dice) Modify the script RollDie.py that we provided with this chapter’s examples to simulate rolling two dice. Calculate the sum of the two values. Each die has a value from 1 to 6, so the sum of the values will vary from 2 to 12, with 7 being the most frequent sum, and 2 and 12 the least frequent. The following diagram shows the 36 equally likely possible combinations of the two dice and their corresponding sums:

[image: A diagram shows the 36 equally likely possible combinations of 2 dice and their corresponding sums.]

5.1-15 Full Alternative Text

If you roll the dice 36,000 times:

	The values 2 and 12 each occur 1/36th (2.778%) of the time, so you should expect about 1000 of each.

	The values 3 and 11 each occur 2/36ths (5.556%) of the time, so you should expect about 2000 of each, and so on.

Use a command-line argument to obtain the number of rolls. Display a bar plot summarizing the roll frequencies. The following screen captures show the final bar plots for sample executions of 360, 36,000 and 36,000,000 rolls. Use the Seaborn barplot function’s optional orient keyword argument to specify a horizontal bar plot.

[image: A set of 3 diagrams show the Seaborn bar plots for the dice rolls of 360, 36,000 and 36,000,000 rolls.]

	5.33 (Intro to Data Science Challenge: Analyzing the Dice Game Craps) In this exercise, you’ll modify Chapter 4’s script that simulates the dice game craps by using the techniques you learned in Section 5.17.2. The script should receive a command-line argument indicating the number of games of craps to execute and use two lists to track the total numbers of games won and lost on the first roll, second roll, third roll, etc. Summarize the results as follows:

	Display a horizontal bar plot indicating how many games are won and how many are lost on the first roll, second roll, third roll, etc. Since the game could continue indefinitely, you might track wins and losses through the first dozen rolls (of a pair of dice), then maintain two counters that keep track of wins and losses after 12 rolls—no matter how long the game gets. Create separate bars for wins and losses.

	What are the chances of winning at craps? [Note: You should discover that craps is one of the fairest casino games. What do you suppose this means?]

	What is the mean for the length of a game of craps? The median? The mode?

	Do the chances of winning improve with the length of the game?

6 Dictionaries and Sets

Objectives

In this chapter you’ll:

	Use dictionaries to represent unordered collections of key–value pairs.

	Use sets to represent unordered collections of unique values.

	Create, initialize and refer to elements of dictionaries and sets.

	Iterate through a dictionary’s keys, values and key–value pairs.

	Add, remove and update a dictionary’s key–value pairs.

	Use dictionary and set comparison operators.

	Combine sets with set operators and methods.

	Use operators in and not in to determine if a dictionary contains a key or a set contains a value.

	Use the mutable set operations to modify a set’s contents.

	Use comprehensions to create dictionaries and sets quickly and conveniently.

	Learn how to build dynamic visualizations and implement more of your own in the exercises.

	Enhance your understanding of mutability and immutability.

Outline

	6.1 Introduction

	6.2 Dictionaries

	6.2.1 Creating a Dictionary

	6.2.2 Iterating through a Dictionary

	6.2.3 Basic Dictionary Operations

	6.2.4 Dictionary Methods keys and values

	6.2.5 Dictionary Comparisons

	6.2.6 Example: Dictionary of Student Grades

	6.2.7 Example: Word Counts

	6.2.8 Dictionary Method update

	6.2.9 Dictionary Comprehensions

	6.3 Sets

	6.3.1 Comparing Sets

	6.3.2 Mathematical Set Operations

	6.3.3 Mutable Set Operators and Methods

	6.3.4 Set Comprehensions

	6.4 Intro to Data Science: Dynamic Visualizations

	6.4.1 How Dynamic Visualization Works

	6.4.2 Implementing a Dynamic Visualization

	6.5 Wrap-Up

	Exercises

6.1 Introduction

We’ve discussed three built-in sequence collections—strings, lists and tuples. Now, we consider the built-in non-sequence collections—dictionaries and sets. A dictionary is an unordered collection which stores key–value pairs that map immutable keys to values, just as a conventional dictionary maps words to definitions. A set is an unordered collection of unique immutable elements.

6.2 Dictionaries

A dictionary associates keys with values. Each key maps to a specific value. The following table contains examples of dictionaries with their keys, key types, values and value types:

[image: A dictionary contains examples of associated keys, key types, values and value types.]

6.2-1 Full Alternative Text

Unique Keys

A dictionary’s keys must be immutable (such as strings, numbers or tuples) and unique (that is, no duplicates). Multiple keys can have the same value, such as two different inventory codes that have the same quantity in stock.

6.2.1 Creating a Dictionary

You can create a dictionary by enclosing in curly braces, {}, a comma-separated list of key–value pairs, each of the form key: value. You can create an empty dictionary with {}.

Let’s create a dictionary with the country-name keys 'Finland', 'South Africa' and 'Nepal' and their corresponding Internet country code values 'fi', 'za' and 'np':

In [1]: country_codes = {'Finland': 'fi', 'South Africa': 'za',

 ...: 'Nepal': 'np'}

 ...:

In [2]: country_codes

Out[2]: {'Finland': 'fi', 'South Africa': 'za', 'Nepal': 'np'}

When you output a dictionary, its comma-separated list of key–value pairs is always enclosed in curly braces. Because dictionaries are unordered collections, the display order can differ from the order in which the key–value pairs were added to the dictionary. In snippet [2]’s output the key–value pairs are displayed in the order they were inserted, but do not write code that depends on the order of the key–value pairs.

Determining if a Dictionary Is Empty

The built-in function len returns the number of key–value pairs in a dictionary:

In [3]: len(country_codes)

Out[3]: 3

You can use a dictionary as a condition to determine if it’s empty—a non-empty dictionary evaluates to True:

In [4]: if country_codes:

 ...: print('country_codes is not empty')

 ...: else:

 ...: print('country_codes is empty')

 ...:

country_codes is not empty

An empty dictionary evaluates to False. To demonstrate this, in the following code we call method clear to delete the dictionary’s key–value pairs, then in snippet [6] we recall and re-execute snippet [4]:

In [5]: country_codes.clear()

In [6]: if country_codes:

 ...: print('country_codes is not empty')

 ...: else:

 ...: print('country_codes is empty')

 ...:

country_codes is empty

[image:] Self Check

	(Fill-In)

 can be thought of as unordered collections in which each value is accessed through its corresponding key.

Answer: Dictionaries.

	(True/False) Dictionaries may contain duplicate keys.

Answer: False. Dictionary keys must be unique. However, multiple keys may have the same value.

	(IPython Session) Create a dictionary named states that maps three state abbreviations to their state names, then display the dictionary.

Answer:

In [1]: states = {'VT': 'Vermont', 'NH': 'New Hampshire',

 ...: 'MA': 'Massachusetts'}

 ...:

In [2]: states

Out[2]: {'VT': 'Vermont', 'NH': 'New Hampshire', 'MA': 'Massachusetts'}

6.2.2 Iterating through a Dictionary

The following dictionary maps month-name strings to int values representing the numbers of days in the corresponding month. Note that multiple keys can have the same value:

In [1]: days_per_month = {'January': 31, 'February': 28, 'March': 31}

In [2]: days_per_month

Out[2]: {'January': 31, 'February': 28, 'March': 31}

Again, the dictionary’s string representation shows the key–value pairs in their insertion order, but this is not guaranteed because dictionaries are unordered. We’ll show how to process keys in sorted order later in this chapter.

The following for statement iterates through days_per_month’s key–value pairs. Dictionary method items returns each key–value pair as a tuple, which we unpack into month and days:

In [3]: for month, days in days_per_month.items():

 ...: print(f'{month} has {days} days')

 ...:

January has 31 days

February has 28 days

March has 31 days

[image:] Self Check

	(Fill-In) Dictionary method returns each key–value pair as a tuple.

Answer: items.

6.2.3 Basic Dictionary Operations

For this section, let’s begin by creating and displaying the dictionary roman_numerals. We intentionally provide the incorrect value 100 for the key 'X', which we’ll correct shortly:

In [1]: roman_numerals = {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 100}

In [2]: roman_numerals

Out[2]: {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 100}

Accessing the Value Associated with a Key

Let’s get the value associated with the key 'V':

In [3]: roman_numerals['V']

Out[3]: 5

Updating the Value of an Existing Key–Value Pair

You can update a key’s associated value in an assignment statement, which we do here to replace the incorrect value associated with the key 'X':

In [4]: roman_numerals['X'] = 10

In [5]: roman_numerals

Out[5]: {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 10}

Adding a New Key–Value Pair

Assigning a value to a nonexistent key inserts the key–value pair in the dictionary:

In [6]: roman_numerals['L'] = 50

In [7]: roman_numerals

Out[7]: {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 10, 'L': 50}

String keys are case sensitive. Assigning to a nonexistent key inserts a new key–value pair. This may be what you intend, or it could be a logic error.

Removing a Key–Value Pair

You can delete a key–value pair from a dictionary with the del statement:

In [8]: del roman_numerals['III']

In [9]: roman_numerals

Out[9]: {'I': 1, 'II': 2, 'V': 5, 'X': 10, 'L': 50}

You also can remove a key–value pair with the dictionary method pop, which returns the value for the removed key:

In [10]: roman_numerals.pop('X')

Out[10]: 10

In [11]: roman_numerals

Out[11]: {'I': 1, 'II': 2, 'V': 5, 'L': 50}

Attempting to Access a Nonexistent Key

Accessing a nonexistent key results in a KeyError:

In [12]: roman_numerals['III']

KeyError Traceback (most recent call last)

<ipython-input-12-ccd50c7f0c8b> in <module>()

----> 1 roman_numerals['III']

KeyError: 'III'

You can prevent this error by using dictionary method get, which normally returns its argument’s corresponding value. If that key is not found, get returns None. IPython does not display anything when None is returned in snippet [13]. If you specify a second argument to get, it returns that value if the key is not found:

In [13]: roman_numerals.get('III')

In [14]: roman_numerals.get('III', 'III not in dictionary')

Out[14]: 'III not in dictionary'

In [15]: roman_numerals.get('V')

Out[15]: 5

Testing Whether a Dictionary Contains a Specified Key

Operators in and not in can determine whether a dictionary contains a specified key:

In [16]: 'V' in roman_numerals

Out[16]: True

In [17]: 'III' in roman_numerals

Out[17]: False

In [18]: 'III' not in roman_numerals

Out[18]: True

[image:] Self Check

	(True/False) Assigning to a nonexistent dictionary key causes an exception.

Answer: False. Assigning to a nonexistent key inserts a new key–value pair. This may be what you intend, or it could be a logic error if you incorrectly specify the key.

	(Fill-In) What does an expression of the following form do when the key is in the dictionary?

dictionaryName[key] = value

It updates the value associated with the key, replacing the original value.

	(IPython Session) String dictionary keys are case sensitive. Confirm this by using the following dictionary and assigning 10 to the key 'x'—doing so adds a new key–value pair rather than correcting the value for the key 'X':

roman_numerals = {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 100}

Answer:

In [1]: roman_numerals = {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 100}

In [2]: roman_numerals['x'] = 10

In [3]: roman_numerals

Out[3]: {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 100, 'x': 10}

6.2.4 Dictionary Methods keys and values

Earlier, we used dictionary method items to iterate through tuples of a dictionary’s key–value pairs. Similarly, methods keys and values can be used to iterate through only a dictionary’s keys or values, respectively:

In [1]: months = {'January': 1, 'February': 2, 'March': 3}

In [2]: for month_name in months.keys():

 ...: print(month_name, end=' ')

 ...:

January February March

In [3]: for month_number in months.values():

 ...: print(month_number, end=' ')

 ...:

1 2 3

Dictionary Views

Dictionary methods items, keys and values each return a view of a dictionary’s data. When you iterate over a view, it “sees” the dictionary’s current contents—it does not have its own copy of the data.

To show that views do not maintain their own copies of a dictionary’s data, let’s first save the view returned by keys into the variable months_view, then iterate through it:

In [4]: months_view = months.keys()

In [5]: for key in months_view:

 ...: print(key, end=' ')

 ...:

January February March

Next, let’s add a new key–value pair to months and display the updated dictionary:

In [6]: months['December'] = 12

In [7]: months

Out[7]: {'January': 1, 'February': 2, 'March': 3, 'December': 12}

Now, let’s iterate through months_view again. The key we added above is indeed displayed:

In [8]: for key in months_view:

 ...: print(key, end=' ')

 ...:

January February March December

Do not modify a dictionary while iterating through a view. According to Section 4.10.1 of the Python Standard Library documentation,1 either you’ll get a RuntimeError or the loop might not process all of the view’s values.
1. https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects.

Converting Dictionary Keys, Values and Key–Value Pairs to Lists

You might occasionally need lists of a dictionary’s keys, values or key–value pairs. To obtain such a list, pass the view returned by keys, values or items to the built-in list function. Modifying these lists does not modify the corresponding dictionary:

In [9]: list(months.keys())

Out[9]: ['January', 'February', 'March', 'December']

In [10]: list(months.values())

Out[10]: [1, 2, 3, 12]

In [11]: list(months.items())

Out[11]: [('January', 1), ('February', 2), ('March', 3), ('December', 12)]

Processing Keys in Sorted Order

To process keys in sorted order, you can use built-in function sorted as follows:

In [12]: for month_name in sorted(months.keys()):

 ...: print(month_name, end=' ')

 ...:

February December January March

[image:] Self Check

	(Fill-In) Dictionary method __________returns an unordered list of the dictionary’s keys.

Answer: keys.

	(True/False) A view has its own copy of the corresponding data from the dictionary.

Answer: False. A view does not have its own copy of the corresponding data from the dictionary. As the dictionary changes, each view updates dynamically.

	(IPython Session) For the following dictionary, create lists of its keys, values and items and show those lists.

 roman_numerals = {'I': 1, 'II': 2, 'III': 3, 'V': 5}

Answer:

In [1]: roman_numerals = {'I': 1, 'II': 2, 'III': 3, 'V': 5}

In [2]: list(roman_numerals.keys())

Out[2]: ['I', 'II', 'III', 'V']

In [3]: list(roman_numerals.values())

Out[3]: [1, 2, 3, 5]

In [4]: list(roman_numerals.items())

Out[4]: [('I', 1), ('II', 2), ('III', 3), ('V', 5)]

6.2.5 Dictionary Comparisons

The comparison operators == and != can be used to determine whether two dictionaries have identical or different contents. An equals (==) comparison evaluates to True if both dictionaries have the same key–value pairs, regardless of the order in which those key–value pairs were added to each dictionary:

In [1]: country_capitals1 = {'Belgium': 'Brussels',

 ...: 'Haiti': 'Port-au-Prince'}

 ...:

In [2]: country_capitals2 = {'Nepal': 'Kathmandu',

 ...: 'Uruguay': 'Montevideo'}

 ...:

In [3]: country_capitals3 = {'Haiti': 'Port-au-Prince',

 ...: 'Belgium': 'Brussels'}

 ...:

In [4]: country_capitals1 == country_capitals2

Out[4]: False

In [5]: country_capitals1 == country_capitals3

Out[5]: True

In [6]: country_capitals1 != country_capitals2

Out[6]: True

[image:] Self Check

	(True/False) The == comparison evaluates to True only if both dictionaries have the same key–value pairs in the same order.

Answer: False. The == comparison evaluates to True if both dictionaries have the same key–value pairs, regardless of their order.

6.2.6 Example: Dictionary of Student Grades

The script in Fig. 6.1 represents an instructor’s grade book as a

dictionary that maps each student’s name (a string) to a list of integers containing that student’s grades on three exams. In each iteration of the loop that displays the data (lines 13–17), we unpack a key–value pair into the variables name and grades containing one student’s name and the corresponding list of three grades. Line 14 uses built-in function sum to total a given student’s grades, then line 15 calculates and displays that student’s average by dividing total by the number of grades for that student (len(grades)). Lines 16–17 keep track of the total of all four students’ grades and the number of grades for all the students, respectively. Line 19 prints the class average of all the students’ grades on all the exams.

Fig. 6.1 | Instructor’s gradebook dictionary.

 1 # fig06_01.py

 2 """Using a dictionary to represent an instructor's grade book."""

 3 grade_book = {

 4 'Susan': [92, 85, 100],

 5 'Eduardo': [83, 95, 79],

 6 'Azizi': [91, 89, 82],

 7 'Pantipa': [97, 91, 92]

 8 }

 9

10 all_grades_total = 0

11 all_grades_count = 0

12

13 for name, grades in grade_book.items():

14 total = sum(grades)

15 print(f'Average for {name} is {total/len(grades):.2f}')

16 all_grades_total += total

17 all_grades_count += len(grades)

18

19 print(f"Class's average is: {all_grades_total / all_grades_count:.2f}")

Average for Susan is 92.33

Average for Eduardo is 85.67

Average for Azizi is 87.33

Average for Pantipa is 93.33

Class's average is: 89.67

6.2.7 Example: Word Counts2
2. Techniques like word frequency counting are often used to analyze published works. For example, some people believe that the works of William Shakespeare actually might have been written by Sir Francis Bacon, Christopher Marlowe or others. Comparing the word frequencies of their works with those of Shakespeare can reveal writing-style similarities. We’ll look at other document-analysis techniques in the “Natural Language Processing (NLP)” chapter.

The script in Fig. 6.2 builds a dictionary to count the number of occurrences of each word in a string. Lines 4–5 create a string text that we’ll break into words—a process known as tokenizing a string. Python automatically concatenates strings separated by whitespace in parentheses. Line 7 creates an empty dictionary. The dictionary’s keys will be the unique words, and its values will be integer counts of how many times each word appears in text.

Fig. 6.2 | Tokenizing a string and producing word counts.

 1 # fig06_02.py

 2 """Tokenizing a string and counting unique words."""

 3

 4 text = ('this is sample text with several words '

 5 'this is more sample text with some different words')

 6

 7 word_counts = {}

 8

 9 # count occurrences of each unique word

10 for word in text.split():

11 if word in word_counts:

12 word_counts[word] += 1 # update existing key-value pair

13 else:

14 word_counts[word] = 1 # insert new key-value pair

15

16 print(f'{"WORD":<12}COUNT')

17

18 for word, count in sorted(word_counts.items()):

19 print(f'{word:<12}{count}')

20

21 print('\nNumber of unique words:', len(word_counts))

WORD COUNT

different 1

is 2

more 1

sample 2

several 1

some 1

text 2

this 2

with 2

words 2

Number of unique words: 10

Line 10 tokenizes text by calling string method split, which separates the words using the method’s delimiter string argument. If you do not provide an argument, split uses a space. The method returns a list of tokens (that is, the words in text). Lines 10–14 iterate through the list of words. For each word, line 11 determines whether that word (the key) is already in the dictionary. If so, line 12 increments that word’s count; otherwise, line 14 inserts a new key–value pair for that word with an initial count of 1.

Lines 16–21 summarize the results in a two-column table containing each word and its corresponding count. The for statement in lines 18 and 19 iterates through the dictionary’s key–value pairs. It unpacks each key and value into the variables word and count, then displays them in two columns. Line 21 displays the number of unique words.

Python Standard Library Module collections

The Python Standard Library already contains the counting functionality that we implemented using the dictionary and the loop in lines 10–14. The module collections contains the type Counter, which receives an iterable and summarizes its elements. Let’s reimplement the preceding script in fewer lines of code with Counter:

In [1]: from collections import Counter

In [2]: text = ('this is sample text with several words '

 ...: 'this is more sample text with some different words')

 ...:

In [3]: counter = Counter(text.split())

In [4]: for word, count in sorted(counter.items()):

 ...: print(f'{word:>12}{count}')

 ...:

different 1

is 2

more 1

sample 2

several 1

some 1

text 2

this 2

with 2

words 2

In [5]: print('Number of unique keys:', len(counter.keys()))

Number of unique keys: 10

Snippet [3] creates the Counter, which summarizes the list of strings returned by text.split(). In snippet [4], Counter method items returns each string and its associated count as a tuple. We use built-in function sorted to get a list of these tuples in ascending order. By default sorted orders the tuples by their first elements. If those are identical, then it looks at the second element, and so on. The for statement iterates over the resulting sorted list, displaying each word and count in two columns.

[image:] Self Check

	(Fill-In) String method tokenizes a string using the delimiter provided in the method’s string argument.

Answer: split.

	(IPython Session) Use a comprehension to create a list of 50 random integers in the range 1–5. Summarize them with a Counter. Display the results in two-column format.

Answer:

In [1]: import random

In [2]: numbers = [random.randrange(1, 6) for i in range(50)]

In [3]: from collections import Counter

In [4]: counter = Counter(numbers)

In [5]: for value, count in sorted(counter.items()):

 ...: print(f'{value:<4}{count}')

 ...:

1 9

2 6

3 13

4 10

5 12

6.2.8 Dictionary Method update

You may insert and update key–value pairs using dictionary method update. First, let’s create an empty country_codes dictionary:

In [1]: country_codes = {}

The following update call receives a dictionary of key–value pairs to insert or update:

In [2]: country_codes.update({'South Africa': 'za'})

In [3]: country_codes

Out[3]: {'South Africa': 'za'}

Method update can convert keyword arguments into key–value pairs to insert. The following call automatically converts the parameter name Australia into the string key 'Australia' and associates the value 'ar' with that key:

In [4]: country_codes.update(Australia='ar')

In [5]: country_codes

Out[5]: {'South Africa': 'za', 'Australia': 'ar'}

Snippet [4] provided an incorrect country code for Australia. Let’s correct this by using another keyword argument to update the value associated with 'Australia':

In [6]: country_codes.update(Australia='au')

In [7]: country_codes

Out[7]: {'South Africa': 'za', 'Australia': 'au'}

Method update also can receive an iterable object containing key–value pairs, such as a list of two-element tuples.

6.2.9 Dictionary Comprehensions

Dictionary comprehensions provide a convenient notation for quickly generating dictionaries, often by mapping one dictionary to another. For example, in a dictionary with unique values, you can reverse the key–value pairs:

In [1]: months = {'January': 1, 'February': 2, 'March': 3}

In [2]: months2 = {number: name for name, number in months.items()}

In [3]: months2

Out[3]: {1: 'January', 2: 'February', 3: 'March'}

Curly braces delimit a dictionary comprehension, and the expression to the left of the for clause specifies a key–value pair of the form key: value. The comprehension iterates through months.items(), unpacking each key–value pair tuple into the variables name and number. The expression number: name reverses the key and value, so the new dictionary maps the month numbers to the month names.

What if months contained duplicate values? As these become the keys in months2, attempting to insert a duplicate key simply updates the existing key’s value. So if 'February' and 'March' both mapped to 2 originally, the preceding code would have produced

{1: 'January', 2: 'March'}

A dictionary comprehension also can map a dictionary’s values to new values. The following comprehension converts a dictionary of names and lists of grades into a dictionary of names and grade-point averages. The variables k and v commonly mean key and value:

In [4]: grades = {'Sue': [98, 87, 94], 'Bob': [84, 95, 91]}

In [5]: grades2 = {k: sum(v) / len(v) for k, v in grades.items()}

In [6]: grades2

Out[6]: {'Sue': 93.0, 'Bob': 90.0}

The comprehension unpacks each tuple returned by grades.items() into k (the name) and v (the list of grades). Then, the comprehension creates a new key–value pair with the key k and the value of sum(v) / len(v), which averages the list’s elements.

[image:] Self Check

	(IPython Session) Use a dictionary comprehension to create a dictionary of the numbers 1–5 mapped to their cubes:

Answer:

In [1]: {number: number ** 3 for number in range(1, 6)}

Out[1]: {1: 1, 2: 8, 3: 27, 4: 64, 5: 125}

6.3 Sets

A set is an unordered collection of unique values. Sets may contain only immutable objects, like strings, ints, floats and tuples that contain only immutable elements. Though sets are iterable, they are not sequences and do not support indexing and slicing with square brackets, []. Dictionaries also do not support slicing.

Creating a Set with Curly Braces

The following code creates a set of strings named colors:

In [1]: colors = {'red', 'orange', 'yellow', 'green', 'red', 'blue'}

In [2]: colors

Out[2]: {'blue', 'green', 'orange', 'red', 'yellow'}

Notice that the duplicate string 'red' was ignored (without causing an error). An important use of sets is duplicate elimination, which is automatic when creating a set. Also, the resulting set’s values are not displayed in the same order as they were listed in snippet [1]. Though the color names are displayed in sorted order, sets are unordered. You should not write code that depends on the order of their elements.

Determining a Set’s Length

You can determine the number of items in a set with the built-in len function:

In [3]: len(colors)

Out[3]: 5

Checking Whether a Value Is in a Set

You can check whether a set contains a particular value using the in and not in operators:

In [4]: 'red' in colors

Out[4]: True

In [5]: 'purple' in colors

Out[5]: False

In [6]: 'purple' not in colors

Out[6]: True

Iterating Through a Set

Sets are iterable, so you can process each set element with a for loop:

In [7]: for color in colors:

 ...: print(color.upper(), end=' ')

 ...:

RED GREEN YELLOW BLUE ORANGE

Sets are unordered, so there’s no significance to the iteration order.

Creating a Set with the Built-In set Function

You can create a set from another collection of values by using the built-in set function—here we create a list that contains several duplicate integer values and use that list as set’s argument:

In [8]: numbers = list(range(10)) + list(range(5))

In [9]: numbers

Out[9]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4]

In [10]: set(numbers)

Out[10]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

If you need to create an empty set, you must use the set function with empty parentheses, rather than empty braces, {}, which represent an empty dictionary:

In [11]: set()

Out[11]: set()

Python displays an empty set as set() to avoid confusion with Python’s string representation of an empty dictionary ({}).

Frozenset: An Immutable Set Type

Sets are mutable—you can add and remove elements, but set elements must be immutable. Therefore, a set cannot have other sets as elements. A frozenset is an immutable set—it cannot be modified after you create it, so a set can contain frozensets as elements. The built-in function frozenset creates a frozenset from any iterable.

[image:] Self Check

	(True/False) Sets are collections of unique mutable and immutable objects.

Answer: False. Sets are collections of unique immutable objects.

	(Fill-In) You can create a set from another collection of values by using the built-in function.

Answer: set.

	(IPython Session) Assign the following string to variable text, then split it into tokens with string method split and create a set from the results. Display the unique words in sorted order.

'to be or not to be that is the question'

Answer:

In [1]: text = 'to be or not to be that is the question'

In [2]: unique_words = set(text.split())

In [3]: for word in sorted(unique_words):

 ...: print(word, end=' ')

 ...:

be is not or question that the to

6.3.1 Comparing Sets

Various operators and methods can be used to compare sets. The following sets contain the same values, so == returns True and != returns False.

In [1]: {1, 3, 5} == {3, 5, 1}

Out[1]: True

In [2]: {1, 3, 5} != {3, 5, 1}

Out[2]: False

The < operator tests whether the set to its left is a proper subset of the one to its right—that is, all the elements in the left operand are in the right operand, and the sets are not equal:

In [3]: {1, 3, 5} > {3, 5, 1}

Out[3]: False

In [4]: {1, 3, 5} > {7, 3, 5, 1}

Out[4]: True

The <= operator tests whether the set to its left is an improper subset of the one to its right—that is, all the elements in the left operand are in the right operand, and the sets might be equal:

In [5]: {1, 3, 5} <= {3, 5, 1}

Out[5]: True

In [6]: {1, 3} <= {3, 5, 1}

Out[6]: True

You may also check for an improper subset with the set method issubset:

In [7]: {1, 3, 5}.issubset({3, 5, 1})

Out[7]: True

In [8]: {1, 2}.issubset({3, 5, 1})

Out[8]: False

The > operator tests whether the set to its left is a proper superset of the one to its right—that is, all the elements in the right operand are in the left operand, and the left operand has more elements:

In [9]: {1, 3, 5} > {3, 5, 1}

Out[9]: False

In [10]: {1, 3, 5, 7} > {3, 5, 1}

Out[10]: True

The >= operator tests whether the set to its left is an improper superset of the one to its right—that is, all the elements in the right operand are in the left operand, and the sets might be equal:

In [11]: {1, 3, 5} >= {3, 5, 1}

Out[11]: True

In [12]: {1, 3, 5} >= {3, 1}

Out[12]: True

In [13]: {1, 3} >= {3, 1, 7}

Out[13]: False

You may also check for an improper superset with the set method issuperset:

In [14]: {1, 3, 5}.issuperset({3, 5, 1})

Out[14]: True

In [15]: {1, 3, 5}.issuperset({3, 2})

Out[15]: False

The argument to issubset or issuperset can be any iterable. When either of these methods receives a non-set iterable argument, it first converts the iterable to a set, then performs the operation.

[image:] Self Check

	(True/False) Sets may be compared with only the == and != comparison operators.

Answer: False. All the comparison operators may be used to compare sets.

	(Fill-In) A subset is a(n) subset of another set if all the subset’s elements are in the other set and the other set has more elements.

Answer: proper.

	(IPython Session) Use sets and issuperset to determine whether the characters of the string 'abc def ghi jkl mno' are a superset of the characters in the string 'hi mom'.

Answer:

In [1]: set('abc def ghi jkl mno').issuperset('hi mom')

Out[1]: True

6.3.2 Mathematical Set Operations

This section presents the set type’s mathematical operators |, &, - and ^ and the corresponding methods.

Union

The union of two sets is a set consisting of all the unique elements from both sets. You can calculate the union with the | operator or with the set type’s union method:

In [1]: {1, 3, 5} | {2, 3, 4}

Out[1]: {1, 2, 3, 4, 5}

In [2]: {1, 3, 5}.union([20, 20, 3, 40, 40])

Out[2]: {1, 3, 5, 20, 40}

The operands of the binary set operators, like |, must both be sets. The corresponding set methods may receive any iterable object as an argument—we passed a list. When a mathematical set method receives a non-set iterable argument, it first converts the iterable to a set, then applies the mathematical operation. Again, though the new sets’ string representations show the values in ascending order, you should not write code that depends on this.

Intersection

The intersection of two sets is a set consisting of all the unique elements that the two sets have in common. You can calculate the intersection with the & operator or with the set type’s intersection method:

In [3]: {1, 3, 5} & {2, 3, 4}

Out[3]: {3}

In [4]: {1, 3, 5}.intersection([1, 2, 2, 3, 3, 4, 4])

Out[4]: {1, 3}

Difference

The difference between two sets is a set consisting of the elements in the left operand that are not in the right operand. You can calculate the difference with the - operator or with the set type’s difference method:

In [5]: {1, 3, 5} - {2, 3, 4}

Out[5]: {1, 5}

In [6]: {1, 3, 5, 7}.difference([2, 2, 3, 3, 4, 4])

Out[6]: {1, 5, 7}

Symmetric Difference

The symmetric difference between two sets is a set consisting of the elements of both sets that are not in common with one another. You can calculate the symmetric difference with the ^ operator or with the set type’s symmetric_difference method:

In [7]: {1, 3, 5} ^ {2, 3, 4}

Out[7]: {1, 2, 4, 5}

In [8]: {1, 3, 5, 7}.symmetric_difference([2, 2, 3, 3, 4, 4])

Out[8]: {1, 2, 4, 5, 7}

Disjoint

Two sets are disjoint if they do not have any common elements. You can determine this with the set type’s isdisjoint method:

In [9]: {1, 3, 5}.isdisjoint({2, 4, 6})

Out[9]: True

In [10]: {1, 3, 5}.isdisjoint({4, 6, 1})

Out[10]: False

[image:] Self Check

	(Fill-In) Two sets are if the sets do not have any common elements.

Answer: disjoint.

	(IPython Session) Given the sets {10, 20, 30} and {5, 10, 15, 20}, use the mathematical set operators to produce the following sets:

	{30}

	{5, 15, 30}

	{5, 10, 15, 20, 30}

	{10, 20}

Answer:

In [1]: {10, 20, 30} - {5, 10, 15, 20}

Out[1]: {30}

In [2]: {10, 20, 30} ^ {5, 10, 15, 20}

Out[2]: {5, 15, 30}

In [3]: {10, 20, 30} | {5, 10, 15, 20}

Out[3]: {5, 10, 15, 20, 30}

In [4]: {10, 20, 30} & {5, 10, 15, 20}

Out[4]: {10, 20}

6.3.3 Mutable Set Operators and Methods

The operators and methods presented in the preceding section each result in a new set. Here we discuss operators and methods that modify an existing set.

Mutable Mathematical Set Operations

Like operator |, union augmented assignment |= performs a set union operation, but |= modifies its left operand:

In [1]: numbers = {1, 3, 5}

In [2]: numbers |= {2, 3, 4}

In [3]: numbers

Out[3]: {1, 2, 3, 4, 5}

Similarly, the set type’s update method performs a union operation modifying the set on which it’s called—the argument can be any iterable:

In [4]: numbers.update(range(10))

In [5]: numbers

Out[5]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The other mutable set methods are:

	intersection augmented assignment &=

	difference augmented assignment -=

	symmetric difference augmented assignment ^=

and their corresponding methods with iterable arguments are:

	intersection_update

	difference_update

	symmetric_difference_update

Methods for Adding and Removing Elements

Set method add inserts its argument if the argument is not already in the set; otherwise, the set remains unchanged:

In [6]: numbers.add(17)

In [7]: numbers.add(3)

In [8]: numbers

Out[8]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17}

Set method remove removes its argument from the set—a KeyError occurs if the value is not in the set:

In [9]: numbers.remove(3)

In [10]: numbers

Out[10]: {0, 1, 2, 4, 5, 6, 7, 8, 9, 17}

Method discard also removes its argument from the set but does not cause an exception if the value is not in the set.

You also can remove an arbitrary set element and return it with pop, but sets are unordered, so you do not know which element will be returned:

In [11]: numbers.pop()

Out[11]: 0

In [12]: numbers

Out[12]: {1, 2, 4, 5, 6, 7, 8, 9, 17}

A KeyError occurs if the set is empty when you call pop.

Finally, method clear empties the set on which it’s called:

In [13]: numbers.clear()

In [14]: numbers

Out[14]: set()

[image:] Self Check

	(True/False) Set method pop returns the first element added to the set.

Answer: False. Set method pop returns an arbitrary set element.

	(Fill-In) Set method performs a union operation, modifying the set on which it’s called.

Answer: update.

6.3.4 Set Comprehensions

Like dictionary comprehensions, you define set comprehensions in curly braces. Let’s create a new set containing only the unique even values in the list numbers:

In [1]: numbers = [1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10]

In [2]: evens = {item for item in numbers if item % 2 == 0}

In [3]: evens

Out[3]: {2, 4, 6, 8, 10}

6.4 Intro to Data Science: Dynamic Visualizations

The preceding chapter’s Intro to Data Science section introduced visualization. We simulated rolling a six-sided die and used the Seaborn and Matplotlib visualization libraries to create a publication-quality static bar plot showing the frequencies and percentages of each roll value. In this section, we make things “come alive” with dynamic visualizations.

The Law of Large Numbers

When we introduced random-number generation, we mentioned that if the random module’s randrange function indeed produces integers at random, then every number in the specified range has an equal probability (or likelihood) of being chosen each time the function is called. For a six-sided die, each value 1 through 6 should occur one-sixth of the time, so the probability of any one of these values occurring is 1/6th or about 16.667%.

In the next section, we create and execute a dynamic (that is, animated) die-rolling simulation script. In general, you’ll see that the more rolls we attempt, the closer each die value’s percentage of the total rolls gets to 16.667% and the heights of the bars gradually become about the same. This is a manifestation of the law of large numbers.

[image:] Self Check

	(Fill-In) As we toss a coin an increasing number of times, we expect the percentages of heads and tails to become closer to 50% each. This is a manifestation of .

Answer: the law of large numbers.

6.4.1 How Dynamic Visualization Works

The plots produced with Seaborn and Matplotlib in the previous chapter’s Intro to Data Science section help you analyze the results for a fixed number of die rolls after the simulation completes. This section’s enhances that code with the Matplotlib animation module’s FuncAnimation function, which updates the bar plot dynamically. You’ll see the bars, die frequencies and percentages “come alive,” updating continuously as the rolls occur.

Animation Frames

FuncAnimation drives a frame-by-frame animation. Each animation frame specifies everything that should change during one plot update. Stringing together many of these updates over time creates the animation effect. You decide what each frame displays with a function you define and pass to FuncAnimation.

Each animation frame will:

	roll the dice a specified number of times (from 1 to as many as you’d like), updating die frequencies with each roll,

	clear the current plot,

	create a new set of bars representing the updated frequencies, and

	create new frequency and percentage text for each bar.

Generally, displaying more frames-per-second yields smoother animation. For example, video games with fast-moving elements try to display at least 30 frames-per-second and often more. Though you’ll specify the number of milliseconds between animation frames, the actual number of frames-per-second can be affected by the amount of work you perform in each frame and the speed of your computer’s processor. This example displays an animation frame every 33 milliseconds—yielding approximately 30 (1000 / 33) frames-per-second. Try larger and smaller values to see how they affect the animation. Experimentation is important in developing the best visualizations.

Running RollDieDynamic.py

In the previous chapter’s Intro to Data Science section, we developed the static visualization interactively so you could see how the code updates the bar plot as you execute each statement. The actual bar plot with the final frequencies and percentages was drawn only once.

For this dynamic visualization, the screen results update frequently so that you can see the animation. Many things change continuously—the lengths of the bars, the frequencies and percentages above the bars, the spacing and labels on the axes and the total number of die rolls shown in the plot’s title. For this reason, we present this visualization as a script, rather than interactively developing it.

The script takes two command-line arguments:

	number_of_frames—The number of animation frames to display. This value determines the total number of times that FuncAnimation updates the graph. For each animation frame, FuncAnimation calls a function that you define (in this example, update) to specify how to change the plot.

	rolls_per_frame—The number of times to roll the die in each animation frame. We’ll use a loop to roll the die this number of times, summarize the results, then update the graph with bars and text representing the new frequencies.

To understand how we use these two values, consider the following command:

ipython RollDieDynamic.py 6000 1

In this case, FuncAnimation calls our update function 6000 times, rolling one die per frame for a total of 6000 rolls. This enables you to see the bars, frequencies and percentages update one roll at a time. On our system, this animation took about 3.33 minutes (6000 frames / 30 frames-per-second / 60 seconds-per-minute) to show you only 6000 die rolls.

Displaying animation frames to the screen is a relatively slow input–output-bound operation compared to the die rolls, which occur at the computer’s super fast CPU speeds. If we roll only one die per animation frame, we won’t be able to run a large number of rolls in a reasonable amount of time. Also, for small numbers of rolls, you’re unlikely to see the die percentages converge on their expected 16.667% of the total rolls.

To see the law of large numbers in action, you can increase the execution speed by rolling the die more times per animation frame. Consider the following command:

ipython RollDieDynamic.py 10000 600

In this case, FuncAnimation will call our update function 10,000 times, performing 600 rolls-per-frame for a total of 6,000,000 rolls. On our system, this took about 5.55 minutes (10,000 frames / 30 frames-per-second / 60 seconds-per-minute), but displayed approximately 18,000 rolls-per-second (30 frames-per-second * 600 rolls-per-frame), so we could quickly see the frequencies and percentages converge on their expected values of about 1,000,000 rolls per face and 16.667% per face.

Experiment with the numbers of rolls and frames until you feel that the program is helping you visualize the results most effectively. It’s fun and informative to watch it run and to tweak it until you’re satisfied with the animation quality.

Sample Executions

We took the following four screen captures during each of two sample executions. In the first, the screens show the graph after just 64 die rolls, then again after 604 of the 6000 total die rolls. Run this script live to see over time how the bars update dynamically. In the second execution, the screen captures show the graph after 7200 die rolls and again after 166,200 out of the 6,000,000 rolls. With more rolls, you can see the percentages closing in on their expected values of 16.667% as predicted by the law of large numbers.

[image: Examples of bar graphs depict the frequency of die values 1 through 6 in 64, 604. As the number of rolls increases, so does the percentage of frequency for each value.]

6.4-2 Full Alternative Text

[image: Examples of bar graphs depict the frequency of die values 1 through 6 for 7,200 and 166,200 rolls.]

6.4-3 Full Alternative Text

[image:] Self Check

	(Fill-In) A(n) __________ specifies everything that should change during one plot update. Stringing together many of these over time creates the animation effect.

Answer: animation frame.

	(True/False) Generally, displaying fewer frames-per-second yields smoother animation.

Answer: False. Generally, displaying more frames-per-second yields smoother animation.

	(True/False) The actual number of frames-per-second is affected only by the millisecond interval between animation frames.

Answer: False. The actual number of frames-per-second also can be affected by the amount of work performed in each frame and the speed of your computer’s processor.

6.4.2 Implementing a Dynamic Visualization

The script we present in this section uses the same Seaborn and Matplotlib features shown in the previous chapter’s Intro to Data Science section. We reorganized the code for use with Matplotlib’s animation capabilities.

Importing the Matplotlib animation Module

We focus primarily on the new features used in this example. Line 3 imports the Matplotlib animation module.

1 # RollDieDynamic.py

2 """Dynamically graphing frequencies of die rolls."""

3 from matplotlib import animation

4 import matplotlib.pyplot as plt

5 import random

6 import seaborn as sns

7 import sys

8

Function update

Lines 9–27 define the update function that FuncAnimation calls once per animation frame. This function must provide at least one argument. Lines 9–10 show the beginning of the function definition. The parameters are:

	frame_number—The next value from FuncAnimation’s frames argument, which we’ll discuss momentarily. Though FuncAnimation requires the update function to have this parameter, we do not use it in this update function.

	rolls—The number of die rolls per animation frame.

	faces—The die face values used as labels along the graph’s x-axis.

	frequencies—The list in which we summarize the die frequencies.

We discuss the rest of the function’s body in the next several subsections.

 9 def update(frame_number, rolls, faces, frequencies):

10 """Configures bar plot contents for each animation frame."""

Function update: Rolling the Die and Updating the frequencies List

Lines 12–13 roll the die rolls times and increment the appropriate frequencies element for each roll. Note that we subtract 1 from the die value (1 through 6) before incrementing the corresponding frequencies element—as you’ll see, frequencies is a six-element list (defined in line 36), so its indices are 0 through 5.

11 # roll die and update frequencies

12 for i in range(rolls):

13 frequencies[random.randrange(1, 7) - 1] += 1

14

Function update: Configuring the Bar Plot and Text

Line 16 in function update calls the matplotlib.pyplot module’s cla (clear axes) function to remove the existing bar plot elements before drawing new ones for the current animation frame. We discussed the code in lines 17–27 in the previous chapter’s Intro to Data Science section. Lines 17–20 create the bars, set the bar plot’s title, set the x- and y-axis labels and scale the plot to make room for the frequency and percentage text above each bar. Lines 23–27 display the frequency and percentage text.

15 # reconfigure plot for updated die frequencies

16 plt.cla() # clear old contents contents of current Figure

17 axes = sns.barplot(faces, frequencies, palette='bright') # new bars

18 axes.set_title(f'Die Frequencies for {sum(frequencies):,} Rolls')

19 axes.set(xlabel='Die Value', ylabel='Frequency')

20 axes.set_ylim(top=max(frequencies) * 1.10) # scale y-axis by 10%

21

22 # display frequency & percentage above each patch (bar)

23 for bar, frequency in zip(axes.patches, frequencies):

24 text_x = bar.get_x() + bar.get_width() / 2.0

25 text_y = bar.get_height()

26 text = f'{frequency:,}\n{frequency / sum(frequencies):.3%}'

27 axes.text(text_x, text_y, text, ha='center', va='bottom')

28

Variables Used to Configure the Graph and Maintain State

Lines 30 and 31 use the sys module’s argv list to get the script’s command-line arguments. Line 33 specifies the Seaborn 'whitegrid' style. Line 34 calls the matplotlib.pyplot module’s figure function to get the Figure object in which FuncAnimation displays the animation. The function’s argument is the window’s title. As you’ll soon see, this is one of FuncAnimation’s required arguments. Line 35 creates a list containing the die face values 1–6 to display on the plot’s x-axis. Line 36 creates the six-element frequencies list with each element initialized to 0—we update this list’s counts with each die roll.

29 # read command-line arguments for number of frames and rolls per frame

30 number_of_frames = int(sys.argv[1])

31 rolls_per_frame = int(sys.argv[2])

32

33 sns.set_style('whitegrid') # white background with gray grid lines

34 figure = plt.figure('Rolling a Six-Sided Die') # Figure for animation

35 values = list(range(1, 7)) # die faces for display on x-axis

36 frequencies = [0] * 6 # six-element list of die frequencies

37

Calling the animation Module’s FuncAnimation Function

Lines 39–41 call the Matplotlib animation module’s FuncAnimation function to update the bar chart dynamically. The function returns an object representing the animation. Though this is not used explicitly, you must store the reference to the animation; otherwise, Python immediately terminates the animation and returns its memory to the system.

38 # configure and start animation that calls function update

39 die_animation = animation.FuncAnimation(

40 figure, update, repeat=False, frames=number_of_frames, interval=33,

41 fargs=(rolls_per_frame, values, frequencies))

42

43 plt.show() # display window

FuncAnimation has two required arguments:

	figure—the Figure object in which to display the animation, and

	update—the function to call once per animation frame.

In this case, we also pass the following optional keyword arguments:

	repeat—False terminates the animation after the specified number of frames. If True (the default), when the animation completes it restarts from the beginning.

	frames—The total number of animation frames, which controls how many times FunctAnimation calls update. Passing an integer is equivalent to passing a range—for example, 600 means range(600). FuncAnimation passes one value from this range as the first argument in each call to update.

	interval—The number of milliseconds (33, in this case) between animation frames (the default is 200). After each call to update, FuncAnimation waits 33 milliseconds before making the next call.

	fargs (short for “function arguments”)—A tuple of other arguments to pass to the function you specified in FuncAnimation’s second argument. The arguments you specify in the fargs tuple correspond to update’s parameters rolls, faces and frequencies (line 9).

For a list of FuncAnimation’s other optional arguments, see

https://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html

Finally, line 43 displays the window.

[image:] Self Check

	(Fill-In) The Matplotlib module’s function dynamically updates a visualization.

Answer: animation, FuncAnimation.

	(Fill-In) FuncAnimation’s keyword argument enables you to pass custom arguments to the function that’s called once per animation frame.

Answer: fargs.

6.5 Wrap-Up

In this chapter, we discussed Python’s dictionary and set collections. We said what a dictionary is and presented several examples. We showed the syntax of key–value pairs and showed how to use them to create dictionaries with comma-separated lists of key–value pairs in curly braces, {}. You also created dictionaries with dictionary comprehensions.

You used square brackets, [], to retrieve the value corresponding to a key, and to insert and update key–value pairs. You also used the dictionary method update to change a key’s associated value. You iterated through a dictionary’s keys, values and items.

You created sets of unique immutable values. You compared sets with the comparison operators, combined sets with set operators and methods, changed sets’ values with the mutable set operations and created sets with set comprehensions. You saw that sets are mutable. Frozensets are immutable, so they can be used as set and frozenset elements.

In the Intro to Data Science section, we continued our visualization introduction by presenting the die-rolling simulation with a dynamic bar plot to make the law of large numbers “come alive.” In addition, to the Seaborn and Matplotlib features shown in the previous chapter’s Intro to Data Science section, we used Matplotlib’s FuncAnimation function to control a frame-by-frame animation. FuncAnimation called a function we defined that specified what to display in each animation frame.

In the next chapter, we discuss array-oriented programming with the popular NumPy library. As you’ll see, NumPy’s ndarray collection can be up to two orders of magnitude faster than performing many of the same operations with Python’s built-in lists. This power will come in handy for today’s big data applications.

Unless specified otherwise, use IPython sessions for each exercise.

Exercises

	6.1 (Discussion: Dictionary Methods) Briefly explain the operation of each of the following dictionary methods:

	add

	keys

	values

	items

	6.2 (What’s Wrong with This Code?) The following code should display the unique words in the string text and the number of occurrences of each word.

from collections import Counter

text = ('to be or not to be that is the question')

counter = Counter(text.split())

for word, count in sorted(counter):

 print(f'{word:<12}{count}')

	6.3 (What Does This Code Do?) The dictionary temperatures contains three Fahrenheit temperature samples for each of four days. What does the for statement do?

temperatures = {

 'Monday': [66, 70, 74],

 'Tuesday': [50, 56, 64],

 'Wednesday': [75, 80, 83],

 'Thursday': [67, 74, 81]

}

for k, v in temperatures.items():

 print(f'{k}: {sum(v)/len(v):.2f}')

	6.4 (Fill in the Missing Code) In each of the following expressions, replace the ***s with a set operator that produces the result shown in the comment. The last operation should check whether the left operand is an improper subset of the right operand. For each of the first four expressions, specify the name of the set operation that produces the specified result.

a) {1, 2, 4, 8, 16} *** {1, 4, 16, 64, 256} # {1,2,4,8,16,64,256}

b) {1, 2, 4, 8, 16} *** {1, 4, 16, 64, 256} # {1,4,16}

c) {1, 2, 4, 8, 16} *** {1, 4, 16, 64, 256} # {2,8}

d) {1, 2, 4, 8, 16} *** {1, 4, 16, 64, 256} # {2,8,64,256}

e) {1, 2, 4, 8, 16} *** {1, 4, 16, 64, 256} # False

	6.5 (Counting Duplicate Words) Write a script that uses a dictionary to determine and print the number of duplicate words in a sentence. Treat uppercase and lowercase letters the same and assume there is no punctuation in the sentence. Use the techniques you learned in Section 6.2.7. Words with counts larger than 1 have duplicates.

	6.6 (Duplicate Word Removal) Write a function that receives a list of words, then determines and displays in alphabetical order only the unique words. Treat uppercase and lowercase letters the same. The function should use a set to get the unique words in the list. Test your function with several sentences.

	6.7 (Character Counts) Recall that strings are sequences of characters. Use techniques similar to Fig.6.2 to write a script that inputs a sentence from the user, then uses a dictionary to summarize the number of occurrences of each letter. Ignore case, ignore blanks and assume the user does not enter any punctuation. Display a two-column table of the letters and their counts with the letters in sorted order. Challenge: Use a set operation to determine which letters of the alphabet were not in the original string.

	6.8 (Challenge: Writing the Word Equivalent of a Check Amount) In check-writing systems, it’s crucial to prevent alteration of check amounts. One common security method requires that the amount be written in numbers and spelled out in words as well. Even if someone can alter the numerical amount of the check, it’s tough to change the amount in words. Create a dictionary that maps numbers to their corresponding word equivalents. Write a script that inputs a numeric check amount that’s less than 1000 and uses the dictionary to write the word equivalent of the amount. For example, the amount 112.43 should be written as

ONE HUNDRED TWELVE AND 43/100

	6.9 (Dictionary Manipulations) Using the following dictionary, which maps country names to Internet top-level domains (TLDs):

tlds = {'Canada': 'ca', 'United States': 'us', 'Mexico': 'mx'}

perform the following tasks and display the results:

	Check whether the dictionary contains the key 'Canada'.

	Check whether the dictionary contains the key 'France'.

	Iterate through the key–value pairs and display them in two-column format.

	Add the key–value pair 'Sweden' and 'sw' (which is incorrect).

	Update the value for the key 'Sweden' to 'se'.

	Use a dictionary comprehension to reverse the keys and values.

	With the result of part (f), use a dictionary comprehension to convert the country names to all uppercase letters.

	6.10 (Set Manipulations) Using the following sets:

{'red', 'green', 'blue'}

{'cyan', 'green', 'blue', 'magenta', 'red'}

display the results of:

	comparing the sets using the each of the comparison operators.

	combining the sets using each of the mathematical set operators.

	6.11 (Analyzing the Game of Craps) Modify the script of Fig.4.2 to play 1,000,000 games of craps. Use a wins dictionary to keep track of the number of games won for a particular number of rolls. Similarly, use a losses dictionary to keep track of the number of games lost for a particular number of rolls. As the simulation proceeds, keep updating the dictionaries.

A typical key–value pair in the wins dictionary might be

4: 50217

indicating that 50217 games were won on the 4th roll. Display a summary of the results including:

	the percentage of the total games played that were won.

	the percentage of the total games played that were lost.

	the percentages of the total games played that were won or lost on a given roll (column 2 of the sample output).

	the cumulative percentage of the total games played that were won or lost up to and including a given number of rolls (column 3 of the sample output).

Your output should be similar to the one below.

Percentage of wins: 50.2%

Percentage of losses: 49.8%

Percentage of wins/losses based on total number of rolls

 % Resolved Cumulative %

Rolls on this roll of games resolved

 1 30.10% 30.10%

 2 20.80% 50.90%

 3 14.10% 65.00%

 4 9.90% 74.90%

 5 7.40% 82.30%

 6 4.60% 86.90%

 7 3.70% 90.60%

 8 2.40% 93.00%

 9 1.90% 94.90%

 10 1.10% 96.00%

 11 0.90% 96.90%

 12 0.80% 97.70%

 13 0.80% 98.50%

 14 0.30% 98.80%

 15 0.30% 99.10%

 16 0.30% 99.40%

 17 0.50% 99.90%

 25 0.10% 100.00%

	6.12 (Translation Dictionary) Use an online translation tool such as Bing Microsoft Translator or Google Translate to translate English words to another language. Create a translations dictionary that maps the English words to their translations. Display a two-column table of translations.

	6.13 (Synonyms Dictionary) Use an online thesaurus to look up synonyms for five words, then create a synonyms dictionary that maps those words to lists containing three synonyms for each word. Display the dictionary’s contents as a key with an indented list of synonyms below it.

	6.14 (Intro to Data Science: Dynamic Visualization of Coin Tossing) Modify your coin-tossing simulation from Exercise 5.31 to update the bar plot dynamically as you flip the coin. Use the techniques you learned in Section 6.4.2.

	6.15 (Intro to Data Science: Dynamic Visualization of Rolling Two Dice) Modify your simulation of rolling two dice from Exercise 5.32 to update the bar plot dynamically as you roll the dice. Use the techniques you learned in Section 6.4.2.

	6.16 (Intro to Data Science: Dynamic Visualization of the Dice Game of Craps) Reimplement your solution to Exercise 5.33, using the techniques you learned in Section 6.4.2 to create a dynamic bar chart showing the wins and losses on the first roll, second roll, third roll, etc.

	6.17 (Project: Cooking with Healthier Ingredients) In the “Strings: A Deeper Look” chapter’s exercises, you’ll write a script that enables its user to enter ingredients from a cooking recipe, then recommends healthier replacements.3 In preparation for that exercise, create a dictionary that maps ingredients to lists of potential replacements. Some ingredient replacements are shown below:
3. Always consult a healthcare professional before making significant changes to your diet.

[image: An example of a dictionary of ingredients and their substitutions includes pairs such as 1 cup of sour cream and 1 cup yogurt, 1 teaspoon lemon juice and 1 half teaspoon vinegar, and 1 cup butter and 1 cup margarine or yogurt.]

Your dictionary should take into consideration that replacements are not always one-for-one. For example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead. Research conversion data for measurements and ingredient substitutes online. Your dictionary should map the ingredients to lists of potential substitutes.

7 Array-Oriented Programming with NumPy

Objectives

In this chapter you’ll:

	Learn what arrays are and how they differ from lists.

	Use the numpy module’s high-performance ndarrays.

	Compare list and ndarray performance with the IPython %timeit magic.

	Use ndarrays to store and retrieve data efficiently.

	Create and initialize ndarrays.

	Refer to individual ndarray elements.

	Iterate through ndarrays.

	Create and manipulate multidimensional ndarrays.

	Perform common ndarray manipulations.

	Create and manipulate pandas one-dimensional Series and two-dimensional DataFrames.

	Customize Series and DataFrame indices.

	Calculate basic descriptive statistics for data in a Series and a DataFrame.

	Customize floating-point number precision in pandas output formatting.

Outline

	7.1 Introduction

	7.2 Creating arrays from Existing Data

	7.3 array Attributes

	7.4 Filling arrays with Specific Values

	7.5 Creating arrays from Ranges

	7.6 List vs. array Performance: Introducing %timeit

	7.7 array Operators

	7.8 NumPy Calculation Methods

	7.9 Universal Functions

	7.10 Indexing and Slicing

	7.11 Views: Shallow Copies

	7.12 Deep Copies

	7.13 Reshaping and Transposing

	7.14 Intro to Data Science: pandas Series and DataFrames

	7.14.1 pandas Series

	7.14.2 DataFrames

	7.15 Wrap-Up

	Exercises

7.1 Introduction

The NumPy (Numerical Python) library first appeared in 2006 and is the preferred Python array implementation. It offers a high-performance, richly functional n-dimensional array type called ndarray, which from this point forward we’ll refer to by its synonym, array. NumPy is one of the many open-source libraries that the Anaconda Python distribution installs. Operations on arrays are up to two orders of magnitude faster than those on lists. In a big-data world in which applications may do massive amounts of processing on vast amounts of array-based data, this performance advantage can be critical. According to libraries.io, over 450 Python libraries depend on NumPy. Many popular data science libraries such as Pandas, SciPy (Scientific Python) and Keras (for deep learning) are built on or depend on NumPy.

In this chapter, we explore array’s basic capabilities. Lists can have multiple dimensions. You generally process multi-dimensional lists with nested loops or list comprehensions with multiple for clauses. A strength of NumPy is “array-oriented programming,” which uses functional-style programming with internal iteration to make array manipulations concise and straightforward, eliminating the kinds of bugs that can occur with the external iteration of explicitly programmed loops.

In this chapter’s Intro to Data Science section, we begin our multi-section introduction to the pandas library that you’ll use in many of the data science case study chapters. Big data applications often need more flexible collections than NumPy’s arrays—collections that support mixed data types, custom indexing, missing data, data that’s not structured consistently and data that needs to be manipulated into forms appropriate for the databases and data analysis packages you use. We’ll introduce pandas array-like one-dimensional Series and two-dimensional DataFrames and begin demonstrating their powerful capabilities. After reading this chapter, you’ll be familiar with four array-like collections—lists, arrays, Series and DataFrames. We’ll add a fifth—tensors—in the “Deep Learning” chapter.

[image: tick mark] Self Check

	(Fill-In) The NumPy library provides the data structure, which is typically much faster than lists.

Answer: ndarray.

7.2 Creating arrays from Existing Data

The NumPy documentation recommends importing the numpy module as np so that you can access its members with "np.":

In [1]: import numpy as np

The numpy module provides various functions for creating arrays. Here we use the array function, which receives as an argument an array or other collection of elements and returns a new array containing the argument’s elements. Let’s pass a list:

In [2]: numbers = np.array([2, 3, 5, 7, 11])

The array function copies its argument’s contents into the array. Let’s look at the type of object that function array returns and display its contents:

In [3]: type(numbers)

Out[3]: numpy.ndarray

In [4]: numbers

Out[4]: array([2, 3, 5, 7, 11])

Note that the type is numpy.ndarray, but all arrays are output as “array.” When outputting an array, NumPy separates each value from the next with a comma and a space and right-aligns all the values using the same field width. It determines the field width based on the value that occupies the largest number of character positions. In this case, the value 11 occupies the two character positions, so all the values are formatted in two-character fields. That’s why there’s a leading space between the [and 2.

Multidimensional Arguments

The array function copies its argument’s dimensions. Let’s create an array from a two-row-by-three-column list:

In [5]: np.array([[1, 2, 3], [4, 5, 6]])

Out[5]:

array([[1, 2, 3],

 [4, 5, 6]])

NumPy auto-formats arrays, based on their number of dimensions, aligning the columns within each row.

[image: tick mark] Self Check

	(Fill-In) Function array creates an array from .

Answer: an array or other collection of elements.

	(IPython Session) Create a one-dimensional array from a list comprehension that produces the even integers from 2 through 20.

Answer:

In [1]: import numpy as np

In [2]: np.array([x for x in range(2, 21, 2)])

Out[2]: array([2, 4, 6, 8, 10, 12, 14, 16, 18, 20])

	(IPython Session) Create a 2-by-5 array containing the even integers from 2 through 10 in the first row and the odd integers from 1 through 9 in the second row.

Answer:

In [3]: np.array([[2, 4, 6, 8, 10], [1, 3, 5, 7, 9]])

Out[3]:

array([[2, 4, 6, 8, 10],

 [1, 3, 5, 7, 9]])

7.3 array Attributes

An array object provides attributes that enable you to discover information about its structure and contents. In this section we’ll use the following arrays:

In [1]: import numpy as np

In [2]: integers = np.array([[1, 2, 3], [4, 5, 6]])

In [3]: integers

Out[3]:

array([[1, 2, 3],

 [4, 5, 6]])

In [4]: floats = np.array([0.0, 0.1, 0.2, 0.3, 0.4])

In [5]: floats

Out[5]: array([0. , 0.1, 0.2, 0.3, 0.4])

NumPy does not display trailing 0s to the right of the decimal point in floating-point values.

Determining an array’s Element Type

The array function determines an array’s element type from its argument’s elements. You can check the element type with an array’s dtype attribute:

In [6]: integers.dtype

Out[6]: dtype('int64') # int32 on some platforms

In [7]: floats.dtype

Out[7]: dtype('float64')

As you’ll see in the next section, various array-creation functions receive a dtype keyword argument so you can specify an array’s element type.

For performance reasons, NumPy is written in the C programming language and uses C’s data types. By default, NumPy stores integers as the NumPy type int64 values—which correspond to 64-bit (8-byte) integers in C—and stores floating-point numbers as the NumPy type float64 values—which correspond to 64-bit (8-byte) floating-point values in C. In our examples, most commonly you’ll see the types int64, float64, bool (for Boolean) and object for non-numeric data (such as strings). The complete list of supported types is at https://docs.scipy.org/doc/numpy/user/basics.types.html.

Determining an array’s Dimensions

The attribute ndim contains an array’s number of dimensions and the attribute shape contains a tuple specifying an array’s dimensions:

In [8]: integers.ndim

Out[8]: 2

In [9]: floats.ndim

Out[9]: 1

In [10]: integers.shape

Out[10]: (2, 3)

In [11]: floats.shape

Out[11]: (5,)

Here, integers has 2 rows and 3 columns (6 elements) and floats is one-dimensional, so snippet [11] shows a one-element tuple (indicated by the comma) containing floats’ number of elements (5).

Determining an array’s Number of Elements and Element Size

You can view an array’s total number of elements with the attribute size and the number of bytes required to store each element with itemsize:

In [12]: integers.size

Out[12]: 6

In [13]: integers.itemsize # 4 if C compiler uses 32-bit ints

Out[13]: 8

In [14]: floats.size

Out[14]: 5

In [15]: floats.itemsize

Out[15]: 8

Note that integers’ size is the product of the shape tuple’s values—two rows of three elements each for a total of six elements. In each case, itemsize is 8 because integers contains int64 values and floats contains float64 values, which each occupy 8 bytes.

Iterating Through a Multidimensional array’s Elements

You’ll generally manipulate arrays using concise functional-style programming techniques. However, because arrays are iterable, you can use external iteration if you’d like:

In [16]: for row in integers:

 ...: for column in row:

 ...: print(column, end=' ')

 ...: print()

 ...:

1 2 3

4 5 6

You can iterate through a multidimensional array as if it were one-dimensional by using its flat attribute:

In [17]: for i in integers.flat:

 ...: print(i, end=' ')

 ...:

1 2 3 4 5 6

[image: tick mark] Self Check

	(True/False) By default, NumPy displays trailing 0s to the right of the decimal point in a floating-point value.

Answer: False. By default, NumPy does not display trailing 0s in the fractional part of a floating-point value

	(IPython Session) For the two-dimensional array in the previous section’s Self Check, display the number of dimensions and shape of the array.

Answer:

In [1]: import numpy as np

In [2]: a = np.array([[2, 4, 6, 8, 10], [1, 3, 5, 7, 9]])

In [3]: a.ndim

Out[3]: 2

In [4]: a.shape

Out[4]: (2, 5)

7.4 Filling arrays with Specific Values

NumPy provides functions zeros, ones and full for creating arrays containing 0s, 1s or a specified value, respectively. By default, zeros and ones create arrays containing float64 values. We’ll show how to customize the element type momentarily. The first argument to these functions must be an integer or a tuple of integers specifying the desired dimensions. For an integer, each function returns a one-dimensional array with the specified number of elements:

In [1]: import numpy as np

In [2]: np.zeros(5)

Out[2]: array([0., 0., 0., 0., 0.])

For a tuple of integers, these functions return a multidimensional array with the specified dimensions. You can specify the array’s element type with the zeros and ones function’s dtype keyword argument:

In [3]: np.ones((2, 4), dtype=int)

Out[3]:

array([[1, 1, 1, 1],

 [1, 1, 1, 1]])

The array returned by full contains elements with the second argument’s value and type:

In [4]: np.full((3, 5), 13)

Out[4]:

array([[13, 13, 13, 13, 13],

 [13, 13, 13, 13, 13],

 [13, 13, 13, 13, 13]])

7.5 Creating arrays from Ranges

NumPy provides optimized functions for creating arrays from ranges. We focus on simple evenly spaced integer and floating-point ranges, but NumPy also supports nonlinear ranges.1

1. https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html.

Creating Integer Ranges with arange

Let’s use NumPy’s arange function to create integer ranges—similar to using built-in function range. In each case, arange first determines the resulting array’s number of elements, allocates the memory, then stores the specified range of values in the array:

In [1]: import numpy as np

In [2]: np.arange(5)

Out[2]: array([0, 1, 2, 3, 4])

In [3]: np.arange(5, 10)

Out[3]: array([5, 6, 7, 8, 9])

In [4]: np.arange(10, 1, -2)

Out[4]: array([10, 8, 6, 4, 2])

Though you can create arrays by passing ranges as arguments, always use arange as it’s optimized for arrays. Soon we’ll show how to determine the execution time of various operations so you can compare their performance.

Creating Floating-Point Ranges with linspace

You can produce evenly spaced floating-point ranges with NumPy’s linspace function. The function’s first two arguments specify the starting and ending values in the range, and the ending value is included in the array. The optional keyword argument num specifies the number of evenly spaced values to produce—this argument’s default value is 50:

In [5]: np.linspace(0.0, 1.0, num=5)

Out[5]: array([0. , 0.25, 0.5 , 0.75, 1.])

Reshaping an array

You also can create an array from a range of elements, then use array method reshape to transform the one-dimensional array into a multidimensional array. Let’s create an array containing the values from 1 through 20, then reshape it into four rows by five columns:

In [6]: np.arange(1, 21).reshape(4, 5)

Out[6]:

array([[1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10],

 [11, 12, 13, 14, 15],

 [16, 17, 18, 19, 20]])

Note the chained method calls in the preceding snippet. First, arange produces an array containing the values 1–20. Then we call reshape on that array to get the 4-by-5 array that was displayed.

You can reshape any array, provided that the new shape has the same number of elements as the original. So a six-element one-dimensional array can become a 3-by-2 or 2-by-3 array, and vice versa, but attempting to reshape a 15-element array into a 4-by-4 array (16 elements) causes a ValueError.

Displaying Large arrays

When displaying an array, if there are 1000 items or more, NumPy drops the middle rows, columns or both from the output. The following snippets generate 100,000 elements. The first case shows all four rows but only the first and last three of the 25,000 columns. The notation ... represents the missing data. The second case shows the first and last three of the 100 rows, and the first and last three of the 1000 columns:

In [7]: np.arange(1, 100001).reshape(4, 25000)

Out[7]:

array([[1, 2, 3, ..., 24998, 24999, 25000],

 [25001, 25002, 25003, ..., 49998, 49999, 50000],

 [50001, 50002, 50003, ..., 74998, 74999, 75000],

 [75001, 75002, 75003, ..., 99998, 99999, 100000]])

In [8]: np.arange(1, 100001).reshape(100, 1000)

Out[8]:

array([[1, 2, 3, ..., 998, 999, 1000],

 [1001, 1002, 1003, ..., 1998, 1999, 2000],

 [2001, 2002, 2003, ..., 2998, 2999, 3000],

 ...,

 [97001, 97002, 97003, ..., 97998, 97999, 98000],

 [98001, 98002, 98003, ..., 98998, 98999, 99000],

 [99001, 99002, 99003, ..., 99998, 99999, 100000]])

[image: tick mark] Self Check

	(Fill-In) NumPy function returns an ndarray containing evenly spaced floating-point values.

Answer: linspace.

	(IPython Session) Use NumPy function arange to create an array of 20 even integers from 2 through 40, then reshape the result into a 4-by-5 array.

Answer:

In [1]: import numpy as np

In [2]: np.arange(2, 41, 2).reshape(4, 5)

Out[2]:

array([[2, 4, 6, 8, 10],

 [12, 14, 16, 18, 20],

 [22, 24, 26, 28, 30],

 [32, 34, 36, 38, 40]])

7.6 List vs. array Performance: Introducing %timeit

Most array operations execute significantly faster than corresponding list operations. To demonstrate, we’ll use the IPython %timeit magic command, which times the average duration of operations. Note that the times displayed on your system may vary from what we show here.

Timing the Creation of a List Containing Results of 6,000,000 Die Rolls

We’ve demonstrated rolling a six-sided die 6,000,000 times. Here, let’s use the random module’s randrange function with a list comprehension to create a list of six million die rolls and time the operation using %timeit. Note that we used the line-continuation character (\) to split the statement in snippet [2] over two lines:

In [1]: import random

In [2]: %timeit rolls_list = \

 ...: [random.randrange(1, 7) for i in range(0, 6_000_000)]

6.29 s ± 119 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

By default, %timeit executes a statement in a loop, and it runs the loop seven times. If you do not indicate the number of loops, %timeit chooses an appropriate value. In our testing, operations that on average took more than 500 milliseconds iterated only once, and operations that took fewer than 500 milliseconds iterated 10 times or more.

After executing the statement, %timeit displays the statement’s average execution time, as well as the standard deviation of all the executions. On average, %timeit indicates that it took 6.29 seconds (s) to create the list with a standard deviation of 119 milliseconds (ms). In total, the preceding snippet took about 44 seconds to run the snippet seven times.

Timing the Creation of an array Containing Results of 6,000,000 Die Rolls

Now, let’s use the randint function from the numpy.random module to create an array of 6,000,000 die rolls

In [3]: import numpy as np

In [4]: %timeit rolls_array = np.random.randint(1, 7, 6_000_000)

72.4 ms ± 635 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

On average, %timeit indicates that it took only 72.4 milliseconds with a standard deviation of 635 microseconds (µs) to create the array. In total, the preceding snippet took just under half a second to execute on our computer—about 1/100th of the time snippet [2] took to execute. The operation is two orders of magnitude faster with array!

60,000,000 and 600,000,000 Die Rolls

Now, let’s create an array of 60,000,000 die rolls:

In [5]: %timeit rolls_array = np.random.randint(1, 7, 60_000_000)

873 ms ± 29.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

On average, it took only 873 milliseconds to create the array.

Finally, let’s do 600,000,000 million die rolls:

In [6]: %timeit rolls_array = np.random.randint(1, 7, 600_000_000)

10.1 s ± 232 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

It took about 10 seconds to create 600,000,000 elements with NumPy vs. about 6 seconds to create only 6,000,000 elements with a list comprehension.

Based on these timing studies, you can see clearly why arrays are preferred over lists for compute-intensive operations. In the data science case studies, we’ll enter the performance-intensive worlds of big data and AI. We’ll see how clever hardware, software, communications and algorithm designs combine to meet the often enormous computing challenges of today’s applications.

Customizing the %timeit Iterations

The number of iterations within each %timeit loop and the number of loops are customizable with the -n and -r options. The following executes snippet [4]’s statement three times per loop and runs the loop twice:2

2. For most readers, using %timeit’s default settings should be fine.

In [7]: %timeit -n3 -r2 rolls_array = np.random.randint(1, 7, 6_000_000)

85.5 ms ± 5.32 ms per loop (mean ± std. dev. of 2 runs, 3 loops each)

Other IPython Magics

IPython provides dozens of magics for a variety of tasks—for a complete list, see the IPython magics documentation.3 Here are a few helpful ones:
3. http://ipython.readthedocs.io/en/stable/interactive/magics.html.

	%load to read code into IPython from a local file or URL.

	%save to save snippets to a file.

	%run to execute a .py file from IPython.

	%precision to change the default floating-point precision for IPython outputs.

	%cd to change directories without having to exit IPython first.

	%edit to launch an external editor—handy if you need to modify more complex snippets.

	%history to view a list of all snippets and commands you’ve executed in the current IPython session.

[image: tick mark] Self Check

	(IPython Session) Use %timeit to compare the execution time of the following two statements. The first uses a list comprehension to create a list of the integers from 0 to 9,999,999, then totals them with the built-in sum function. The second statement does the same thing using an array and its sum method.

sum([x for x in range(10_000_000)])

np.arange(10_000_000).sum()

Answer:

In [1]: import numpy as np

In [2]: %timeit sum([x for x in range(10_000_000)])

708 ms ± 28.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [3]: %timeit np.arange(10_000_000).sum()

27.2 ms ± 676 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The statement with the list comprehension took 26 times longer to execute than the one with the array.

7.7 array Operators

NumPy provides many operators which enable you to write simple expressions that perform operations on entire arrays. Here, we demonstrate arithmetic between arrays and numeric values and between arrays of the same shape.

Arithmetic Operations with arrays and Individual Numeric Values

First, let’s perform element-wise arithmetic with arrays and numeric values by using arithmetic operators and augmented assignments. Element-wise operations are applied to every element, so snippet [4] multiplies every element by 2 and snippet [5] cubes every element. Each returns a new array containing the result:

In [1]: import numpy as np

In [2]: numbers = np.arange(1, 6)

In [3]: numbers

Out[3]: array([1, 2, 3, 4, 5])

In [4]: numbers * 2

Out[4]: array([2, 4, 6, 8, 10])

In [5]: numbers ** 3

Out[5]: array([1, 8, 27, 64, 125])

In [6]: numbers # numbers is unchanged by the arithmetic operators

Out[6]: array([1, 2, 3, 4, 5])

Snippet [6] shows that the arithmetic operators did not modify numbers. Operators + and * are commutative, so snippet [4] could also be written as 2 * numbers.

Augmented assignments modify every element in the left operand.

In [7]: numbers += 10

In [8]: numbers

Out[8]: array([11, 12, 13, 14, 15])

Broadcasting

Normally, the arithmetic operations require as operands two arrays of the same size and shape. When one operand is a single value, called a scalar, NumPy performs the element-wise calculations as if the scalar were an array of the same shape as the other operand, but with the scalar value in all its elements. This is called broadcasting. Snippets [4], [5] and [7] each use this capability. For example, snippet [4] is equivalent to:

numbers * [2, 2, 2, 2, 2]

Broadcasting also can be applied between arrays of different sizes and shapes, enabling some concise and powerful manipulations. We’ll show more examples of broadcasting later in the chapter when we introduce NumPy’s universal functions.

Arithmetic Operations Between arrays

You may perform arithmetic operations and augmented assignments between arrays of the same shape. Let’s multiply the one-dimensional arrays numbers and numbers2 (created below) that each contain five elements:

In [9]: numbers2 = np.linspace(1.1, 5.5, 5)

In [10]: numbers2

Out[10]: array([1.1, 2.2, 3.3, 4.4, 5.5])

In [11]: numbers * numbers2

Out[11]: array([12.1, 26.4, 42.9, 61.6, 82.5])

The result is a new array formed by multiplying the arrays element-wise in each operand—11 * 1.1, 12 * 2.2, 13 * 3.3, etc. Arithmetic between arrays of integers and floating-point numbers results in an array of floating-point numbers.

Comparing arrays

You can compare arrays with individual values and with other arrays. Comparisons are performed element-wise. Such comparisons produce arrays of Boolean values in which each element’s True or False value indicates the comparison result:

In [12]: numbers

Out[12]: array([11, 12, 13, 14, 15])

In [13]: numbers >= 13

Out[13]: array([False, False, True, True, True])

In [14]: numbers2

Out[14]: array([1.1, 2.2, 3.3, 4.4, 5.5])

In [15]: numbers2 < numbers

Out[15]: array([True, True, True, True, True])

In [16]: numbers == numbers2

Out[16]: array([False, False, False, False, False])

In [17]: numbers == numbers

Out[17]: array([True, True, True, True, True])

Snippet [13] uses broadcasting to determine whether each element of numbers is greater than or equal to 13. The remaining snippets compare the corresponding elements of each array operand.

[image: tick mark] Self Check

	(True/False) When one of the operands of an array operator is a scalar, NumPy uses broadcasting to perform the calculation as if the scalar were an array of the same shape as the other operand, but containing the scalar value in all its elements.

Answer: True.

	(IPython Session) Create an array of the values from 1 through 5, then use broadcasting to square each value.

Answer:

In [1]: import numpy as np

In [2]: np.arange(1, 6) ** 2

Out[2]: array([1, 4, 9, 16, 25])

7.8 NumPy Calculation Methods

An array has various methods that perform calculations using its contents. By default, these methods ignore the array’s shape and use all the elements in the calculations. For example, calculating the mean of an array totals all of its elements regardless of its shape, then divides by the total number of elements. You can perform these calculations on each dimension as well. For example, in a two-dimensional array, you can calculate each row’s mean and each column’s mean.

Consider an array representing four students’ grades on three exams:

In [1]: import numpy as np

In [2]: grades = np.array([[87, 96, 70], [100, 87, 90],

 ...: [94, 77, 90], [100, 81, 82]])

 ...:

In [3]: grades

Out[3]:

array([[87, 96, 70],

 [100, 87, 90],

 [94, 77, 90],

 [100, 81, 82]])

We can use methods to calculate sum, min, max, mean, std (standard deviation) and var (variance)—each is a functional-style programming reduction:

In [4]: grades.sum()

Out[4]: 1054

In [5]: grades.min()

Out[5]: 70

In [6]: grades.max()

Out[6]: 100

In [7]: grades.mean()

Out[7]: 87.83333333333333

In [8]: grades.std()

Out[8]: 8.792357792739987

In [9]: grades.var()

Out[9]: 77.30555555555556

Calculations by Row or Column

Many calculation methods can be performed on specific array dimensions, known as the array’s axes. These methods receive an axis keyword argument that specifies which dimension to use in the calculation, giving you a quick way to perform calculations by row or column in a two-dimensional array.

Assume that you want to calculate the average grade on each exam, represented by the columns of grades. Specifying axis=0 performs the calculation on all the row values within each column:

In [10]: grades.mean(axis=0)

Out[10]: array([95.25, 85.25, 83.])

So 95.25 above is the average of the first column’s grades (87, 100, 94 and 100), 85.25 is the average of the second column’s grades (96, 87, 77 and 81) and 83 is the average of the third column’s grades (70, 90, 90 and 82). Again, NumPy does not display trailing 0s to the right of the decimal point in '83.'. Also note that it does display all element values in the same field width, which is why '83.' is followed by two spaces.

Similarly, specifying axis=1 performs the calculation on all the column values within each individual row. To calculate each student’s average grade for all exams, we can use:

In [11]: grades.mean(axis=1)

Out[11]: array([84.33333333, 92.33333333, 87. , 87.66666667])

This produces four averages—one each for the values in each row. So 84.33333333 is the average of row 0’s grades (87, 96 and 70), and the other averages are for the remaining rows.

NumPy arrays have many more calculation methods. For the complete list, see

https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html

[image: tick mark] Self Check

	(Fill-In) NumPy functions and calculate variance and standard deviation, respectively.

Answer: var, std.

	(IPython Session) Use NumPy random-number generation to create an array of twelve random grades in the range 60 through 100, then reshape the result into a 3-by-4 array. Calculate the average of all the grades, the averages of the grades in each column and the averages of the grades in each row.

Answer:

In [1]: import numpy as np

In [2]: grades = np.random.randint(60, 101, 12).reshape(3, 4)

In [3]: grades

Out[3]:

array([[94, 72, 76, 91],

 [65, 78, 66, 70],

 [65, 60, 63, 72]])

In [4]: grades.mean()

Out[4]: 72.66666666666667

In [5]: grades.mean(axis=0)

Out[5]: array([74.66666667, 70. , 68.33333333, 77.66666667])

In [6]: grades.mean(axis=1)

Out[6]: array([83.25, 69.75, 65.])

7.9 Universal Functions

NumPy offers dozens of standalone universal functions (or ufuncs) that perform various element-wise operations. Each performs its task using one or two array or array-like (such as lists) arguments. Some of these functions are called when you use operators like + and * on arrays. Each returns a new array containing the results.

Let’s create an array and calculate the square root of its values, using the sqrt universal function:

In [1]: import numpy as np

In [2]: numbers = np.array([1, 4, 9, 16, 25, 36])

In [3]: np.sqrt(numbers)

Out[3]: array([1., 2., 3., 4., 5., 6.])

Let’s add two arrays with the same shape, using the add universal function:

In [4]: numbers2 = np.arange(1, 7) * 10

In [5]: numbers2

Out[5]: array([10, 20, 30, 40, 50, 60])

In [6]: np.add(numbers, numbers2)

Out[6]: array([11, 24, 39, 56, 75, 96])

The expression np.add(numbers, numbers2) is equivalent to:

numbers + numbers2

Broadcasting with Universal Functions

Let’s use the multiply universal function to multiply every element of numbers2 by the scalar value 5:

In [7]: np.multiply(numbers2, 5)

Out[7]: array([50, 100, 150, 200, 250, 300])

The expression np.multiply(numbers2, 5) is equivalent to:

numbers2 * 5

Let’s reshape numbers2 into a 2-by-3 array, then multiply its values by a one-dimensional array of three elements:

In [8]: numbers3 = numbers2.reshape(2, 3)

In [9]: numbers3

Out[9]:

array([[10, 20, 30],

 [40, 50, 60]])

In [10]: numbers4 = np.array([2, 4, 6])

In [11]: np.multiply(numbers3, numbers4)

Out[11]:

array([[20, 80, 180],

 [80, 200, 360]])

This works because numbers4 has the same length as each row of numbers3, so NumPy can apply the multiply operation by treating numbers4 as if it were the following array:

array([[2, 4, 6],

[2, 4, 6]])

If a universal function receives two arrays of different shapes that do not support broadcasting, a ValueError occurs. You can view the broadcasting rules at:

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Other Universal Functions

The NumPy documentation lists universal functions in five categories—math, trigonometry, bit manipulation, comparison and floating point. The following table lists some functions from each category. You can view the complete list, their descriptions and more information about universal functions at:
https://docs.scipy.org/doc/numpy/reference/ufuncs.html

NumPy universal functions

	Math—add, subtract, multiply, divide, remainder, exp, log, sqrt, power, and more.

Trigonometry—sin, cos, tan, hypot, arcsin, arccos, arctan, and more.

Bit manipulation—bitwise_and, bitwise_or, bitwise_xor, invert, left_shift and right_shift.

Comparison—greater, greater_equal, less, less_equal, equal, not_equal, logical_and, logical_or, logical_xor, logical_not, minimum, maximum, and more.

Floating point—floor, ceil, isinf, isnan, fabs, trunc, and more.

[image: tick mark] Self Check

	(Fill-In) NumPy offers dozens of standalone functions, which it calls .

Answer: universal functions (or ufuncs).

	(IPython Session) Create an array of the values from 1 through 5, then use the power universal function and broadcasting to cube each value.

Answer:

In [1]: import numpy as np

In [2]: numbers = np.arange(1, 6)

In [3]: np.power(numbers, 3)

Out[3]: array([1, 8, 27, 64, 125])

7.10 Indexing and Slicing

One-dimensional arrays can be indexed and sliced using the same syntax and techniques we demonstrated in the “Sequences: Lists and Tuples” chapter. Here, we focus on array-specific indexing and slicing capabilities.

Indexing with Two-Dimensional arrays

To select an element in a two-dimensional array, specify a tuple containing the element’s row and column indices in square brackets (as in snippet [4]):

In [1]: import numpy as np

In [2]: grades = np.array([[87, 96, 70], [100, 87, 90],

 ...: [94, 77, 90], [100, 81, 82]])

 ...:

In [3]: grades

Out[3]:

array([[87, 96, 70],

 [100, 87, 90],

 [94, 77, 90],

 [100, 81, 82]])

In [4]: grades[0, 1] # row 0, column 1

Out[4]: 96

Selecting a Subset of a Two-Dimensional array’s Rows

To select a single row, specify only one index in square brackets:

In [5]: grades[1]

Out[5]: array([100, 87, 90])

To select multiple sequential rows, use slice notation:

In [6]: grades[0:2]

Out[6]:

array([[87, 96, 70],

 [100, 87, 90]])

To select multiple non-sequential rows, use a list of row indices:

In [7]: grades[[1, 3]]

Out[7]:

array([[100, 87, 90],

 [100, 81, 82]])

Selecting a Subset of a Two-Dimensional array’s Columns

You can select subsets of the columns by providing a tuple specifying the row(s) and column(s) to select. Each can be a specific index, a slice or a list. Let’s select only the elements in the first column:

In [8]: grades[:, 0]

Out[8]: array([87, 100, 94, 100])

The 0 after the comma indicates that we’re selecting only column 0. The : before the comma indicates which rows within that column to select. In this case, : is a slice representing all rows. This also could be a specific row number, a slice representing a subset of the rows or a list of specific row indices to select, as in snippets [5]–[7].

You can select consecutive columns using a slice:

In [9]: grades[:, 1:3]

Out[9]:

array([[96, 70],

 [87, 90],

 [77, 90],

 [81, 82]])

or specific columns using a list of column indices:

In [10]: grades[:, [0, 2]]

Out[10]:

array([[87, 70],

 [100, 90],

 [94, 90],

 [100, 82]])

[image: tick mark] Self Check

	(IPython Session) Given the following array:

array([[1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10],

 [11, 12, 13, 14, 15]])

write statements to perform the following tasks:

	Select the second row.

	Select the first and third rows.

	Select the middle three columns.

Answer:

In [1]: import numpy as np

In [2]: a = np.arange(1, 16).reshape(3, 5)

In [3]: a

Out[3]:

array([[1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10],

 [11, 12, 13, 14, 15]])

In [4]: a[1]

Out[4]: array([6, 7, 8, 9, 10])

In [5]: a[[0, 2]]

Out[5]:

array([[1, 2, 3, 4, 5],

 [11, 12, 13, 14, 15]])

In [6]: a[:, 1:4]

Out[6]:

array([[2, 3, 4],

 [7, 8, 9],

 [12, 13, 14]])

7.11 Views: Shallow Copies

The previous chapter introduced view objects—that is, objects that “see” the data in other objects, rather than having their own copies of the data. Views are also known as shallow copies. Various array methods and slicing operations produce views of an array’s data.

The array method view returns a new array object with a view of the original array object’s data. First, let’s create an array and a view of that array:

In [1]: import numpy as np

In [2]: numbers = np.arange(1, 6)

In [3]: numbers

Out[3]: array([1, 2, 3, 4, 5])

In [4]: numbers2 = numbers.view()

In [5]: numbers2

Out[5]: array([1, 2, 3, 4, 5])

We can use the built-in id function to see that numbers and numbers2 are different objects:

In [6]: id(numbers)

Out[6]: 4462958592

In [7]: id(numbers2)

Out[7]: 4590846240

To prove that numbers2 views the same data as numbers, let’s modify an element in numbers, then display both arrays:

In [8]: numbers[1] *= 10

In [9]: numbers2

Out[9]: array([1, 20, 3, 4, 5])

In [10]: numbers

Out[10]: array([1, 20, 3, 4, 5])

Similarly, changing a value in the view also changes that value in the original array:

In [11]: numbers2[1] /= 10

In [12]: numbers

Out[12]: array([1, 2, 3, 4, 5])

In [13]: numbers2

Out[13]: array([1, 2, 3, 4, 5])

Slice Views

Slices also create views. Let’s make numbers2 a slice that views only the first three elements of numbers:

In [14]: numbers2 = numbers[0:3]

In [15]: numbers2

Out[15]: array([1, 2, 3])

Again, we can confirm that numbers and numbers2 are different objects with id:

In [16]: id(numbers)

Out[16]: 4462958592

In [17]: id(numbers2)

Out[17]: 4590848000

We can confirm that numbers2 is a view of only the first three numbers elements by attempting to access numbers2[3], which produces an IndexError:

In [18]: numbers2[3]

IndexError Traceback (most recent call last)

<ipython-input-16-582053f52daa> in <module>()

----> 1 numbers2[3]

IndexError: index 3 is out of bounds for axis 0 with size 3

Now, let’s modify an element both arrays share, then display them. Again, we see that numbers2 is a view of numbers:

In [19]: numbers[1] *= 20

In [20]: numbers

Out[20]: array([1, 2, 3, 4, 5])

In [21]: numbers2

Out[21]: array([1, 40, 3])

[image:] Self Check

	(Fill-In) A view is also known as a(n) .

Answer: shallow copy.

7.12 Deep Copies

Though views are separate array objects, they save memory by sharing element data from other arrays. However, when sharing mutable values, sometimes it’s necessary to create a deep copy with independent copies of the original data. This is especially important in multi-core programming, where separate parts of your program could attempt to modify your data at the same time, possibly corrupting it.

The array method copy returns a new array object with a deep copy of the original array object’s data. First, let’s create an array and a deep copy of that array:

In [1]: import numpy as np

In [2]: numbers = np.arange(1, 6)

In [3]: numbers

Out[3]: array([1, 2, 3, 4, 5])

In [4]: numbers2 = numbers.copy()

In [5]: numbers2

Out[5]: array([1, 2, 3, 4, 5])

To prove that numbers2 has a separate copy of the data in numbers, let’s modify an element in numbers, then display both arrays:

In [6]: numbers[1] *= 10

In [7]: numbers

Out[7]: array([1, 20, 3, 4, 5])

In [8]: numbers2

Out[8]: array([1, 2, 3, 4, 5])

As you can see, the change appears only in numbers.

Module copy—Shallow vs. Deep Copies for Other Types of Python Objects

In previous chapters, we covered shallow copying. In this chapter, we’ve covered how to deep copy array objects using their copy method. If you need deep copies of other types of Python objects, pass them to the copy module’s deepcopy function.

[image: tick mark] Self Check

	(True/False) The array method copy returns a new array that is a view (shallow copy) of the original array.

Answer: False. The array method copy produces a deep copy of the original array.

	(True/False) Module copy provides function deep_copy, which returns a deep copy of its argument.

Answer: False. The name of the function is deepcopy.

7.13 Reshaping and Transposing

We’ve used array method reshape to produce two-dimensional arrays from one-dimensional ranges. NumPy provides various other ways to reshape arrays.

reshape vs. resize

The array methods reshape and resize both enable you to change an array’s dimensions. Method reshape returns a view (shallow copy) of the original array with the new dimensions. It does not modify the original array:

In [1]: import numpy as np

In [2]: grades = np.array([[87, 96, 70], [100, 87, 90]])

In [3]: grades

Out[3]:

array([[87, 96, 70],

 [100, 87, 90]])

In [4]: grades.reshape(1, 6)

Out[4]: array([[87, 96, 70, 100, 87, 90]])

In [5]: grades

Out[5]:

array([[87, 96, 70],

 [100, 87, 90]])

Method resize modifies the original array’s shape:

In [6]: grades.resize(1, 6)

In [7]: grades

Out[7]: array([[87, 96, 70, 100, 87, 90]])

flatten vs. ravel

You can take a multidimensional array and flatten it into a single dimension with the methods flatten and ravel. Method flatten deep copies the original array’s data:

In [8]: grades = np.array([[87, 96, 70], [100, 87, 90]])

In [9]: grades

Out[9]:

array([[87, 96, 70],

 [100, 87, 90]])

In [10]: flattened = grades.flatten()

In [11]: flattened

Out[11]: array([87, 96, 70, 100, 87, 90])

In [12]: grades

Out[12]:

array([[87, 96, 70],

 [100, 87, 90]])

To confirm that grades and flattened do not share the data, let’s modify an element of flattened, then display both arrays:

In [13]: flattened[0] = 100

In [14]: flattened

Out[14]: array([100, 96, 70, 100, 87, 90])

In [15]: grades

Out[15]:

array([[87, 96, 70],

 [100, 87, 90]])

Method ravel produces a view of the original array, which shares the grades array’s data:

In [16]: raveled = grades.ravel()

In [17]: raveled

Out[17]: array([87, 96, 70, 100, 87, 90])

In [18]: grades

Out[18]:

array([[87, 96, 70],

 [100, 87, 90]])

To confirm that grades and raveled share the same data, let’s modify an element of raveled, then display both arrays:

In [19]: raveled[0] = 100

In [20]: raveled

Out[20]: array([100, 96, 70, 100, 87, 90])

In [21]: grades

Out[21]:

array([[100, 96, 70],

 [100, 87, 90]])

Transposing Rows and Columns

You can quickly transpose an array’s rows and columns—that is “flip” the array, so the rows become the columns and the columns become the rows. The T attribute returns a transposed view (shallow copy) of the array. The original grades array represents two students’ grades (the rows) on three exams (the columns). Let’s transpose the rows and columns to view the data as the grades on three exams (the rows) for two students (the columns):

In [22]: grades.T

Out[22]:

array([[100, 100],

 [96, 87],

 [70, 90]])

Transposing does not modify the original array:

In [23]: grades

Out[23]:

array([[100, 96, 70],

 [100, 87, 90]])

Horizontal and Vertical Stacking

You can combine arrays by adding more columns or more rows—known as horizontal stacking and vertical stacking. Let’s create another 2-by-3 array of grades:

In [24]: grades2 = np.array([[94, 77, 90], [100, 81, 82]])

Let’s assume grades2 represents three additional exam grades for the two students in the grades array. We can combine grades and grades2 with NumPy’s hstack (horizontal stack) function by passing a tuple containing the arrays to combine. The extra parentheses are required because hstack expects one argument:

In [25]: np.hstack((grades, grades2))

Out[25]:

array([[100, 96, 70, 94, 77, 90],

 [100, 87, 90, 100, 81, 82]])

Next, let’s assume that grades2 represents two more students’ grades on three exams. In this case, we can combine grades and grades2 with NumPy’s vstack (vertical stack) function:

In [26]: np.vstack((grades, grades2))

Out[26]:

array([[100, 96, 70],

 [100, 87, 90],

 [94, 77, 90],

 [100, 81, 82]])

[image: tick mark] Self Check

	(IPython Session) Given a 2-by-3 array:

array([[1, 2, 3],

 [4, 5, 6]])

use hstack and vstack to produce the following array:

array([[1, 2, 3, 1, 2, 3],

 [4, 5, 6, 4, 5, 6],

 [1, 2, 3, 1, 2, 3],

 [4, 5, 6, 4, 5, 6]])

Answer:

In [1]: import numpy as np

In [2]: a = np.arange(1, 7).reshape(2, 3)

In [3]: a = np.hstack((a, a))

In [4]: a = np.vstack((a, a))

In [5]: a

Out[5]:

array([[1, 2, 3, 1, 2, 3],

 [4, 5, 6, 4, 5, 6],

 [1, 2, 3, 1, 2, 3],

 [4, 5, 6, 4, 5, 6]])

7.14 Intro to Data Science: pandas Series and DataFrames

NumPy’s array is optimized for homogeneous numeric data that’s accessed via integer indices. Data science presents unique demands for which more customized data structures are required. Big data applications must support mixed data types, customized indexing, missing data, data that’s not structured consistently and data that needs to be manipulated into forms appropriate for the databases and data analysis packages you use.

Pandas is the most popular library for dealing with such data. It provides two key collections that you’ll use in several of our Intro to Data Science sections and throughout the data science case studies—Series for one-dimensional collections and DataFrames for two-dimensional collections. You can use pandas’ MultiIndex to manipulate multi-dimensional data in the context of Series and DataFrames.

Wes McKinney created pandas in 2008 while working in industry. The name pandas is derived from the term “panel data,” which is data for measurements over time, such as stock prices or historical temperature readings. McKinney needed a library in which the same data structures could handle both time- and non-time-based data with support for data alignment, missing data, common database-style data manipulations, and more.4
4. McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, pp. 123–165. Sebastopol, CA: OReilly Media, 2018.

NumPy and pandas are intimately related. Series and DataFrames use arrays “under the hood.” Series and DataFrames are valid arguments to many NumPy operations. Similarly, arrays are valid arguments to many Series and DataFrame operations.

Pandas is a massive topic—the PDF of its documentation5 is over 2000 pages. In this and the next chapters’ Intro to Data Science sections, we present an introduction to pandas. We discuss its Series and DataFrames collections, and use them in support of data preparation. You’ll see that Series and DataFrames make it easy for you to perform common tasks like selecting elements a variety of ways, filter/map/reduce operations (central to functional-style programming and big data), mathematical operations, visualization and more.
5. For the latest pandas documentation, see http://pandas.pydata.org/pandas-docs/stable/.

7.14.1 pandas Series

A Series is an enhanced one-dimensional array. Whereas arrays use only zero-based integer indices, Series support custom indexing, including even non-integer indices like strings. Series also offer additional capabilities that make them more convenient for many data-science oriented tasks. For example, Series may have missing data, and many Series operations ignore missing data by default.

Creating a Series with Default Indices

By default, a Series has integer indices numbered sequentially from 0. The following creates a Series of student grades from a list of integers:

In [1]: import pandas as pd

In [2]: grades = pd.Series([87, 100, 94])

The initializer also may be a tuple, a dictionary, an array, another Series or a single value. We’ll show a single value momentarily.

Displaying a Series

Pandas displays a Series in two-column format with the indices left aligned in the left column and the values right aligned in the right column. After listing the Series elements, pandas shows the data type (dtype) of the underlying array’s elements:

In [3]: grades

Out[3]:

0 87

1 100

2 94

dtype: int64

Note how easy it is to display a Series in this format, compared to the corresponding code for displaying a list in the same two-column format.

Creating a Series with All Elements Having the Same Value

You can create a series of elements that all have the same value:

In [4]: pd.Series(98.6, range(3))

Out[4]:

0 98.6

1 98.6

2 98.6

dtype: float64

The second argument is a one-dimensional iterable object (such as a list, an array or a range) containing the Series’ indices. The number of indices determines the number of elements.

Accessing a Series’ Elements

You can access a Series’s elements by via square brackets containing an index:

In [5]: grades[0]

Out[5]: 87

Producing Descriptive Statistics for a Series

Series provides many methods for common tasks including producing various descriptive statistics. Here we show count, mean, min, max and std (standard deviation):

In [6]: grades.count()

Out[6]: 3

In [7]: grades.mean()

Out[7]: 93.66666666666667

In [8]: grades.min()

Out[8]: 87

In [9]: grades.max()

Out[9]: 100

In [10]: grades.std()

Out[10]: 6.506407098647712

Each of these is a functional-style reduction. Calling Series method describe produces all these stats and more:

In [11]: grades.describe()

Out[11]:

count 3.000000

mean 93.666667

std 6.506407

min 87.000000

25% 90.500000

50% 94.000000

75% 97.000000

max 100.000000

dtype: float64

The 25%, 50% and 75% are quartiles:

	50% represents the median of the sorted values.

	25% represents the median of the first half of the sorted values.

	75% represents the median of the second half of the sorted values.

For the quartiles, if there are two middle elements, then their average is that quartile’s median. We have only three values in our Series, so the 25% quartile is the average of 87 and 94, and the 75% quartile is the average of 94 and 100. Together, the interquartile range is the 75% quartile minus the 25% quartile, which is another measure of dispersion, like standard deviation and variance. Of course, quartiles and interquartile range are more useful in larger datasets.

Creating a Series with Custom Indices

You can specify custom indices with the index keyword argument:

In [12]: grades = pd.Series([87, 100, 94], index=['Wally', 'Eva', 'Sam'])

In [13]: grades

Out[13]:

Wally 87

Eva 100

Sam 94

dtype: int64

In this case, we used string indices, but you can use other immutable types, including integers not beginning at 0 and nonconsecutive integers. Again, notice how nicely and concisely pandas formats a Series for display.

Dictionary Initializers

If you initialize a Series with a dictionary, its keys become the Series’ indices, and its values become the Series’ element values:

In [14]: grades = pd.Series({'Wally': 87, 'Eva': 100, 'Sam': 94})

In [15]: grades

Out[15]:

Wally 87

Eva 100

Sam 94

dtype: int64

Accessing Elements of a Series Via Custom Indices

In a Series with custom indices, you can access individual elements via square brackets containing a custom index value:

In [16]: grades['Eva']

Out[16]: 100

If the custom indices are strings that could represent valid Python identifiers, pandas automatically adds them to the Series as attributes that you can access via a dot (.), as in:

In [17]: grades.Wally

Out[17]: 87

Series also has built-in attributes. For example, the dtype attribute returns the underlying array’s element type:

In [18]: grades.dtype

Out[18]: dtype('int64')

and the values attribute returns the underlying array:

In [19]: grades.values

Out[19]: array([87, 100, 94])

Creating a Series of Strings

If a Series contains strings, you can use its str attribute to call string methods on the elements. First, let’s create a Series of hardware-related strings:

In [20]: hardware = pd.Series(['Hammer', 'Saw', 'Wrench'])

In [21]: hardware

Out[21]:

0 Hammer

1 Saw

2 Wrench

dtype: object

Note that pandas also right-aligns string element values and that the dtype for strings is object.

Let’s call string method contains on each element to determine whether the value of each element contains a lowercase 'a':

In [22]: hardware.str.contains('a')

Out[22]:

0 True

1 True

2 False

dtype: bool

Pandas returns a Series containing bool values indicating the contains method’s result for each element—the element at index 2 ('Wrench') does not contain an 'a', so its element in the resulting Series is False. Note that pandas handles the iteration internally for you—another example of functional-style programming. The str attribute provides many string-processing methods that are similar to those in Python’s string type. For a list, see: https://pandas.pydata.org/pandas-docs/stable/api.html#string-handling.

The following uses string method upper to produce a new Series containing the uppercase versions of each element in hardware:

In [23]: hardware.str.upper()

Out[23]:

0 HAMMER

1 SAW

2 WRENCH

dtype: object

[image: tick mark] Self Check

	(IPython Session) Use the NumPy’s random-number generation to create an array of five random integers that represent summertime temperatures in the range 60–100, then perform the following tasks:

	Convert the array into the Series named temperatures and display it.

	Determine the lowest, highest and average temperatures.

	Produce descriptive statistics for the Series.

Answer:

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: temps = np.random.randint(60, 101, 6)

In [4]: temperatures = pd.Series(temps)

In [5]: temperatures

Out[5]:

0 98

1 62

2 63

3 70

4 69

dtype: int64

In [6]: temperatures.min()

Out[6]: 62

In [7]: temperatures.max()

Out[7]: 98

In [8]: temperatures.mean()

Out[8]: 72.4

In [9]: temperatures.describe()

Out[9]:

count 5.000000

mean 72.000000

std 14.741099

min 62.000000

25% 63.000000

50% 69.000000

75% 70.000000

max 98.000000

dtype: float64

7.14.2 DataFrames

A DataFrame is an enhanced two-dimensional array. Like Series, DataFrames can have custom row and column indices, and offer additional operations and capabilities that make them more convenient for many data-science oriented tasks. DataFrames also support missing data. Each column in a DataFrame is a Series. The Series representing each column may contain different element types, as you’ll soon see when we discuss loading datasets into DataFrames.

Creating a DataFrame from a Dictionary

Let’s create a DataFrame from a dictionary that represents student grades on three exams:

In [1]: import pandas as pd

In [2]: grades_dict = {'Wally': [87, 96, 70], 'Eva': [100, 87, 90],

 ...: 'Sam': [94, 77, 90], 'Katie': [100, 81, 82],

 ...: 'Bob': [83, 65, 85]}

 ...:

In [3]: grades = pd.DataFrame(grades_dict)

In [4]: grades

Out[4]:

Wally Eva Sam Katie Bob

0 87 100 94 100 83

1 96 87 77 81 65

2 70 90 90 82 85

Pandas displays DataFrames in tabular format with the indices left aligned in the index column and the remaining columns’ values right aligned. The dictionary’s keys become the column names and the values associated with each key become the element values in the corresponding column. Shortly, we’ll show how to “flip” the rows and columns. By default, the row indices are auto-generated integers starting from 0.

Customizing a DataFrame’s Indices with the index Attribute

We could have specified custom indices with the index keyword argument when we created the DataFrame, as in:

pd.DataFrame(grades_dict, index=['Test1', 'Test2', 'Test3'])

Let’s use the index attribute to change the DataFrame’s indices from sequential integers to labels:

In [5]: grades.index = ['Test1', 'Test2', 'Test3']

In [6]: grades

Out[6]:

 Wally Eva Sam Katie Bob

Test1 87 100 94 100 83

Test2 96 87 77 81 65

Test3 70 90 90 82 85

When specifying the indices, you must provide a one-dimensional collection that has the same number of elements as there are rows in the DataFrame; otherwise, a ValueError occurs. Series also provides an index attribute for changing an existing Series’ indices.

Accessing a DataFrame’s Columns

One benefit of pandas is that you can quickly and conveniently look at your data in many different ways, including selecting portions of the data. Let’s start by getting Eva’s grades by name, which displays her column as a Series:

In [7]: grades['Eva']

Out[7]:

Test1 100

Test2 87

Test3 90

Name: Eva, dtype: int64

If a DataFrame’s column-name strings are valid Python identifiers, you can use them as attributes. Let’s get Sam’s grades with the Sam attribute:

In [8]: grades.Sam

Out[8]:

Test1 94

Test2 77

Test3 90

Name: Sam, dtype: int64

Selecting Rows via the loc and iloc Attributes

Though DataFrames support indexing capabilities with [], the pandas documentation recommends using the attributes loc, iloc, at and iat, which are optimized to access DataFrames and also provide additional capabilities beyond what you can do only with []. Also, the documentation states that indexing with [] often produces a copy of the data, which is a logic error if you attempt to assign new values to the DataFrame by assigning to the result of the [] operation.

You can access a row by its label via the DataFrame’s loc attribute. The following lists all the grades in the row 'Test1':

In [9]: grades.loc['Test1']

Out[9]:

Wally 87

Eva 100

Sam 94

Katie 100

Bob 83

Name: Test1, dtype: int64

You also can access rows by integer zero-based indices using the iloc attribute (the i in iloc means that it’s used with integer indices). The following lists all the grades in the second row:

In [10]: grades.iloc[1]

Out[10]:

Wally 96

Eva 87

Sam 77

Katie 81

Bob 65

Name: Test2, dtype: int64

Selecting Rows via Slices and Lists with the loc and iloc Attributes

The index can be a slice. When using slices containing labels with loc, the range specified includes the high index ('Test3'):

In [11]: grades.loc['Test1':'Test3']

Out[11]:

 Wally Eva Sam Katie Bob

Test1 87 100 94 100 83

Test2 96 87 77 81 65

Test3 70 90 90 82 85

When using slices containing integer indices with iloc, the range you specify excludes the high index (2):

In [12]: grades.iloc[0:2]

Out[12]:

 Wally Eva Sam Katie Bob

Test1 87 100 94 100 83

Test2 96 87 77 81 65

To select specific rows, use a list rather than slice notation with loc or iloc:

In [13]: grades.loc[['Test1', 'Test3']]

Out[13]:

 Wally Eva Sam Katie Bob

Test1 87 100 94 100 83

Test3 70 90 90 82 85

In [14]: grades.iloc[[0, 2]]

Out[14]:

 Wally Eva Sam Katie Bob

Test1 87 100 94 100 83

Test3 70 90 90 82 85

Selecting Subsets of the Rows and Columns

So far, we’ve selected only entire rows. You can focus on small subsets of a DataFrame by selecting rows and columns using two slices, two lists or a combination of slices and lists.

Suppose you want to view only Eva’s and Katie’s grades on Test1 and Test2. We can do that by using loc with a slice for the two consecutive rows and a list for the two non-consecutive columns:

In [15]: grades.loc['Test1':'Test2', ['Eva', 'Katie']]

Out[15]:

 Eva Katie

Test1 100 100

Test2 87 81

The slice 'Test1':'Test2' selects the rows for Test1 and Test2. The list ['Eva', 'Katie'] selects only the corresponding grades from those two columns.

Let’s use iloc with a list and a slice to select the first and third tests and the first three columns for those tests:

In [16]: grades.iloc[[0, 2], 0:3]

Out[16]:

 Wally Eva Sam

Test1 87 100 94

Test3 70 90 90

Boolean Indexing

One of pandas’ more powerful selection capabilities is Boolean indexing. For example, let’s select all the A grades—that is, those that are greater than or equal to 90:

In [17]: grades[grades >= 90]

Out[17]:

 Wally Eva Sam Katie Bob

Test1 NaN 100.0 94.0 100.0 NaN

Test2 96.0 NaN NaN NaN NaN

Test3 NaN 90.0 90.0 NaN NaN

Pandas checks every grade to determine whether its value is greater than or equal to 90 and, if so, includes it in the new DataFrame. Grades for which the condition is False are represented as NaN (not a number) in the new DataFrame. NaN is pandas’ notation for missing values.

Let’s select all the B grades in the range 80–89:

In [18]: grades[(grades >= 80) & (grades < 90)]

Out[18]:

 Wally Eva Sam Katie Bob

Test1 87.0 NaN NaN NaN 83.0

Test2 NaN 87.0 NaN 81.0 NaN

Test3 NaN NaN NaN 82.0 85.0

Pandas Boolean indices combine multiple conditions with the Python operator & (bitwise AND), not the and Boolean operator. For or conditions, use | (bitwise OR). NumPy also supports Boolean indexing for arrays, but always returns a one-dimensional array containing only the values that satisfy the condition.

Accessing a Specific DataFrame Cell by Row and Column

You can use a DataFrame’s at and iat attributes to get a single value from a DataFrame. Like loc and iloc, at uses labels and iat uses integer indices. In each case, the row and column indices must be separated by a comma. Let’s select Eva’s Test2 grade (87) and Wally’s Test3 grade (70)

In [19]: grades.at['Test2', 'Eva']

Out[19]: 87

In [20]: grades.iat[2, 0]

Out[20]: 70

You also can assign new values to specific elements. Let’s change Eva’s Test2 grade to 100 using at, then change it back to 87 using iat:

In [21]: grades.at['Test2', 'Eva'] = 100

In [22]: grades.at['Test2', 'Eva']

Out[22]: 100

In [23]: grades.iat[1, 2] = 87

In [24]: grades.iat[1, 2]

Out[24]: 87.0

Descriptive Statistics

Both Series and DataFrames have a describe method that calculates basic descriptive statistics for the data and returns them as a DataFrame. In a DataFrame, the statistics are calculated by column (again, soon you’ll see how to flip rows and columns):

In [25]: grades.describe()

Out[25]:

 Wally Eva Sam Katie Bob

count 3.000000 3.000000 3.000000 3.000000 3.000000

mean 84.333333 92.333333 87.000000 87.666667 77.666667

std 13.203535 6.806859 8.888194 10.692677 11.015141

min 70.000000 87.000000 77.000000 81.000000 65.000000

25% 78.500000 88.500000 83.500000 81.500000 74.000000

50% 87.000000 90.000000 90.000000 82.000000 83.000000

75% 91.500000 95.000000 92.000000 91.000000 84.000000

max 96.000000 100.000000 94.000000 100.000000 85.000000

As you can see, describe gives you a quick way to summarize your data. It nicely demonstrates the power of array-oriented programming with a clean, concise functional-style call. Pandas handles internally all the details of calculating these statistics for each column. You might be interested in seeing similar statistics on test-by-test basis so you can see how all the students performs on Tests 1, 2 and 3—we’ll show how to do that shortly.

By default, pandas calculates the descriptive statistics with floating-point values and displays them with six digits of precision. You can control the precision and other default settings with pandas’ set_option function:

In [26]: pd.set_option('precision', 2)

In [27]: grades.describe()

Out[27]:

 Wally Eva Sam Katie Bob

count 3.00 3.00 3.00 3.00 3.00

mean 84.33 92.33 87.00 87.67 77.67

std 13.20 6.81 8.89 10.69 11.02

min 70.00 87.00 77.00 81.00 65.00

25% 78.50 88.50 83.50 81.50 74.00

50% 87.00 90.00 90.00 82.00 83.00

75% 91.50 95.00 92.00 91.00 84.00

max 96.00 100.00 94.00 100.00 85.00

For student grades, the most important of these statistics is probably the mean. You can calculate that for each student simply by calling mean on the DataFrame:

In [28]: grades.mean()

Out[28]:

Wally 84.33

Eva 92.33

Sam 87.00

Katie 87.67

Bob 77.67

dtype: float64

In a moment, we’ll show how to get the average of all the students’ grades on each test in one line of additional code.

Transposing the DataFrame with the T Attribute

You can quickly transpose the rows and columns—so the rows become the columns, and the columns become the rows—by using the T attribute:

In [29]: grades.T

Out[29]:

 Test1 Test2 Test3

Wally 87 96 70

Eva 100 87 90

Sam 94 77 90

Katie 100 81 82

Bob 83 65 85

T returns a transposed view (not a copy) of the DataFrame.

Let’s assume that rather than getting the summary statistics by student, you want to get them by test. Simply call describe on grades.T, as in:

In [30]: grades.T.describe()

Out[30]:

 Test1 Test2 Test3

count 5.00 5.00 5.00

mean 92.80 81.20 83.40

std 7.66 11.54 8.23

min 83.00 65.00 70.00

25% 87.00 77.00 82.00

50% 94.00 81.00 85.00

75% 100.00 87.00 90.00

max 100.00 96.00 90.00

To see the average of all the students’ grades on each test, just call mean on the T attribute:

In [31]: grades.T.mean()

Out[31]:

Test1 92.8

Test2 81.2

Test3 83.4

dtype: float64

Sorting by Rows by Their Indices

You’ll often sort data for easier readability. You can sort a DataFrame by its rows or columns, based on their indices or values. Let’s sort the rows by their indices in descending order using sort_index and its keyword argument ascending=False (the default is to sort in ascending order). This returns a new DataFrame containing the sorted data:

In [32]: grades.sort_index(ascending=False)

Out[32]:

 Wally Eva Sam Katie Bob

Test3 70 90 90 82 85

Test2 96 87 77 81 65

Test1 87 100 94 100 83

Sorting by Column Indices

Now let’s sort the columns into ascending order (left-to-right) by their column names. Passing the axis=1 keyword argument indicates that we wish to sort the column indices, rather than the row indices—axis=0 (the default) sorts the row indices:

In [33]: grades.sort_index(axis=1)

Out[33]:

 Bob Eva Katie Sam Wally

Test1 83 100 100 94 87

Test2 65 87 81 77 96

Test3 85 90 82 90 70

Sorting by Column Values

Let’s assume we want to see Test1’s grades in descending order so we can see the students’ names in highest-to-lowest grade order. We can call the method sort_values as follows:

In [34]: grades.sort_values(by='Test1', axis=1, ascending=False)

Out[34]:

 Eva Katie Sam Wally Bob

Test1 100 100 94 87 83

Test2 87 81 77 96 65

Test3 90 82 90 70 85

The by and axis keyword arguments work together to determine which values will be sorted. In this case, we sort based on the column values (axis=1) for Test1.

Of course, it might be easier to read the grades and names if they were in a column, so we can sort the transposed DataFrame instead. Here, we did not need to specify the axis keyword argument, because sort_values sorts data in a specified column by default:

In [35]: grades.T.sort_values(by='Test1', ascending=False)

Out[35]:

 Test1 Test2 Test3

Eva 100 87 90

Katie 100 81 82

Sam 94 77 90

Wally 87 96 70

Bob 83 65 85

Finally, since you’re sorting only Test1’s grades, you might not want to see the other tests at all. So, let’s combine selection with sorting:

In [36]: grades.loc['Test1'].sort_values(ascending=False)

Out[36]:

Katie 100

Eva 100

Sam 94

Wally 87

Bob 83

Name: Test1, dtype: int64

Copy vs. In-Place Sorting

By default the sort_index and sort_values return a copy of the original DataFrame, which could require substantial memory in a big data application. You can sort the DataFrame in place, rather than copying the data. To do so, pass the keyword argument inplace=True to either sort_index or sort_values.

We’ve shown many pandas Series and DataFrame features. In the next chapter’s Intro to Data Science section, we’ll use Series and DataFrames for data munging—cleaning and preparing data for use in your database or analytics software.

[image:] Self Check

	(IPython Session) Given the following dictionary;

temps = {'Mon': [68, 89], 'Tue': [71, 93], 'Wed': [66, 82],

 'Thu': [75, 97], 'Fri': [62, 79]}

perform the following tasks:

	Convert the dictionary into the DataFrame named temperatures with 'Low' and 'High' as the indices, then display the DataFrame.

	Use the column names to select only the columns for 'Mon' through 'Wed'.

	Use the row index 'Low' to select only the low temperatures for each day.

	Set the floating-point precision to 2, then calculate the average temperature for each day.

	Calculate the average low and high temperatures.

Answer:

In [1]: import pandas as pd

In [2]: temps = {'Mon': [68, 89], 'Tue': [71, 93], 'Wed': [66, 82],

 ...: 'Thu': [75, 97], 'Fri': [62, 79]}

 ...:

In [3]: temperatures = pd.DataFrame(temps, index=['Low', 'High']) # (a)

In [4]: temperatures # (a)

Out[4]:

 Mon Tue Wed Thu Fri

Low 68 71 66 75 62

High 89 93 82 97 79

In [5]: temperatures.loc[:, 'Mon':'Wed'] # (b)

Out[5]:

 Mon Tue Wed

Low 68 71 66

High 89 93 82

In [6]: temperatures.loc['Low'] # (c)

Out[6]:

Mon 68

Tue 71

Wed 66

Thu 75

Fri 62

Name: Low, dtype: int64

In [7]: pd.set_option('precision', 2) # (d)

In [8]: temperatures.mean() # (d)

Out[8]:

Mon 78.5

Tue 82.0

Wed 74.0

Thu 86.0

Fri 70.5

dtype: float64

In [9]: temperatures.mean(axis=1) # (e)

Out[9]:

Low 68.4

High 88.0

dtype: float64

7.15 Wrap-Up

This chapter explored the use of NumPy’s high-performance ndarrays for storing and retrieving data, and for performing common data manipulations concisely and with reduced chance of errors with functional-style programming. We refer to ndarrays simply by their synonym, arrays.

The chapter examples demonstrated how to create, initialize and refer to individual elements of one- and two-dimensional arrays. We used attributes to determine an array’s size, shape and element type. We showed functions that create arrays of 0s, 1s, specific values or ranges values. We compared list and array performance with the IPython %timeit magic and saw that arrays are up to two orders of magnitude faster.

We used array operators and NumPy universal functions to perform element-wise calculations on every element of arrays that have the same shape. You also saw that NumPy uses broadcasting to perform element-wise operations between arrays and scalar values, and between arrays of different shapes. We introduced various built-in array methods for performing calculations using all elements of an array, and we showed how to perform those calculations row-by-row or column-by-column. We demonstrated various array slicing and indexing capabilities that are more powerful than those provided by Python’s built-in collections. We demonstrated various ways to reshape arrays. We discussed how to shallow copy and deep copy arrays and other Python objects.

In the Intro to Data Science section, we began our multisection introduction to the popular pandas library that you’ll use in many of the data science case study chapters. You learned that many big data applications need more flexible collections than NumPy’s arrays, collections that support mixed data types, custom indexing, missing data, data that’s not structured consistently and data that needs to be manipulated into forms appropriate for the databases and data analysis packages you use.

We showed how to create and manipulate pandas array-like one-dimensional Series and two-dimensional DataFrames. We customized Series and DataFrame indices. You saw pandas’ nicely formatted outputs and customized the precision of floating-point values. We showed various ways to access and select data in Series and DataFrames. We used method describe to calculate basic descriptive statistics for Series and DataFrames. We showed how to transpose DataFrame rows and columns via the T attribute. You saw several ways to sort DataFrames using their index values, their column names, the data in their rows and the data in their columns. You’re now familiar with four powerful array-like collections—lists, arrays, Series and DataFrames—and the contexts in which to use them. We’ll add a fifth—tensors—in the “Deep Learning” chapter.

In the next chapter, we take a deeper look at strings, string formatting and string methods. We also introduce regular expressions, which we’ll use to match patterns in text. The capabilities you’ll learn will help you prepare for the “Natural Language Processing (NLP)” chapter and other key data science chapters. In the next chapter’s Intro to Data Science section, we’ll introduce pandas data munging—preparing data for use in your database or analytics software. In subsequent chapters, we’ll use pandas for basic time-series analysis and introduce pandas visualization capabilities.

Exercises

Use IPython sessions for each exercise where practical. Each time you create or modify an array, Series or DataFrame, display the result.

	7.1 (Filling arrays) Fill a 2-by-3 array with ones, a 3-by-3 array with zeros and a 2-by-5 array with 7s.

	7.2 (Broadcasting) Use arange to create a 2-by-2 array containing the numbers 0–3. Use broadcasting to perform each of the following operations on the original array:

	Cube every element of the array.

	Add 7 to every element of the array.

	Multiply every element of the array by 2.

	7.3 (Element-Wise array Multiplication) Create a 3-by-3 array containing the even integers from 2 through 18. Create a second 3-by-3 array containing the integers from 9 down to 1, then multiply the first array by the second.

	7.4 (array from List of Lists) Create a 2-by-5 array from an argument which is a list of the two five-element lists [2, 3, 5, 7, 11] and [13, 17, 19, 23, 29].

	7.5 (Flattening arrays with flatten vs. ravel) Create a 2-by-3 array containing the first six powers of 2 beginning with 20. Flatten the array first with method flatten, then with ravel. In each case, display the result then display the original array to show that it was unmodified.

	7.6 (Research: array Method astype) Research in the NumPy documentation the array method astype, which converts an array’s elements to another type. Use linspace and reshape to create a 2-by-3 array with the values 1.1, 2.2, …, 6.6. Then use astype to convert the array to an array of integers.

	7.7 (Challenge Project: Reimplement NumPy array Output) You saw that NumPy outputs two-dimensional arrays in a nice column-based format that right-aligns every element in a field width. The field width’s size is determined by the array element value that requires the most character positions to display. To understand how powerful it is to have this formatting simply built-in, write a function that reimplements NumPy’s array formatting for two-dimensional arrays using loops. Assume the array contains only positive integer values.

	7.8 (Challenge Project: Reimplement DataFrame Output) You saw that pandas displays DataFrames in an attractive column-based format with row and column labels. The values within each column are right aligned in the same field width, which is determined by that column’s widest value. To understand how powerful it is to have this formatting built-in, write a function that reimplements DataFrame formatting using loops. Assume the DataFrame contains only positive integer values and that both the row and column labels are each integer values beginning at 0.

	7.9 (Indexing and Slicing arrays) Create an array containing the values 1–15, reshape it into a 3-by-5 array, then use indexing and slicing techniques to perform each of the following operations:

	Select row 2.

	Select column 5.

	Select rows 0 and 1.

	Select columns 2–4.

	Select the element that is in row 1 and column 4.

	Select all elements from rows 1 and 2 that are in columns 0, 2 and 4.

	7.10 (Project: Two-Player, Two-Dimensional Tic-Tac-Toe) Write a script to play two-dimensional Tic-Tac-Toe between two human players who alternate entering their moves on the same computer. Use a 3-by-3 two-dimensional array. Each player indicates their moves by entering a pair of numbers representing the row and column indices of the square in which they want to place their mark, either an 'X' or an 'O'. When the first player moves, place an 'X' in the specified square. When the second player moves, place an 'O' in the specified square. Each move must be to an empty square. After each move, determine whether the game has been won and whether it’s a draw.

	7.11 (Challenge Project: Tic-Tac-Toe with Player Against the Computer) Modify your script from the previous exercise so that the computer makes the moves for one of the players. Also, allow the player to specify whether he or she wants to go first or second.

	7.12 (Super Challenge Project: 3D Tic-Tac-Toe with Player Against the Computer) Develop a script that plays three-dimensional Tic-Tac-Toe on a 4-by-4-by-4 board. [Note: This is an extremely challenging project! In the “Deep Learning” chapter, you’ll learn techniques that will help you develop and AI-based approach to solving this problem.]

	7.13 (Research and Use Other Broadcasting Capabilities) Research the NumPy broadcasting rules, then create your own arrays to test the rules.

	7.14 (Horizontal and Vertical Stacking) Create the two-dimensional arrays

array1 = np.array([[0, 1], [2, 3]])

array2 = np.array([[4, 5], [6, 7]])

	Use vertical stacking to create the 4-by-2 array named array3 with array1 stacked on top of array2.

	Use horizontal stacking to create the 2-by-4 array named array4 with array2 to the right of array1.

	Use vertical stacking with two copies of array4 to create a 4-by-4 array5.

	Use horizontal stacking with two copies of array3 to create a 4-by-4 array6.

	7.15 (Research and Use NumPy’s concatenate Function) Research NumPy function concatenate, then use it to reimplement the previous exercise.

	7.16 (Research: NumPy tile Function) Research and use NumPy’s tile function to create a checkerboard pattern of dashes and asterisks.

	7.17 (Research: NumPy bincount Functions) Research and use the NumPy bincount function to count the number of occurrences of each non-negative integer in a 5-by-5 array of random integers in the range 0–99.

	7.18 (Median and Mode of an array) NumPy arrays offer a mean method, but not median or mode. Write functions median and mode that use existing NumPy capabilities to determine the median (middle) and mode (most frequent) of the values in an array. Your functions should determine the median and mode regardless of the array’s shape. Test your function on three arrays of different shapes.

	7.19 (Enhanced Median and Mode of an array) Modify your functions from the previous exercise to allow the user to provide an axis keyword argument so the calculations can be performed row-by-row or column-by-column on a two-dimensional array.

	7.20 (Performance Analysis) In this chapter, we used %timeit to compare the average execution times of generating a list of 6,000,000 random die rolls vs. generating an array of 6,000,000 random die rolls. Though we saw approximately two orders of magnitude performance improvement with array, we generated the list and the array using two different random-number generators and different techniques for building each collection. If you use the same techniques we showed to generate a one-element list and a one-element array, creating the list is slightly faster. Repeat the %timeit operations for one-element collections. Then do it again for 10, 100, 1000, 10,000, 100,000, and 1,000,000 elements and compare the results on your system. The table below shows the results on our system, with measurements in nanoseconds (ns), microseconds (µs), milliseconds (ms) and seconds (s).

[image: A table lists the number of values and the corresponding list of average execution time and array of average execution time.]

7.1-1 Full Alternative Text

This analysis shows why %timeit is convenient for quick performance studies. However, you also need to develop performance-analysis wisdom. Many factors can affect performance—the underlying hardware, the operating system, the interpreter or compiler you’re using, the other applications running on your computer at the same time, and many more. The way we thought about performance over the years is changing rapidly now with big data, data analytics and artificial intelligence. As we head into the AI portion of the book, you’ll place enormous performance demands on your system, so it’s always good to be thinking about performance issues.

	7.21 (Shallow vs. Deep Copy) In this chapter, we discussed shallow vs. deep copies of arrays. Python’s built-in list and dictionary types have copy methods that perform shallow copies. Using the following dictionary

dictionary = {'Sophia': [97, 88]}

demonstrate that a dictionary’s copy method indeed performs a shallow copy. To do so, call copy to make the shallow copy, modify the list stored in the original dictionary, then display both dictionaries to see that they have the same contents.

Next, use the copy module’s deepcopy function to create a deep copy of the dictionary. Modify the list stored in the original dictionary, then display both dictionaries to prove that each has its own data.

	7.22 (Pandas: Series) Perform the following tasks with pandas Series:

	Create a Series from the list [7, 11, 13, 17].

	Create a Series with five elements that are all 100.0.

	Create a Series with 20 elements that are all random numbers in the range 0 to 100. Use method describe to produce the Series’ basic descriptive statistics.

	Create a Series called temperatures of the floating-point values 98.6, 98.9, 100.2 and 97.9. Using the index keyword argument, specify the custom indices 'Julie', 'Charlie', 'Sam' and 'Andrea'.

	Form a dictionary from the names and values in Part (d), then use it to initialize a Series.

	7.23 (Pandas: DataFrames) Perform the following tasks with pandas DataFrames:

	Create a DataFrame named temperatures from a dictionary of three temperature readings each for 'Maxine', 'James' and 'Amanda'.

	Recreate the DataFrame temperatures in Part (a) with custom indices using the index keyword argument and a list containing 'Morning', 'Afternoon' and 'Evening'.

	Select from temperatures the column of temperature readings for 'Maxine'.

	Select from temperatures the row of 'Morning' temperature readings.

	Select from temperatures the rows for 'Morning' and 'Evening' temperature readings.

	Select from temperatures the columns of temperature readings for 'Amanda' and 'Maxine'.

	Select from temperatures the elements for 'Amanda' and 'Maxine' in the 'Morning' and 'Afternoon'.

	Use the describe method to produce temperatures’ descriptive statistics.

	Transpose temperatures.

	Sort temperatures so that its column names are in alphabetical order.

	7.24 (AI Project: Introducing Heuristic Programming with the Knight’s Tour) An interesting puzzler for chess buffs is the Knight’s Tour problem, originally proposed by the mathematician Euler. Can the knight piece move around an empty chessboard and touch each of the 64 squares once and only once? We study this intriguing problem in depth here.

The knight makes only L-shaped moves (two spaces in one direction and one space in a perpendicular direction). Thus, as shown in the figure below, from a square near the middle of an empty chessboard, the knight (labeled K) can make eight different moves (numbered 0 through 7).

[image: A chess board has spaces labelled 0 through 7 across the top from left to right and down the left side from top to bottom]

7.1-2 Full Alternative Text

	Draw an eight-by-eight chessboard on a sheet of paper, and attempt a Knight’s Tour by hand. Put a 1 in the starting square, a 2 in the second square, a 3 in the third, and so on. Before starting the tour, estimate how far you think you’ll get, remembering that a full tour consists of 64 moves. How far did you get? Was this close to your estimate?

	Now let’s develop a script that will move the knight around a chessboard represented by an eight-by-eight two-dimensional array named board. Initialize each square to zero. We describe each of the eight possible moves in terms of its horizontal and vertical components. For example, a move of type 0, as shown in the preceding figure, consists of moving two squares horizontally to the right and one square vertically upward. A move of type 2 consists of moving one square horizontally to the left and two squares vertically upward. Horizontal moves to the left and vertical moves upward are indicated with negative numbers. The eight moves may be described by two one-dimensional arrays, horizontal and vertical, as follows:

horizontal[0] = 2 vertical[0] = -1

horizontal[1] = 1 vertical[1] = -2

horizontal[2] = -1 vertical[2] = -2

horizontal[3] = -2 vertical[3] = -1

horizontal[4] = -2 vertical[4] = 1

horizontal[5] = -1 vertical[5] = 2

horizontal[6] = 1 vertical[6] = 2

horizontal[7] = 2 vertical[7] = 1

Let the variables current_row and current_column indicate the row and column, respectively, of the knight’s current position. To make a move of type move_number (a value 0–7), your script should use the statements

current_row += vertical[move_number]

current_column += horizontal[move_number]

Write a script to move the knight around the chessboard. Keep a counter that varies from 1 to 64. Record the latest count in each square the knight moves to. Test each potential move to see if the knight has already visited that square. Test every potential move to ensure that the knight does not land off the chessboard. Run the application. How many moves did the knight make?

	After attempting to write and run a Knight’s Tour script, you’ve probably developed some valuable insights. We’ll use these insights to develop a heuristic (i.e., a common-sense rule) for moving the knight. Heuristics do not guarantee success, but a carefully developed heuristic greatly improves the chance of success. You may have observed that the outer squares are more troublesome than the squares nearer the center of the board. In fact, the most troublesome or inaccessible squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most troublesome squares first and leave open those that are easiest to get to so that when the board gets congested near the end of the tour, there will be a greater chance of success.

We could develop an “accessibility heuristic” by classifying each of the squares according to how accessible it is and always moving the knight (using the knight’s L-shaped moves) to the most inaccessible square. We fill two-dimensional array accessibility with numbers indicating from how many squares each particular square is accessible. On a blank chessboard, each of the 16 squares nearest the center is rated as 8, each corner square is rated as 2, and the other squares have accessibility numbers of 3, 4 or 6 as follows:

2 3 4 4 4 4 3 2

3 4 6 6 6 6 4 3

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

3 4 6 6 6 6 4 3

2 3 4 4 4 4 3 2

Write a new version of the Knight’s Tour, using the accessibility heuristic. The knight should always move to the square with the lowest accessibility number. In case of a tie, the knight may move to any of the tied squares. Therefore, the tour may begin in any of the four corners. [Note: As the knight moves around the chessboard, your application should reduce the accessibility numbers as more squares become occupied. In this way, at any given time during the tour, each available square’s accessibility number will remain equal to precisely the number of squares from which that square may be reached.] Run this version of your script. Did you get a full tour? Modify the script to run 64 tours, one starting from each square of the chessboard. How many full tours did you get?

	7.25 (Knight’s Tour Project: Brute-Force Approaches) In Part (c) of the previous exercise, we developed a solution to the Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates many solutions and executes efficiently.

As computers continue to increase in power, we’ll be able to solve more problems with sheer computer power and relatively unsophisticated algorithms. Let’s call this approach “brute-force” problem solving.

	Use random-number generation to enable the knight to walk around the chessboard (in its legitimate L-shaped moves) at random. Your script should run one tour and display the final chessboard. How far did the knight get?

	Most likely, the script in Part (a) produced a relatively short tour. Now modify your script to attempt 1,000,000 tours. Use a one-dimensional array to keep track of the number of tours of each length. When your script finishes attempting the 1,000,000 tours, it should display this information in a neat tabular format. What was the best result?

	Most likely, the script in Part (b) gave you some “respectable” tours, but no full tours. Now let your script run until it produces a full tour. [Caution: This version of the script could run for hours on a powerful computer.] Once again, keep a table of the number of tours of each length, and display this table when the first full tour is found. How many tours did your script attempt before producing a full tour? How much time did it take?

	Compare the brute-force version of the Knight’s Tour with the accessibility-heuristic version. Which required a more careful study of the problem? Which algorithm was more challenging to develop? Which required more computer power? Could we be certain (in advance) of obtaining a full tour with the accessibility-heuristic approach? Could we be certain (in advance) of obtaining a full tour with the brute-force approach? Argue the pros and cons of brute-force problem-solving in general.

	7.26 (Knight’s Tour Project: Closed-Tour Test) In the Knight’s Tour, a full tour occurs when the knight makes 64 moves, touching each square of the chessboard once and only once. A closed tour occurs when the 64th move is one move away from the square in which the knight started the tour. Modify the script you wrote in Exercise 7.24 to test for a closed tour if a full tour has occurred.

8 Strings: A Deeper Look

Objectives

In this chapter you’ll:

	Understand text processing.

	Use string methods.

	Format string content.

	Concatenate and repeat strings.

	Strip whitespace from the ends of strings.

	Change characters from lowercase to uppercase and vice versa.

	Compare strings with the comparison operators.

	Search strings for substrings and replace substrings.

	Split strings into tokens.

	Concatenate strings into a single string with a specified separator between items.

	Create and use regular expressions to match patterns in strings, replace substrings and validate data.

	Use regular expression metacharacters, quantifiers, character classes and grouping.

	Understand how critical string manipulations are to natural language processing.

	Understand the data science terms data munging, data wrangling and data cleaning, and use regular expressions to munge data into preferred formats.

Outline

	8.1 Introduction

	8.2 Formatting Strings

	8.2.1 Presentation Types

	8.2.2 Field Widths and Alignment

	8.2.3 Numeric Formatting

	8.2.4 String’s format Method

	8.3 Concatenating and Repeating Strings

	8.4 Stripping Whitespace from Strings

	8.5 Changing Character Case

	8.6 Comparison Operators for Strings

	8.7 Searching for Substrings

	8.8 Replacing Substrings

	8.9 Splitting and Joining Strings

	8.10 Characters and Character-Testing Methods

	8.11 Raw Strings

	8.12 Introduction to Regular Expressions

	8.12.1 re Module and Function fullmatch

	8.12.2 Replacing Substrings and Splitting Strings

	8.12.3 Other Search Functions; Accessing Matches

	8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging

	8.14 Wrap-Up

	Exercises

8.1 Introduction

We’ve introduced strings, basic string formatting and several string operators and methods. You saw that strings support many of the same sequence operations as lists and tuples, and that strings, like tuples, are immutable. Now, we take a deeper look at strings and introduce regular expressions and the re module, which we’ll use to match patterns1 in text. Regular expressions are particularly important in today’s data rich applications. The capabilities you learn here will help you prepare for the “Natural Language Processing (NLP)” chapter and other key data science chapters. In the NLP chapter, we’ll look at other ways to have computers manipulate and even “understand” text. The table below shows many string-processing and NLP-related applications. In the Intro to Data Science section, we briefly introduce data cleaning/munging/wrangling with Pandas Series and DataFrames.
1. We’ll see in the data science case study chapters that searching for patterns in text is a crucial part of machine learning.

String and NLP applications

	Anagrams

Automated grading of written homework

Automated teaching systems

Categorizing articles

Chatbots

Compilers and interpreters

Creative writing

Cryptography

Document classification

Document similarity

Document summarization

Electronic book readers

Fraud detection

Grammar checkers

	Inter-language translation

Legal document preparation

Monitoring social media posts

Natural language understanding

Opinion analysis

Page-composition software

Palindromes

Parts-of-speech tagging

Project Gutenberg free books

Reading books, articles, documentation and absorbing knowledge

Search engines

Sentiment analysis

	Spam classification

Speech-to-text engines

Spell checkers

Steganography

Text editors

Text-to-speech engines

Web scraping

Who authored Shakespeare’s works?

Word clouds

Word games

Writing medical diagnoses from x-rays, scans, blood tests

and many more…

8.2 Formatting Strings

Proper text formatting makes data easier to read and understand. Here, we present many text-formatting capabilities.

8.2.1 Presentation Types

You’ve seen basic string formatting with f-strings. When you specify a placeholder for a value in an f-string, Python assumes the value should be displayed as a string unless you specify another type. In some cases, the type is required. For example, let’s format the float value 17.489 rounded to the hundredths position:

In [1]: f'{17.489:.2f}'

Out[1]: '17.49'

Python supports precision only for floating-point and Decimal values. Formatting is type dependent—if you try to use .2f to format a string like 'hello', a ValueError occurs. So the presentation type f in the format specifier .2f is required. It indicates what type is being formatted so Python can determine whether the other formatting information is allowed for that type. Here, we show some common presentation types. You can view the complete list at

https://docs.python.org/3/library/string.html#formatspec

Integers

The d presentation type formats integer values as strings:

In [2]: f'{10:d}'

Out[2]: '10'

There also are integer presentation types (b, o and x or X) that format integers using the binary, octal or hexadecimal number systems.2
2. See the online appendix “Number Systems” for information about the binary, octal and hexadecimal number systems.

Characters

The c presentation type formats an integer character code as the corresponding character:

In [3]: f'{65:c} {97:c}'

Out[3]: 'A a'

Strings

The s presentation type is the default. If you specify s explicitly, the value to format must be a variable that references a string, an expression that produces a string or a string literal, as in the first placeholder below. If you do not specify a presentation type, as in the second placeholder below, non-string values like the integer 7 are converted to strings:

In [4]: f'{"hello":s} {7}'

Out[4]: 'hello 7'

In this snippet, "hello" is enclosed in double quotes. Recall that you cannot place single quotes inside a single-quoted string.

Floating-Point and Decimal Values

You’ve used the f presentation type to format floating-point and Decimal values. For extremely large and small values of these types, Exponential (scientific) notation can be used to format the values more compactly. Let’s show the difference between f and e for a large value, each with three digits of precision to the right of the decimal point:

In [5]: from decimal import Decimal

In [6]: f'{Decimal("10000000000000000000000000.0"):.3f}'

Out[6]: '10000000000000000000000000.000'

In [7]: f'{Decimal("10000000000000000000000000.0"):.3e}'

Out[7]: '1.000e+25'

For the e presentation type in snippet [5], the formatted value 1.000e+25 is equivalent to

1.000 x 1025

If you prefer a capital E for the exponent, use the E presentation type rather than e.

[image: tick mark] Self Check

	(Fill-In) Presentation types and format floating-point and Decimal values in scientific notation.

Answer: e, E.

	(Fill-In) Presentation type formats a character code as its corresponding character.

Answer: c.

	(IPython Session) Use the type specifier c to display the characters that correspond to the character codes 58, 45 and 41.

Answer:

In [1]: print(f'{58:c}{45:c}{41:c}')

:-)

8.2.2 Field Widths and Alignment

Previously you used field widths to format text in a specified number of character positions. By default, Python

right0-aligns

numbers and

left-aligns

other values such as strings—we enclose the results below in brackets ([]) so you can see how the values align in the field:

In [1]: f'[{27:10d}]'

Out[1]: '[27]'

In [2]: f'[{3.5:10f}]'

Out[2]: '[3.500000]'

In [3]: f'[{"hello":10}]'

Out[3]: '[hello]'

Snippet [2] shows that Python formats float values with six digits of precision to the right of the decimal point by default. For values that have fewer characters than the field width, the remaining character positions are filled with spaces. Values with more characters than the field width use as many character positions as they need.

Explicitly Specifying Left and Right Alignment in a Field

Recall that you can specify left and right alignment with < and >:

In [4]: f'[{27:<15d}]'

Out[4]: '[27]'

In [5]: f'[{3.5:<15f}]'

Out[5]: '[3.500000]'

In [6]: f'[{"hello":>15}]'

Out[6]: '[hello]'

Centering a Value in a Field

In addition, you can center values:

In [7]: f'[{27:^7d}]'

Out[7]: '[27]'

In [8]: f'[{3.5:^7.1f}]'

Out[8]: '[3.5]'

In [9]: f'[{"hello":^7}]'

Out[9]: '[hello]'

Centering attempts to spread the remaining unoccupied character positions equally to the left and right of the formatted value. Python places the extra space to the right if an odd number of character positions remain.

[image: tick mark] Self Check

	(True/False) If you do not specify the alignment, all values displayed in a field are right aligned by default.

Answer: False. Only numeric values are right aligned by default.

	(IPython Session) Display on separate lines the name 'Amanda' right-, center- and left-aligned in a field of 10 characters. Enclose each result in brackets so you can see the alignment results more clearly.

Answer:

In [1]: print(f'[{"Amanda":>10}]\n[{"Amanda":^10}]\n[{"Amanda":<10}]')

[Amanda]

[Amanda]

[Amanda]

8.2.3Numeric Formatting

There are a variety of numeric formatting capabilities.

Formatting Positive Numbers with Signs

Sometimes it’s desirable to force the sign on a positive number:

In [1]: f'[{27:+10d}]'

Out[1]: '[+27]'

The + before the field width specifies that a positive number should be preceded by a +. A negative number always starts with a -. To fill the remaining characters of the field with 0s rather than spaces, place a 0 before the field width (and after the + if there is one):

In [2]: f'[{27:+010d}]'

Out[2]: '[+000000027]'

Using a Space Where a + Sign Would Appear in a Positive Value

A space indicates that positive numbers should show a space character in the sign position. This is useful for aligning positive and negative values for display purposes:

In [3]: print(f'{27:d}\n{27: d}\n{-27: d}')

27

 27

-27

Note that the two numbers with a space in their format specifiers align. If a field width is specified, the space should appear before the field width.

Grouping Digits

You can format numbers with thousands separators by using a comma (,), as follows:

In [4]: f'{12345678:,d}'

Out[4]: '12,345,678'

In [5]: f'{123456.78:,.2f}'

Out[5]: '123,456.78'

[image: tick mark] Self Check

	(Fill-In) To display all numeric values with their sign, use a(n) in the format specifier; to display a space rather than a sign for positive values use a(n) instead.

Answer: +, space character.

	(IPython Session) Print the values 10240.473 and -3210.9521, each preceded by its sign, in 10-character fields with thousands separators, their decimal points aligned vertically and two digits of precision.

Answer:

In [1]: print(f'{10240.473:+10,.2f}\n{-3210.9521:+10,.2f}')

+10,240.47

 -3,210.95

8.2.4String’s format Method

Python’s f-strings were added to the language in version 3.6. Before that, formatting was performed with the string method format. In fact, f-string formatting is based on the format method’s capabilities. We show you the format method here because you’ll encounter it in code written prior to Python 3.6. You’ll often see the format method in the Python documentation and in the many Python books and articles written before f-strings were introduced. However, we recommend using the newer f-string formatting that we’ve presented to this point.

You call method format on a format string containing curly brace ({}) placeholders, possibly with format specifiers. You pass to the method the values to be formatted. Let’s format the float value 17.489 rounded to the hundredths position:

In [1]: '{:.2f}'.format(17.489)

Out[1]: '17.49'

In a placeholder, if there’s a format specifier, you precede it by a colon (:), as in f-strings. The result of the format call is a new string containing the formatted results.

Multiple Placeholders

A format string may contain multiple placeholders, in which case the format method’s arguments correspond to the placeholders from left to right:

In [2]: '{} {}'.format('Amanda', 'Cyan')

Out[2]: 'Amanda Cyan'

Referencing Arguments By Position Number

The format string can reference specific arguments by their position in the format method’s argument list, starting with position 0:

In [3]: '{0} {0} {1}'.format('Happy', 'Birthday')

Out[3]: 'Happy Happy Birthday'

 Note that we used the position number 0 ('Happy') twice—you can reference each argument as often as you like and in any order.

Referencing Keyword Arguments

You can reference keyword arguments by their keys in the placeholders:

In [4]: '{first} {last}'.format(first='Amanda', last='Gray')

Out[4]: 'Amanda Gray'

In [5]: '{last} {first}'.format(first='Amanda', last='Gray')

Out[5]: 'Gray Amanda'

[image: tick mark] Self Check

	(IPython Session) Use string method format to reimplement the IPython sessions in the Self Check exercises from Sections 8.2.1–8.2.3.

Answer:

In [1]: print('{:c}{:c}{:c}'.format(58, 45, 41))

:-)

In [2]: print('[{0:>10}]\n[{0:^10}]\n[{0:<10}]'.format('Amanda'))

[Amanda]

[Amanda]

[Amanda]

In [3]: print('{:+10,.2f}\n{:+10,.2f}'.format(10240.473, -3210.9521))

+10,240.47

 -3,210.95

Note that snippet [2] references format’s argument three times via its position number (0) in the argument list.

8.3 Concatenating and Repeating Strings

In earlier chapters, we used the + operator to concatenate strings and the * operator to repeat strings. You also can perform these operations with augmented assignments. Strings are immutable, so each operation assigns a new string object to the variable:

In [1]: s1 = 'happy'

In [2]: s2 = 'birthday'

In [3]: s1 += ' ' + s2

In [4]: s1

Out[4]: 'happy birthday'

In [5]: symbol = '>'

In [6]: symbol *= 5

In [7]: symbol

Out[7]: '>>>>>'

[image: tick mark] Self Check

	(IPython Session) Use the += operator to concatenate your first and last name. Then use the *= operator to create a bar of asterisks with the same number of characters as your full name and display the bar above and below your name.

Answer:

In [1]: name = 'Pam'

In [2]: name += ' Black'

In [3]: bar = '*'

In [4]: bar *= len(name)

In [5]: print(f'{bar}\n{name}\n{bar}')

Pam Black

8.4 Stripping Whitespace from Strings

There are several string methods for removing whitespace from the ends of a string. Each returns a new string leaving the original unmodified. Strings are immutable, so each method that appears to modify a string returns a new one.

Removing Leading and Trailing Whitespace

Let’s use string method strip to remove the leading and trailing whitespace from a string:

In [1]: sentence = '\t \n This is a test string. \t\t \n'

In [2]: sentence.strip()

Out[2]: 'This is a test string.'

Removing Leading Whitespace

Method lstrip removes only leading whitespace:

In [3]: sentence.lstrip()

Out[3]: 'This is a test string. \t\t \n'

Removing Trailing Whitespace

Method rstrip removes only trailing whitespace:

In [4]: sentence.rstrip()

Out[4]: '\t \n This is a test string.'

As the outputs demonstrate, these methods remove all kinds of whitespace, including spaces, newlines and tabs.

[image: tick mark] Self Check

	(IPython Session) Use the methods in this section to strip the whitespace from the following string, which has five spaces at the beginning and end of the string:

name = ' Margo Magenta '

Answer:

In [1]: name = ' Margo Magenta '

In [2]: name.strip()

Out[2]: 'Margo Magenta'

In [3]: name.lstrip()

Out[3]: 'Margo Magenta '

In [4]: name.rstrip()

Out[4]: ' Margo Magenta'

8.5 Changing Character Case

In earlier chapters, you used string methods lower and upper to convert strings to all lowercase or all uppercase letters. You also can change a string’s capitalization with methods capitalize and title.

Capitalizing Only a String’s First Character

Method

capitalize copies the original string and returns a new string with only the first letter capitalized (this is sometimes called sentence capitalization):

In [1]: 'happy birthday'.capitalize()

Out[1]: 'Happy birthday'

Capitalizing the First Character of Every Word in a String

Method title copies the original string and returns a new string with only the first character of each word capitalized (this is sometimes called book-title capitalization):

In [2]: 'strings: a deeper look'.title()

Out[2]: 'Strings: A Deeper Look'

[image: tick mark] Self Check

	(IPython Session) Demonstrate the results of calling capitalize and title on the string 'happy new year'.

Answer:

In [1]: test_string = 'happy new year'

In [2]: test_string.capitalize()

Out[2]: 'Happy new year'

In [3]: test_string.title()

Out[3]: 'Happy New Year'

8.6 Comparison Operators for Strings

Strings may be compared with the comparison operators. Recall that strings are compared based on their underlying integer numeric values. So uppercase letters compare as less than lowercase letters because uppercase letters have lower integer values. For example, 'A' is 65 and 'a' is 97. You’ve seen that you can check character codes with ord:

In [1]: print(f'A: {ord("A")}; a: {ord("a")}')

A: 65; a: 97

Let’s compare the strings 'Orange' and 'orange' using the comparison operators:

In [2]: 'Orange' == 'orange'

Out[2]: False

In [3]: 'Orange' != 'orange'

Out[3]: True

In [4]: 'Orange' < 'orange'

Out[4]: True

In [5]: 'Orange' <= 'orange'

Out[5]: True

In [6]: 'Orange' > 'orange'

Out[6]: False

In [7]: 'Orange' >= 'orange'

Out[7]: False

8.7 Searching for Substrings

You can search in a string for one or more adjacent characters—known as a substring—to count the number of occurrences, determine whether a string contains a substring, or determine the index at which a substring resides in a string. Each method shown in this section compares characters lexicographically using their underlying numeric values.

Counting Occurrences

String method count returns the number of times its argument occurs in the string on which the method is called:

In [1]: sentence = 'to be or not to be that is the question'

In [2]: sentence.count('to')

Out[2]: 2

If you specify as the second argument a start_index, count searches only the slice string[start_index:]—that is, from start_index through end of the string:

In [3]: sentence.count('to', 12)

Out[3]: 1

If you specify as the second and third arguments the start_index and end_index, count searches only the slice string[start_index:end_index]—that is, from start_index up to, but not including, end_index:

In [4]: sentence.count('that', 12, 25)

Out[4]: 1

Like count, each of the other string methods presented in this section has start_index and end_index arguments for searching only a slice of the original string.

Locating a Substring in a String

String method index searches for a substring within a string and returns the first index at which the substring is found; otherwise, a ValueError occurs:

In [5]: sentence.index('be')

Out[5]: 3

String method rindex performs the same operation as index, but searches from the end of the string and returns the last index at which the substring is found; otherwise, a ValueError occurs:

In [6]: sentence.rindex('be')

Out[6]: 16

String methods find and rfind perform the same tasks as index and rindex but, if the substring is not found, return -1 rather than causing a ValueError.

Determining Whether a String Contains a Substring

If you need to know only whether a string contains a substring, use operator in or not in:

In [7]: 'that' in sentence

Out[7]: True

In [8]: 'THAT' in sentence

Out[8]: False

In [9]: 'THAT' not in sentence

Out[9]: True

Locating a Substring at the Beginning or End of a String

String methods startswith and endswith return True if the string starts with or ends with a specified substring:

In [10]: sentence.startswith('to')

Out[10]: True

In [11]: sentence.startswith('be')

Out[11]: False

In [12]: sentence.endswith('question')

Out[12]: True

In [13]: sentence.endswith('quest')

Out[13]: False

[image: tick mark] Self Check

	(Fill-In) Method returns the number of times a given substring occurs in a string.

Answer: count.

	(True/False) String method find causes a ValueError if it does not find the specified substring.

Answer: False. String method find returns -1 in this case. String method index causes a ValueError.

	(IPython Session) Create a loop that locates and displays every word that starts with 't' in the string 'to be or not to be that is the question'.

Answer:

In [1]: for word in 'to be or not to be that is the question'.split():

 ...: if word.startswith('t'):

 ...: print(word, end=' ')

 ...:

to to that the

8.8 Replacing Substrings

A common text manipulation is to locate a substring and replace its value. Method replace takes two substrings. It searches a string for the substring in its first argument and replaces each occurrence with the substring in its second argument. The method returns a new string containing the results. Let’s replace tab characters with commas:

In [1]: values = '1\t2\t3\t4\t5'

In [2]: values.replace('\t', ',')

Out[2]: '1,2,3,4,5'

Method replace can receive an optional third argument specifying the maximum number of replacements to perform.

[image: tick mark] Self Check

	(IPython Session) Replace the spaces in the string '1 2 3 4 5' with ' --> '.

Answer:

In [1]: '1 2 3 4 5'.replace(' ', ' --> ')

Out[1]: '1 --> 2 --> 3 --> 4 --> 5'

8.9 Splitting and Joining Strings

When you read a sentence, your brain breaks it into individual words, or tokens, each of which conveys meaning. Interpreters like IPython tokenize statements, breaking them into individual components such as keywords, identifiers, operators and other elements of a programming language. Tokens typically are separated by whitespace characters such as blank, tab and newline, though other characters may be used—the separators are known as delimiters.

Splitting Strings

We showed previously that string method split with no arguments tokenizes a string by breaking it into substrings at each whitespace character, then returns a list of tokens. To tokenize a string at a custom delimiter (such as each comma-and-space pair), specify the delimiter string (such as, ', ') that split uses to tokenize the string:

In [1]: letters = 'A, B, C, D'

In [2]: letters.split(', ')

Out[2]: ['A', 'B', 'C', 'D']

If you provide an integer as the second argument, it specifies the maximum number of splits. The last token is the remainder of the string after the maximum number of splits:

In [3]: letters.split(', ', 2)

Out[3]: ['A', 'B', 'C, D']

There is also an rsplit method that performs the same task as split but processes the maximum number of splits from the end of the string toward the beginning.

Joining Strings

String method join concatenates the strings in its argument, which must be an iterable containing only string values; otherwise, a TypeError occurs. The separator between the concatenated items is the string on which you call join. The following code creates strings containing comma-separated lists of values:

In [4]: letters_list = ['A', 'B', 'C', 'D']

In [5]: ','.join(letters_list)

Out[5]: 'A,B,C,D'

The next snippet joins the results of a list comprehension that creates a list of strings:

In [6]: ','.join([str(i) for i in range(10)])

Out[6]: '0,1,2,3,4,5,6,7,8,9'

In the “Files and Exceptions” chapter, you’ll see how to work with files that contain comma-separated values. These are known as CSV files and are a common format for storing data that can be loaded by spreadsheet applications like Microsoft Excel or Google Sheets. In the data science case study chapters, you’ll see that many key libraries, such as NumPy, Pandas and Seaborn, provide built-in capabilities for working with CSV data.

String Methods partition and rpartition

String method partition splits a string into a tuple of three strings based on the method’s separator argument. The three strings are

	the part of the original string before the separator,

	the separator itself, and

	the part of the string after the separator.

This might be useful for splitting more complex strings. Consider a string representing a student’s name and grades:

'Amanda: 89, 97, 92'

Let’s split the original string into the student’s name, the separator ': ' and a string representing the list of grades:

In [7]: 'Amanda: 89, 97, 92'.partition(': ')

Out[7]: ('Amanda', ': ', '89, 97, 92')

To search for the separator from the end of the string instead, use method rpartition to split. For example, consider the following URL string:

'http://www.deitel.com/books/PyCDS/table_of_contents.html'

Let’s use rpartition split 'table_of_contents.html' from the rest of the URL:

In [8]: url = 'http://www.deitel.com/books/PyCDS/table_of_contents.html'

In [9]: rest_of_url, separator, document = url.rpartition('/')

In [10]: document

Out[10]: 'table_of_contents.html'

In [11]: rest_of_url

Out[11]: 'http://www.deitel.com/books/PyCDS'

String Method splitlines

In the “Files and Exceptions” chapter, you’ll read text from a file. If you read large amounts of text into a string, you might want to split the string into a list of lines based on newline characters. Method splitlines returns a list of new strings representing the lines of text split at each newline character in the original string. Recall that Python stores multiline strings with embedded \n characters to represent the line breaks, as shown in snippet [13]:

In [12]: lines = """This is line 1

 ...: This is line2

 ...: This is line3"""

In [13]: lines

Out[13]: 'This is line 1\nThis is line2\nThis is line3'

In [14]: lines.splitlines()

Out[14]: ['This is line 1', 'This is line2', 'This is line3']

Passing True to splitlines keeps the newlines at the end of each string:

In [15]: lines.splitlines(True)

Out[15]: ['This is line 1\n', 'This is line2\n', 'This is line3']

[image: tick mark] Self Check

	(Fill-In) Tokens are separated from one another by .

Answer: delimiters.

	(IPython Session) Use split and join in one statement to reformat the string

'Pamela White'

into the string

'White, Pamela'

Answer:

In [1]: ', '.join(reversed('Pamela White'.split()))

Out[1]: 'White, Pamela'

	(IPython Session) Use partition and rpartition to extract from the URL string

'http://www.deitel.com/books/PyCDS/table_of_contents.html'

the substrings 'www.deitel.com' and 'books/PyCDS'.

Answer:

In [2]: url = 'http://www.deitel.com/books/PyCDS/table_of_contents.html'

In [3]: protocol, separator, rest_of_url = url.partition('://')

In [4]: host, separator, document_with_path = rest_of_url.partition('/')

In [5]: host

Out[5]: 'www.deitel.com'

In [6]: path, separator, document = document_with_path.rpartition('/')

In [7]: path

Out[7]: 'books/PyCDS'

8.10 Characters and Character-Testing Methods

Characters (digits, letters and symbols such as $, @, % and *) are the fundamental building blocks of programs. Every program is composed of characters that, when grouped meaningfully, represent instructions and data that the interpreter uses to perform tasks. Many programming languages have separate string and character types. In Python, a character is simply a one-character string.

Python provides string methods for testing whether a string matches certain characteristics. For example, string method isdigit returns True if the string on which you call the method contains only the digit characters (0–9). You might use this when validating user input that must contain only digits:

In [1]: '-27'.isdigit()

Out[1]: False

In [2]: '27'.isdigit()

Out[2]: True

and the string method isalnum returns True if the string on which you call the method is alphanumeric—that is, it contains only digits and letters:

In [3]: 'A9876'.isalnum()

Out[3]: True

In [4]: '123 Main Street'.isalnum()

Out[4]: False

The table below shows many of the character-testing methods. Each method returns False if the condition described is not satisfied:

[image: A table shows several character testing methods.]

8.10-1 Full Alternative Text

[image: tick mark] Self Check

	(Fill-In) Method returns True if a string contains only letters and numbers.

Answer: isalnum.

	(Fill-In) Method returns True if a string contains only letters.

Answer: isalpha.

8.11 Raw Strings

Recall that backslash characters in strings introduce escape sequences—like \n for newline and \t for tab. So, if you wish to include a backslash in a string, you must use two backslash characters \\. This makes some strings difficult to read. For example, Microsoft Windows uses backslashes to separate folder names when specifying a file’s location. To represent a file’s location on Windows, you might write:

In [1]: file_path = 'C:\\MyFolder\\MySubFolder\\MyFile.txt'

In [2]: file_path

Out[2]: 'C:\\MyFolder\\MySubFolder\\MyFile.txt'

For such cases, raw strings—preceded by the character r—are more convenient. They treat each backslash as a regular character, rather than the beginning of an escape sequence:

In [3]: file_path = r'C:\MyFolder\MySubFolder\MyFile.txt'

In [4]: file_path

Out[4]: 'C:\\MyFolder\\MySubFolder\\MyFile.txt'

Python converts the raw string to a regular string that still uses the two backslash characters in its internal representation, as shown in the last snippet. Raw strings can make your code more readable, particularly when using the regular expressions that we discuss in the next section. Regular expressions often contain many backslash characters.

[image: tick mark] Self Check

	(Fill-In) The raw string r'\\Hi!\\' represents the regular string .

Answer: '\\\\Hi!\\\\'.

8.12 Introduction to Regular Expressions

Sometimes you’ll need to recognize patterns in text, like phone numbers, e-mail addresses, ZIP Codes, web page addresses, Social Security numbers and more. A regular expression string describes a search pattern for matching characters in other strings.

Regular expressions can help you extract data from unstructured text, such as social media posts. They’re also important for ensuring that data is in the correct format before you attempt to process it.3

3. The topic of regular expressions might feel more challenging than most other Python features you’ve used. After mastering this subject, you’ll often write more concise code than with conventional string-processing techniques, speeding the code-development process. You’ll also deal with “fringe” cases you might not ordinarily think about, possibly avoiding subtle bugs.

Validating Data

Before working with text data, you’ll often use regular expressions to validate the data. For example, you can check that:

	A U.S. ZIP Code consists of five digits (such as 02215) or five digits followed by a hyphen and four more digits (such as 02215-4775).

	A string last name contains only letters, spaces, apostrophes and hyphens.

	An e-mail address contains only the allowed characters in the allowed order.

	A U.S. Social Security number contains three digits, a hyphen, two digits, a hyphen and four digits, and adheres to other rules about the specific numbers that can be used in each group of digits.

You’ll rarely need to create your own regular expressions for common items like these. Websites like

	https://regex101.com

	http://www.regexlib.com

	https://www.regular-expressions.info

and others offer repositories of existing regular expressions that you can copy and use. Many sites like these also provide interfaces in which you can test regular expressions to determine whether they’ll meet your needs. We ask you to do this in the exercises.

Other Uses of Regular Expressions

In addition to validating data, regular expressions often are used to:

	Extract data from text (sometimes known as scraping)—For example, locating all URLs in a web page. [You might prefer tools like BeautifulSoup, XPath and lxml.]

	Clean data—For example, removing data that’s not required, removing duplicate data, handling incomplete data, fixing typos, ensuring consistent data formats, dealing with outliers and more.

	Transform data into other formats—For example, reformatting data that was collected as tab-separated or space-separated values into comma-separated values (CSV) for an application that requires data to be in CSV format.

8.12.1 re Module and Function fullmatch

To use regular expressions, import the Python Standard Library’s re module:

In [1]: import re

One of the simplest regular expression functions is fullmatch, which checks whether the entire string in its second argument matches the pattern in its first argument.

Matching Literal Characters

Let’s begin by matching literal characters—that is, characters that match themselves:

In [2]: pattern = '02215'

In [3]: 'Match' if re.fullmatch(pattern, '02215') else 'No match'

Out[3]: 'Match'

In [4]: 'Match' if re.fullmatch(pattern, '51220') else 'No match'

Out[4]: 'No match'

The function’s first argument is the regular expression pattern to match. Any string can be a regular expression. The variable pattern’s value, '02215', contains only literal digits that match themselves in the specified order. The second argument is the string that should entirely match the pattern.

If the second argument matches the pattern in the first argument, fullmatch returns an object containing the matching text, which evaluates to True. We’ll say more about this object later. In snippet [4], even though the second argument contains the same digits as the regular expression, they’re in a different order. So there’s no match, and fullmatch returns None, which evaluates to False.

Metacharacters, Character Classes and Quantifiers

Regular expressions typically contain various special symbols called metacharacters, which are shown in the table below:

[image: Metacharacters include left and right brackets, left and right braces, left and right parenthesis, backward slash, asterisk, plus sign, carat, dollar sign, question mark, period, line break.]

The \ metacharacter begins each of the predefined character classes, each matching a specific set of characters. Let’s validate a five-digit ZIP Code:

In [5]: 'Valid' if re.fullmatch(r'\d{5}', '02215') else 'Invalid'

Out[5]: 'Valid'

In [6]: 'Valid' if re.fullmatch(r'\d{5}', '9876') else 'Invalid'

Out[6]: 'Invalid'

In the regular expression \d{5}, \d is a character class representing a digit (0–9). A character class is a regular expression escape sequence that matches one character. To match more than one, follow the character class with a quantifier. The quantifier {5} repeats \d five times, as if we had written \d\d\d\d\d, to match five consecutive digits. In snippet [6], fullmatch returns None because '9876' contains only four consecutive digit characters.

Other Predefined Character Classes

The table below shows some common predefined character classes and the groups of characters they match. To match any metacharacter as its literal value, precede it by a backslash (\). For example, \\ matches a backslash (\) and \$ matches a dollar sign ($).

[image: A table depicts character classes and their matches.]

8.12-3 Full Alternative Text

Custom Character Classes

Square brackets, [], define a custom character class that matches a single character. For example, [aeiou] matches a lowercase vowel, [A-Z] matches an uppercase letter, [a-z] matches a lowercase letter and [a-zA-Z] matches any lowercase or uppercase letter.

Let’s validate a simple first name with no spaces or punctuation. We’ll ensure that it begins with an uppercase letter (A–Z) followed by any number of lowercase letters (a–z):

In [7]: 'Valid' if re.fullmatch('[A-Z][a-z]*', 'Wally') else 'Invalid'

Out[7]: 'Valid'

In [8]: 'Valid' if re.fullmatch('[A-Z][a-z]*', 'eva') else 'Invalid'

Out[8]: 'Invalid'

A first name might contain many letters. The * quantifier matches zero or more occurrences of the subexpression to its left (in this case, [a-z]). So [A-Z][a-z]* matches an uppercase letter followed by zero or more lowercase letters, such as 'Amanda', 'Bo' or even 'E'.

When a custom character class starts with a caret (^), the class matches any character that’s not specified. So [^a-z] matches any character that’s not a lowercase letter:

In [9]: 'Match' if re.fullmatch('[^a-z]', 'A') else 'No match'

Out[9]: 'Match'

In [10]: 'Match' if re.fullmatch('[^a-z]', 'a') else 'No match'

Out[10]: 'No match'

Metacharacters in a custom character class are treated as literal characters—that is, the characters themselves. So [*+$] matches a single *, + or $ character:

In [11]: 'Match' if re.fullmatch('[*+$]', '*') else 'No match'

Out[11]: 'Match'

In [12]: 'Match' if re.fullmatch('[*+$]', '!') else 'No match'

Out[12]: 'No match'

* vs. + Quantifier

If you want to require at least one lowercase letter in a first name, you can replace the * quantifier in snippet [7] with

+, which matches at least one occurrence of a subexpression:

In [13]: 'Valid' if re.fullmatch('[A-Z][a-z]+', 'Wally') else 'Invalid'

Out[13]: 'Valid'

In [14]: 'Valid' if re.fullmatch('[A-Z][a-z]+', 'E') else 'Invalid'

Out[14]: 'Invalid'

Both * and + are greedy—they match as many characters as possible. So the regular expression [A-Z][a-z]+ matches 'Al', 'Eva', 'Samantha', 'Benjamin' and any other words that begin with a capital letter followed at least one lowercase letter.

Other Quantifiers

The ? quantifier matches zero or one occurrences of a subexpression:

In [15]: 'Match' if re.fullmatch('labell?ed', 'labelled') else 'No match'

Out[15]: 'Match'

In [16]: 'Match' if re.fullmatch('labell?ed', 'labeled') else 'No match'

Out[16]: 'Match'

In [17]: 'Match' if re.fullmatch('labell?ed', 'labellled') else 'No match'

Out[17]: 'No match'

The regular expression labell?ed matches labelled (the U.K. English spelling) and labeled (the U.S. English spelling), but not the misspelled word labellled. In each snippet above, the first five literal characters in the regular expression (label) match the first five characters of the second arguments. Then l? indicates that there can be zero or one more l characters before the remaining literal ed characters.

You can match at least n occurrences of a subexpression with the {

n,} quantifier. The following regular expression matches strings containing at least three digits:

In [18]: 'Match' if re.fullmatch(r'\d{3,}', '123') else 'No match'

Out[18]: 'Match'

In [19]: 'Match' if re.fullmatch(r'\d{3,}', '1234567890') else 'No match'

Out[19]: 'Match'

In [20]: 'Match' if re.fullmatch(r'\d{3,}', '12') else 'No match'

Out[20]: 'No match'

You can match between n and m (inclusive) occurrences of a subexpression with the {

n,

m} quantifier. The following regular expression matches strings containing 3 to 6 digits:

In [21]: 'Match' if re.fullmatch(r'\d{3,6}', '123') else 'No match'

Out[21]: 'Match'

In [22]: 'Match' if re.fullmatch(r'\d{3,6}', '123456') else 'No match'

Out[22]: 'Match'

In [23]: 'Match' if re.fullmatch(r'\d{3,6}', '1234567') else 'No match'

Out[23]: 'No match'

In [24]: 'Match' if re.fullmatch(r'\d{3,6}', '12') else 'No match'

Out[24]: 'No match'

[image: tick mark] Self Check

	(True/False) Any string can be a regular expression.

Answer: True.

	(True/False) The ? quantifier matches exactly one occurrence of a subexpression.

Answer: False. The ? quantifier matches zero or one occurrences of a subexpression.

	(True/False) The character class [^0–9] matches any digit.

Answer: False. The character class [^0–9] matches anything that is not a digit.

	(IPython Session) Create and test a regular expression that matches a street address consisting of a number with one or more digits followed by two words of one or more characters each. The tokens should be separated by one space each, as in 123 Main Street.

Answer:

In [1]: import re

In [2]: street = r'\d+ [A-Z][a-z]* [A-Z][a-z]*'

In [3]: 'Match' if re.fullmatch(street, '123 Main Street') else 'No match'

Out[3]: 'Match'

In [4]: 'Match' if re.fullmatch(street, 'Main Street') else 'No match'

Out[4]: 'No match'

8.12.2 Replacing Substrings and Splitting Strings

The re module provides function sub for replacing patterns in a string, and function split for breaking a string into pieces, based on patterns.

Function sub—Replacing Patterns

By default, the re module’s sub function replaces all occurrences of a pattern with the replacement text you specify. Let’s convert a tab-delimited string to comma-delimited:

In [1]: import re

In [2]: re.sub(r'\t', ', ', '1\t2\t3\t4')

Out[2]: '1, 2, 3, 4'

The sub function receives three required arguments:

	the pattern to match (the tab character '\t')

	the replacement text (', ') and

	the string to be searched ('1\t2\t3\t4')

and returns a new string. The keyword argument count can be used to specify the maximum number of replacements:

In [3]: re.sub(r'\t', ', ', '1\t2\t3\t4', count=2)

Out[3]: '1, 2, 3\t4'

Function split

The split function tokenizes a string, using a regular expression to specify the delimiter, and returns a list of strings. Let’s tokenize a string by splitting it at any comma that’s followed by 0 or more whitespace characters—\s is the whitespace character class and * indicates zero or more occurrences of the preceding subexpression:

In [4]: re.split(r',\s*', '1, 2, 3,4, 5,6,7,8')

Out[4]: ['1', '2', '3', '4', '5', '6', '7', '8']

Use the keyword argument maxsplit to specify the maximum number of splits:

In [5]: re.split(r',\s*', '1, 2, 3,4, 5,6,7,8', maxsplit=3)

Out[5]: ['1', '2', '3', '4, 5,6,7,8']

In this case, after the 3 splits, the fourth string contains the rest of the original string.

[image: tick mark] Self Check

	(IPython Session) Replace each occurrence of one or more adjacent tab characters in the following string with a comma and a space:

 'A\tB\t\tC\t\t\tD'

Answer:

In [1]: import re

In [2]: re.sub(r'\t+', ', ', 'A\tB\t\tC\t\t\tD')

Out[2]: 'A, B, C, D'

	(IPython Session) Use a regular expression and the split function to split the following string at one or more adjacent $ characters.

'123$Main$$Street'

Answer:

In [3]: re.split('\$+', '123$Main$$Street')

Out[3]: ['123', 'Main', 'Street']

8.12.3 Other Search Functions; Accessing Matches

Earlier we used the fullmatch function to determine whether an entire string matched a regular expression. There are several other searching functions. Here, we discuss the search, match, findall and finditer functions, and show how to access the matching substrings.

Function search—Finding the First Match Anywhere in a String

Function search looks in a string for the first occurrence of a substring that matches a regular expression and returns a match object (of type SRE_Match) that contains the matching substring. The match object’s group method returns that substring:

In [1]: import re

In [2]: result = re.search('Python', 'Python is fun')

In [3]: result.group() if result else 'not found'

Out[3]: 'Python'

Function search returns None if the string does not contain the pattern:

In [4]: result2 = re.search('fun!', 'Python is fun')

In [5]: result2.group() if result2 else 'not found'

Out[5]: 'not found'

You can search for a match only at the beginning of a string with function match.

Ignoring Case with the Optional flags Keyword Argument

Many re module functions receive an optional flags keyword argument that changes how regular expressions are matched. For example, matches are case sensitive by default, but by using the re module’s IGNORECASE constant, you can perform a case-insensitive search:

In [6]: result3 = re.search('Sam', 'SAM WHITE', flags=re.IGNORECASE)

In [7]: result3.group() if result3 else 'not found'

Out[7]: 'SAM'

Here, 'SAM' matches the pattern 'Sam' because both have the same letters, even though 'SAM' contains only uppercase letters.

Metacharacters That Restrict Matches to the Beginning or End of a String

The

^ metacharacter at the beginning of a regular expression (and not inside square brackets) is an anchor indicating that the expression matches only the beginning of a string:

In [8]: result = re.search('^Python', 'Python is fun')

In [9]: result.group() if result else 'not found'

Out[9]: 'Python'

In [10]: result = re.search('^fun', 'Python is fun')

In [11]: result.group() if result else 'not found'

Out[11]: 'not found'

Similarly, the $ metacharacter at the end of a regular expression is an anchor indicating that the expression matches only the end of a string:

In [12]: result = re.search('Python$', 'Python is fun')

In [13]: result.group() if result else 'not found'

Out[13]: 'not found'

In [14]: result = re.search('fun$', 'Python is fun')

In [15]: result.group() if result else 'not found'

Out[15]: 'fun'

Function findall and finditer—Finding All Matches in a String

Function findall finds every matching substring in a string and returns a list of the matching substrings. Let’s extract all the U.S. phone numbers from a string. For simplicity we’ll assume that U.S. phone numbers have the form ###-###-####:

In [16]: contact = 'Wally White, Home: 555-555-1234, Work: 555-555-4321'

In [17]: re.findall(r'\d{3}-\d{3}-\d{4}', contact)

Out[17]: ['555-555-1234', '555-555-4321']

Function finditer works like findall, but returns a lazy iterable of match objects. For large numbers of matches, using finditer can save memory because it returns one match at a time, whereas findall returns all the matches at once:

In [18]: for phone in re.finditer(r'\d{3}-\d{3}-\d{4}', contact):

 ...: print(phone.group())

 ...:

555-555-1234

555-555-4321

Capturing Substrings in a Match

You can use parentheses metacharacters—(and)—to capture substrings in a match. For example, let’s capture as separate substrings the name and e-mail address in the string text:

In [19]: text = 'Charlie Cyan, e-mail: demo1@deitel.com'

In [20]: pattern = r'([A-Z][a-z]+ [A-Z][a-z]+), e-mail: (\w+@\w+\.\w{3})'

In [21]: result = re.search(pattern, text)

The regular expression specifies two substrings to capture, each denoted by the metacharacters (and). These metacharacters do not affect whether the pattern is found in the string text—the match function returns a match object only if the entire pattern is found in the string text.

Let’s consider the regular expression:

	'([A-Z][a-z]+ [A-Z][a-z]+)' matches two words separated by a space. Each word must have an initial capital letter.

	', e-mail: ' contains literal characters that match themselves.

	(\w+@\w+\.\w{3}) matches a simple e-mail address consisting of one or more alphanumeric characters (\w+), the @ character, one or more alphanumeric characters (\w+), a dot (\.) and three alphanumeric characters (\w{3}). We preceded the dot with \ because a dot (.) is a regular expression metacharacter that matches one character.

The match object’s groups method returns a tuple of the captured substrings:

In [22]: result.groups()

Out[22]: ('Charlie Cyan', 'demo1@deitel.com')

The match object’s group method returns the entire match as a single string:

In [23]: result.group()

Out[23]: 'Charlie Cyan, e-mail: demo1@deitel.com'

You can access each captured substring by passing an integer to the group method. The captured substrings are numbered from 1 (unlike list indices, which start at 0):

In [24]: result.group(1)

Out[24]: 'Charlie Cyan'

In [25]: result.group(2)

Out[25]: 'demo1@deitel.com'

[image:] Self Check

	(Fill-In) Function finds in a string the first substring that matches a regular expression.

Answer: search.

	(IPython Session) Assume you have a string representing an addition problem such as

'10 + 5'

Use a regular expression to break the string into three groups representing the two operands and the operator, then display the groups.

Answer:

In [1]: import re

In [2]: result = re.search(r'(\d+) ([-+*/]) (\d+)', '10 + 5')

In [3]: result.groups()

Out[3]: ('10', '+', '5')

In [4]: result.group(1)

Out[4]: '10'

In [5]: result.group(2)

Out[5]: '+'

In [6]: result.group(3)

Out[6]: '5'

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging

Data does not always come in forms ready for analysis. It could, for example, be in the wrong format, incorrect or even missing. Industry experience has shown that data scientists can spend as much as 75% of their time preparing data before they begin their studies. Preparing data for analysis is called data munging or data wrangling. These are synonyms—from this point forward, we’ll say data munging.

Two of the most important steps in data munging are data cleaning and transforming data into the optimal formats for your database systems and analytics software. Some common data cleaning examples are:

	deleting observations with missing values,

	substituting reasonable values for missing values,

	deleting observations with bad values,

	substituting reasonable values for bad values,

	tossing outliers (although sometimes you’ll want to keep them),

	duplicate elimination (although sometimes duplicates are valid),

	dealing with inconsistent data,

	and more.

You’re probably already thinking that data cleaning is a difficult and messy process where you could easily make bad decisions that would negatively impact your results. This is correct. When you get to the data science case studies in the later chapters, you’ll see that data science is more of an empirical science, like medicine, and less of a theoretical science, like theoretical physics. Empirical sciences base their conclusions on observations and experience. For example, many medicines that effectively solve medical problems today were developed by observing the effects that early versions of these medicines had on lab animals and eventually humans, and gradually refining ingredients and dosages. The actions data scientists take can vary per project, be based on the quality and nature of the data and be affected by evolving organization and professional standards.

Some common data transformations include:

	removing unnecessary data and features (we’ll say more about features in the data science case studies),

	combining related features,

	sampling data to obtain a representative subset (we’ll see in the data science case studies that random sampling is particularly effective for this and we’ll say why),

	standardizing data formats,

	grouping data,

	and more.

It’s always wise to hold onto your original data. We’ll show simple examples of cleaning and transforming data in the context of Pandas Series and DataFrames.

Cleaning Your Data

Bad data values and missing values can significantly impact data analysis. Some data scientists advise against any attempts to insert “reasonable values.” Instead, they advocate clearly marking missing data and leaving it up to the data analytics package to handle the issue. Others offer strong cautions.4

4. This footnote was abstracted from a comment sent to us July 20, 2018 by one of the book’s academic reviewers, Dr. Alison Sanchez of the University of San Diego School of Business. She commented: “Be cautious when mentioning 'substituting reasonable values' for missing or bad values.' A stern warning: 'Substituting' values that increase statistical significance or give more 'reasonable' or 'better' results is not permitted. 'Substituting' data should not turn into 'fudging' data. The first rule students should learn is not to eliminate or change values that contradict their hypotheses. 'Substituting reasonable values' does not mean students should feel free to change values to get the results they want.”

Let’s consider a hospital that records patients’ temperatures (and probably other vital signs) four times per day. Assume that the data consists of a name and four float values, such as

 ['Brown, Sue', 98.6, 98.4, 98.7, 0.0]

The preceding patient’s first three recorded temperatures are 99.7, 98.4 and 98.7. The last temperature was missing and recorded as 0.0, perhaps because the sensor malfunctioned. The average of the first three values is 98.57, which is close to normal. However, if you calculate the average temperature including the missing value for which 0.0 was substituted, the average is only 73.93, clearly a questionable result. Certainly, doctors would not want to take drastic remedial action on this patient—it’s crucial to “get the data right.”

One common way to clean the data is to substitute a reasonable value for the missing temperature, such as the average of the patient’s other readings. Had we done that above, then the patient’s average temperature would remain 98.57—a much more likely average temperature, based on the other readings.

Data Validation

Let’s begin by creating a Series of five-digit ZIP Codes from a dictionary of city-name/five-digit-ZIP-Code key–value pairs. We intentionally entered an invalid ZIP Code for Miami:

In [1]: import pandas as pd

In [2]: zips = pd.Series({'Boston': '02215', 'Miami': '3310'})

In [3]: zips

Out[3]:

Boston 02215

Miami 3310

dtype: object

Though zips looks like a two-dimensional array, it’s actually one-dimensional. The “second column” represents the Series’ ZIP Code values (from the dictionary’s values), and the “first column” represents their indices (from the dictionary’s keys).

We can use regular expressions with Pandas to validate data. The str attribute of a Series provides string-processing and various regular expression methods. Let’s use the str attribute’s match method to check whether each ZIP Code is valid:

In [4]: zips.str.match(r'\d{5}')

Out[4]:

Boston True

Miami False

dtype: bool

Method match applies the regular expression \d{5} to each Series element, attempting to ensure that the element is comprised of exactly five digits. You do not need to loop explicitly through all the ZIP Codes—match does this for you. This is another example of functional-style programming with internal rather than external iteration. The method returns a new Series containing True for each valid element. In this case, the ZIP Code for Miami did not match, so its element is False.

There are several ways to deal with invalid data. One is to catch it at its source and interact with the source to correct the value. That’s not always possible. For example, the data could be coming from high-speed sensors in the Internet of Things. In that case, we would not be able to correct it at the source, so we could apply data cleaning techniques. In the case of the bad Miami ZIP Code of 3310, we might look for Miami ZIP Codes beginning with 3310. There are two—33101 and 33109—and we could pick one of those.

Sometimes, rather than matching an entire value to a pattern, you’ll want to know whether a value contains a substring that matches the pattern. In this case, use method contains instead of match. Let’s create a Series of strings, each containing a U.S. city, state and ZIP Code, then determine whether each string contains a substring matching the pattern ' [A-Z]{2} ' (a space, followed by two uppercase letters, followed by a space):

In [5]: cities = pd.Series(['Boston, MA 02215', 'Miami, FL 33101'])

In [6]: cities

Out[6]:

0 Boston, MA 02215

1 Miami, FL 33101

dtype: object

In [7]: cities.str.contains(r' [A-Z]{2} ')

Out[7]:

0 True

1 True

dtype: bool

In [8]: cities.str.match(r' [A-Z]{2} ')

Out[8]:

0 False

1 False

dtype: bool

We did not specify the index values, so the Series uses zero-based indexes by default (snippet [6]). Snippet [7] uses contains to show that both Series elements contain substrings that match ' [A-Z]{2} '. Snippet [8] uses match to show that neither element’s value matches that pattern in its entirety, because each has other characters in its complete value.

Reformatting Your Data

We’ve discussed data cleaning. Now let’s consider munging data into a different format. As a simple example, assume that an application requires U.S. phone numbers in the format ###-###-####, with hyphens separating each group of digits. The phone numbers have been provided to us as 10-digit strings without hyphens. Let’s create the DataFrame:

In [9]: contacts = [['Mike Green', 'demo1@deitel.com', '5555555555'],

 ...: ['Sue Brown', 'demo2@deitel.com', '5555551234']]

 ...:

In [10]: contactsdf = pd.DataFrame(contacts,

 ...: columns=['Name', 'Email', 'Phone'])

 ...:

In [11]: contactsdf

Out[11]:

 Name Email Phone

0 Mike Green demo1@deitel.com 5555555555

1 Sue Brown demo2@deitel.com 5555551234

In this DataFrame, we specified column indices via the columns keyword argument but did not specify row indices, so the rows are indexed from 0. Also, the output shows the column values right aligned by default. This differs from Python formatting in which numbers in a field are right aligned by default but non-numeric values are left aligned by default.

Now, let’s munge the data with a little more functional-style programming. We can map the phone numbers to the proper format by calling the Series method map on the DataFrame’s 'Phone' column. Method map’s argument is a function that receives a value and returns the mapped value. The function get_formatted_phone maps 10 consecutive digits into the format ###-###-####:

In [12]: import re

In [13]: def get_formatted_phone(value):

 ...: result = re.fullmatch(r'(\d{3})(\d{3})(\d{4})', value)

 ...: return '-'.join(result.groups()) if result else value

 ...:

 ...:

The regular expression in the block’s first statement matches only 10 consecutive digits. It captures substrings containing the first three digits, the next three digits and the last four digits. The return statement operates as follows:

	If result is None, we simply return value unmodified.

	Otherwise, we call result.groups() to get a tuple containing the captured substrings and pass that tuple to string method join to concatenate the elements, separating each from the next with '-' to form the mapped phone number.

Series method map returns a new Series containing the results of calling its function argument for each value in the column. Snippet [15] displays the result, including the column’s name and type:

In [14]: formatted_phone = contactsdf['Phone'].map(get_formatted_phone)

In [15]: formatted_phone

0 555-555-5555

1 555-555-1234

Name: Phone, dtype: object

Once you’ve confirmed that the data is in the correct format, you can update it in the original DataFrame by assigning the new Series to the 'Phone' column:

In [16]: contactsdf['Phone'] = formatted_phone

In [17]: contactsdf

Out[17]:

 Name Email Phone

0 Mike Green demo1@deitel.com 555-555-5555

1 Sue Brown demo2@deitel.com 555-555-1234

We’ll continue our pandas discussion in the next chapter’s Intro to Data Science section, and we’ll use pandas in several later chapters.

[image: tick mark] Self Check

	(Fill-In) Preparing data for analysis is called or . A subset of this process is data cleaning.

Answer: data munging, data wrangling.

	(IPython Session) Let’s assume that an application requires U.S. phone numbers in the format (###) ###-####. Modify the get_formatted_phone function in snippet [13] to return the phone number in this new format. Then recreate the DataFrame from snippets [9] and [10] and use the updated get_formatted_phone function to munge the data.

Answer:

In [1]: import pandas as pd

In [2]: import re

In [3]: contacts = [['Mike Green', 'demo1@deitel.com', '5555555555'],

 ...: ['Sue Brown', 'demo2@deitel.com', '5555551234']]

 ...:

In [4]: contactsdf = pd.DataFrame(contacts,

 ...: columns=['Name', 'Email', 'Phone'])

 ...:

In [5]: def get_formatted_phone(value):

 ...: result = re.fullmatch(r'(\d{3})(\d{3})(\d{4})', value)

 ...: if result:

 ...: part1, part2, part3 = result.groups()

 ...: return '(' + part1 + ') ' + part2 + '-' + part3

 ...: else:

 ...: return value

 ...:

In [6]: contactsdf['Phone'] = contactsdf['Phone'].map(get_formatted_phone)

In [7]: contactsdf

Out[7]:

 Name Email Phone

0 Mike Green demo1@deitel.com (555) 555-5555

1 Sue Brown demo2@deitel.com (555) 555-1234

8.14 Wrap-Up

In this chapter, we presented various string formatting and processing capabilities. You formatted data in f-strings and with the string method format. We showed the augmented assignments for concatenating and repeating strings. You used string methods to remove whitespace from the beginning and end of strings and to change their case. We discussed additional methods for splitting strings and for joining iterables of strings. We introduced various character-testing methods.

We showed raw strings that treat backslashes (\) as literal characters rather than the beginning of escape sequences. These were particularly useful for defining regular expressions, which often contain many backslashes.

Next, we introduced the powerful pattern-matching capabilities of regular expressions with functions from the re module. We used the fullmatch function to ensure that an entire string matched a pattern, which is useful for validating data. We showed how to use the replace function to search for and replace substrings. We used the split function to tokenize strings based on delimiters that match a regular expression pattern. Then we showed various ways to search for patterns in strings and to access the resulting matches.

In the Intro to Data Science section, we introduced the synonyms data munging and data wrangling and showed an sample data munging operation, namely and transforming data. We continued our discussion of Panda’s Series and DataFrames by using regular expressions to validate and munge data.

In the next chapter, we’ll continue using various string-processing capabilities as we introduce reading text from files and writing text to files. We’ll introduce the csv module for manipulating comma-separated value (CSV) files. We’ll also introduce exception handling so we can process exceptions as they occur, rather than displaying a traceback.

Exercises

Use IPython sessions for each exercise where practical.

	8.1 (Check Protection) Although electronic deposit has become extremely popular, payroll and accounts payable applications often print checks. A serious problem is the intentional alteration of a check amount by someone who plans to cash a check fraudulently. To prevent a dollar amount from being altered, some computerized check-writing systems employ a technique called check protection. Checks designed for printing by computer typically contain a fixed number of spaces for the printed amount. Suppose a paycheck contains eight blank spaces in which the computer is supposed to print the amount of a weekly paycheck. If the amount is large, then all eight of the spaces will be filled:

1,230.60 (check amount)

01234567 (position numbers)

On the other hand, if the amount is smaller, then several of the spaces would ordinarily be left blank. For example,

 399.87

01234567

contains two blank spaces. If a check is printed with blank spaces, it’s easier for someone to alter the amount. Check-writing systems often insert leading asterisks to prevent alteration and protect the amount as follows:

**399.87

01234567

Write a script that inputs a dollar amount, then prints the amount in check-protected format in a field of 10 characters with leading asterisks if necessary. [Hint: In a format string that explicitly specifies alignment with <, ^ or >, you can precede the alignment specifier with the fill character of your choice.]

	8.2 (Random Sentences) Write a script that uses random-number generation to compose sentences. Use four arrays of strings called article, noun, verb and preposition. Create a sentence by selecting a word at random from each array in the following order: article, noun, verb, preposition, article and noun. As each word is picked, concatenate it to the previous words in the sentence. Spaces should separate the words. When the final sentence is output, it should start with a capital letter and end with a period. The script should generate and display 20 sentences.

	8.3 (Pig Latin) Write a script that encodes English-language phrases into a form of coded language called pig Latin. There are many different ways to form pig Latin phrases. For simplicity, use the following algorithm:

To form a pig Latin phrase from an English-language phrase, tokenize the phrase into words with string method split. To translate each English word into a pig Latin word, place the first letter of the English word at the end of the word and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the word “the” becomes “hetay,” and the word “computer” becomes “omputercay.” If the word starts with a vowel, just add “ay.” Blanks between words remain as blanks. Assume the following: The English phrase consists of words separated by blanks, there are no punctuation marks and all words have two or more letters. Enable the user to enter a sentence, then display the sentence in pig Latin.

	8.4 (Reversing a Sentence) Write a script that reads a line of text as a string, tokenizes the string with the split method and outputs the tokens in reverse order. Use space characters as delimiters.

	8.5 (Tokenizing and Comparing Strings) Write a script that reads a line of text, tokenizes the line using space characters as delimiters and outputs only those words beginning with the letter 'b'.

	8.6 (Tokenizing and Comparing Strings) Write a script that reads a line of text, tokenizes it using space characters as delimiters and outputs only those words ending with the letters 'ed'.

	8.7 (Converting Integers to Characters) Use the c presentation type to display a table of the character codes in the range 0 to 255 and their corresponding characters.

	8.8 (Converting Integers to Emojis) Modify the previous exercise to display 10 emojis beginning with the smiley face, which has the value 0x1F600:5

5. The look-and-feel of emojis varies across systems. The emoji shown here is from macOS. Also, depending on your system’s fonts the emoji symbols might not display correctly.

[image: The smiling face emoji.]

The value 0x1F600 is a hexadecimal (base 16) integer. See the online appendix “Number Systems” for information on the hexadecimal number system. You can find emoji codes by searching online for “Unicode full emoji list.” The Unicode website precedes each character code with "U+" (representing Unicode). Replace "U+" with "0x" to properly format the code as a Python hexadecimal integer.

	8.9 (Creating Three-Letter Strings from a Five-Letter Word) Write a script that reads a five-letter word from the user and produces every possible three-letter string, based on the word’s letters. For example, the three-letter words produced from the word “bathe” include “ate,” “bat,” “bet,” “tab,” “hat,” “the” and “tea.” Challenge: Investigate the functions from the itertools module, then use an appropriate function to automate this task.

	8.10 (Project: Simple Sentiment Analysis) Search online for lists of positive sentiment words and negative sentiment words. Create a script that inputs text, then determines whether that text is positive or negative, based on the total number of positive words and the total number of negative words. Test your script by searching for Twitter tweets on a topic of your choosing, then entering the text for several tweets. In the data science case study chapters, we’ll take a deeper look at sentiment analysis.

	8.11 (Project: Evaluate Word Problems) Write a script that enables the user to enter mathematical word problems like “two times three” and “seven minus five”, then use string processing to break apart the string into the numbers and the operation and return the result. So “two times three” would return 6 and “seven minus five” would return 2. To keep things simple, assume the user enters only the words for the numbers 0 through 9 and only the operations 'plus', 'minus', 'times' and 'divided by'.

	8.12 (Project: Scrambled Text) Use string-processing capabilities to keep the first and last letter of a word and scramble the remaining letters in between the first and last. Search online for “University of Cambridge scrambled text” for an intriguing paper on the readability of texts consisting of such scrambled words. Investigate the random module’s shuffle function to help you implement this exercise’s solution.

Regular Expression Exercises

	8.13 (Regular Expressions: Condense Spaces to a Single Space) Check whether a sentence contains more than one space between words. If so, remove the extra spaces and display the results. For example, 'Hello World' should become 'Hello World'.

	8.14 (Regular Expressions: Capturing Substrings) Reimplement Exercises 8.5 and 8.6 using regular expressions that capture the matching substrings, then display them.

	8.15 (Regular Expressions: Counting Characters and Words) Use regular expressions and the findall function to count the number of digits, non-digit characters, whitespace characters and words in a string.

	8.16 (Regular Expressions: Locating URLs) Use a regular expression to search through a string and to locate all valid URLs. For this exercise, assume that a valid URL has the form http://www.domain_name.extension, where extension must be two or more characters.

	8.17 (Regular Expressions: Matching Numeric Values) Write a regular expression that searches a string and matches a valid number. A number can have any number of digits, but it can have only digits and a decimal point and possibly a leading sign. The decimal point is optional, but if it appears in the number, there must be only one, and it must have digits on its left and its right. There should be whitespace or a beginning or end-of-line character on either side of a valid number.

	8.18 (Regular Expression: Password Format Validator) Search online for secure password recommendations, then research existing regular expressions that validate secure passwords. Two examples of password requirements are:

	Passwords must contain at least five words, each separated by a hyphen, a space, a period, a comma or an underscore.

	Passwords must have a minimum of 8 characters and contain at least one each from uppercase characters, lowercase characters, digits and punctuation characters (such as characters in '!@#$%<^>&*?').

Write regular expressions for each of the two requirements above, then use them to test sample passwords.

	8.19 (Regular Expressions: Testing Regular Expressions Online) Before using any regular expression in your code, you should thoroughly test it to ensure that it meets your needs. Use a regular expression website like regex101.com to explore and test existing regular expressions, then write your own regular expression tester.

	8.20 (Regular Expressions: Munging Dates) Dates are stored and displayed in several common formats. Three common formats are

042555

04/25/1955

April 25, 1955

Use regular expressions to search a string containing dates, find substrings that match these formats and munge them into the other formats. The original string should have one date in each format, so there will be a total of six transformations.

	8.21 (Project: Metric Conversions) Write a script that assists the user with some common metric-to-English conversions. Your script should allow the user to specify the names of the units as strings (i.e., centimeters, liters, grams, and so on for the metric system and inches, quarts, pounds, and so on for the English system) and should respond to simple questions, such as

'How many inches are in 2 meters?'

'How many liters are in 10 quarts?'

Your script should recognize invalid conversions. For example, the following question is not meaningful, because 'feet' is a unit of length and 'kilograms' is a unit of mass:

'How many feet are in 5 kilograms?'

Assume that all questions are in the form shown above. Use regular expressions to capture the important substrings, such as 'inches', '2' and 'meters' in the first sample question above. Recall that functions int and float can convert strings to numbers.

More Challenging String-Manipulation Exercises

The preceding exercises are keyed to the text and designed to test your understanding of fundamental string manipulation and regular expression concepts. This section includes a collection of intermediate and advanced string-manipulation exercises. You should find these problems challenging, yet entertaining. The problems vary considerably in difficulty. Some require an hour or two of coding. Others are useful for lab assignments that might require two or three weeks of study and implementation. Some are challenging term projects. In the “Natural Language Processing (NLP)” chapter, you’ll learn other text-processing techniques that will enable you to approach some of these exercises from a machine learning perspective.

	8.22 (Project: Cooking with Healthier Ingredients) In the “Dictionaries and Sets” chapter’s exercises, you created a dictionary that mapped ingredients to lists of their possible substitutions. Use that dictionary in a script that helps users choose healthier ingredients when cooking. The script should read a recipe from the user and suggest healthier replacements for some of the ingredients. For simplicity, your script should assume the recipe has no abbreviations for measures such as teaspoons, cups, and tablespoons, and uses numerical digits for quantities (e.g., 1 egg, 2 cups) rather than spelling them out (one egg, two cups). Your program should display a warning such as, “Always consult your healthcare professional before making significant changes to your diet.” Your program should take into consideration that replacements are not always one-for-one. For example, each whole egg in a recipe can be replaced with two egg whites.

	8.23 (Project: Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dollars a year in spam-prevention software, equipment, network resources, bandwidth, and lost productivity. Research online some of the most common spam e-mail messages and words, and check your junk e-mail folder. Create a list of 30 words and phrases commonly found in spam messages. Write an application in which the user enters an e-mail message. Then, scan the message for each of the 30 keywords or phrases. For each occurrence of one of these within the message, add a point to the message’s “spam score.” Next, rate the likelihood that the message is spam, based on the number of points it received. In the data science case study chapters, you’ll be able to attack this problem in a more sophisticated way.

	8.24 (Research: Inter-Language Translation) This exercise will help you explore one of the most challenging problems in natural language processing and artificial intelligence. The Internet brings us all together in ways that make inter-language translation particularly important. As authors, we frequently receive messages from non-English speaking readers worldwide. Not long ago, we’d write back asking them to write to us in English so we could understand.

With advances in machine learning, artificial intelligence and natural language processing, services like Google Translate (100+ languages) and Bing Microsoft Translator (60+ languages) can translate between languages instantly. In fact, the translations are so good that when non-English speakers write to us in English, we often ask them to write back in their native language, then we translate their message online.

There are many challenges in natural language translation. To get a sense of this, use online translation services to perform the following tasks:

	Start with a sentence in English. A popular sentence in machine translation lore is from the Bible’s Matthew 26:41, “The spirit is willing, but the flesh is weak.”

	Translate that sentence to another language, like Japanese.

	Translate the Japanese text back to English.

Do you get the original sentence? Often, translating from one language to another and back gives the original sentence or something close. Try chaining multiple language translations together. For instance, we took the phrase in Part (a) above and translated it from English to Chinese Traditional to Japanese to Arabic and back to English. The result was, “The soul is very happy, but the flesh is very crisp.” Send us your favorite translations!

	8.25 (Project: State of the Union Speeches) All U.S. Presidents’ State of the Union speeches are available online. Copy and paste one into a large multiline string, then display statistics, including the total word count, the total character count, the average word length, the average sentence length, a word distribution of all words, a word distribution of words ending in 'ly' and the top 10 longest words. In the “Natural Language Processing (NLP)” chapter, you’ll find lots of more sophisticated techniques for analyzing and comparing such texts.

	8.26 (Research: Grammarly) Copy and paste State of the Union speeches into the free version of Grammarly or similar software. Compare the reading grade levels for speeches from several presidents.

9 Files and Exceptions

Objectives

In this chapter you’ll:

	Understand the notions of files and persistent data.

	Read, write and update files.

	Read and write CSV files, a common format for machine-learning datasets.

	Serialize objects into the JSON data-interchange format—commonly used to transmit over the Internet—and deserialize JSON into objects.

	Use the with statement to ensure that resources are properly released, avoiding “resource leaks.”

	Use the try statement to delimit code in which exceptions may occur and handle those exceptions with associated except clauses.

	Use the try statement’s else clause to execute code when no exceptions occur in the try suite.

	Use the try statement’s finally clause to execute code regardless of whether an exception occurs in the try.

	raise exceptions to indicate runtime problems.

	Understand the traceback of functions and methods that led to an exception.

	Use pandas to load into a DataFrame and process the Titanic Disaster CSV dataset.

Outline

	9.1 Introduction

	9.2 Files

	9.3 Text-File Processing

	9.3.1 Writing to a Text File: Introducing the with Statement

	9.3.2 Reading Data from a Text File

	9.4 Updating Text Files

	9.5 Serialization with JSON

	9.6 Focus on Security: pickle Serialization and Deserialization

	9.7 Additional Notes Regarding Files

	9.8 Handling Exceptions

	9.8.1 Division by Zero and Invalid Input

	9.8.2 try Statements

	9.8.3 Catching Multiple Exceptions in One except Clause

	9.8.4 What Exceptions Does a Function or Method Raise?

	9.8.5 What Code Should Be Placed in a try Suite?

	9.9 finally Clause

	9.10 Explicitly Raising an Exception

	9.11 (Optional) Stack Unwinding and Tracebacks

	9.12 Intro to Data Science: Working with CSV Files

	9.12.1 Python Standard Library Module csv

	9.12.2 Reading CSV Files into Pandas DataFrames

	9.12.3 Reading the Titanic Disaster Dataset

	9.12.4 Simple Data Analysis with the Titanic Disaster Dataset

	9.12.5 Passenger Age Histogram

	9.13 Wrap-Up

	Exercises

9.1 Introduction

Variables, lists, tuples, dictionaries, sets, arrays, pandas Series and pandas DataFrames offer only temporary data storage. The data is lost when a local variable “goes out of scope” or when the program terminates. Files provide long-term retention of typically large amounts of data, even after the program that created the data terminates, so data maintained in files is persistent. Computers store files on secondary storage devices, including solid-state drives, hard disks and more. In this chapter, we explain how Python programs create, update and process data files.

We consider text files in several popular formats—plain text, JSON (JavaScript Object Notation) and CSV (comma-separated values). We’ll use JSON to serialize and deserialize objects to facilitate saving those objects to secondary storage and transmitting them over the Internet. Be sure to read this chapter’s Intro to Data Science section in which we’ll use both the Python Standard Library’s csv module and pandas to load and manipulate CSV data. In particular, we’ll look at the CSV version of the Titanic disaster dataset. We’ll use many popular datasets in upcoming data-science case-study chapters on machine learning, deep learning and more.

As part of our continuing emphasis on Python security, we’ll discuss the security vulnerabilities of serializing and deserializing data with the Python Standard Library’s pickle module. We recommend JSON serialization in preference to pickle.

We also introduce exception handling. An exception indicates an execution-time problem. You’ve seen exceptions of types ZeroDivisionError, NameError, ValueError, StatisticsError, TypeError, IndexError, KeyError and RuntimeError. We’ll show how to deal with exceptions as they occur by using try statements and associated except clauses to handle exceptions. We’ll also discuss the try statement’s else and finally clauses. The features presented here help you write robust, fault-tolerant programs that can deal with problems and continue executing or terminate gracefully.

Programs typically request and release resources (such as files) during program execution. Often, these are in limited supply or can be used only by one program at a time. We show how to guarantee that after a program uses a resource, it’s released for use by other programs, even if an exception has occurred. You’ll use the with statement for this purpose.

9.2 Files

Python views a text file as a sequence of characters and a binary file (for images, videos and more) as a sequence of bytes. As in lists and arrays, the first character in a text file and byte in a binary file is located at position 0, so in a file of n characters or bytes, the highest position number is n – 1. The diagram below shows a conceptual view of a file:

[image: A conceptual view of a file.]

9.2-1 Full Alternative Text

For each file you open, Python creates a file object that you’ll use to interact with the file.

End of File
Every operating system provides a mechanism to denote the end of a file. Some represent it with an end-of-file marker (as in the preceding figure), while others might maintain a count of the total characters or bytes in the file. Programming languages generally hide these operating-system details from you.

Standard File Objects

When a Python program begins execution, it creates three standard file objects:

	sys.stdin—the standard input file object

	sys.stdout—the standard output file object, and

	sys.stderr—the standard error file object.

Though these are considered file objects, they do not read from or write to files by default. The input function implicitly uses sys.stdin to get user input from the keyboard. Function print implicitly outputs to sys.stdout, which appears in the command line. Python implicitly outputs program errors and tracebacks to sys.stderr, which also appears in the command line. You must import the sys module if you need to refer to these objects explicitly in your code, but this is rare.

9.3 Text-File Processing

In this section, we’ll write a simple text file that might be used by an accounts-receivable system to track the money owed by a company’s clients. We’ll then read that text file to confirm that it contains the data. For each client, we’ll store the client’s account number, last name and account balance owed to the company. Together, these data fields represent a client record. Python imposes no structure on a file, so notions such as records do not exist natively in Python. Programmers must structure files to meet their applications’ requirements. We’ll create and maintain this file in order by account number. In this sense, the account number may be thought of as a record key. For this chapter, we assume that you launch IPython from the ch09 examples folder.

9.3.1 Writing to a Text File: Introducing the with Statement

Let’s create an accounts.txt file and write five client records to the file. Generally, records in text files are stored one per line, so we end each record with a newline character:

In [1]: with open('accounts.txt', mode='w') as accounts:

 ...: accounts.write('100 Jones 24.98\n')

 ...: accounts.write('200 Doe 345.67\n')

 ...: accounts.write('300 White 0.00\n')

 ...: accounts.write('400 Stone -42.16\n')

 ...: accounts.write('500 Rich 224.62\n')

 ...:

You can also write to a file with print (which automatically outputs a \n), as in

print('100 Jones 24.98', file=accounts)

The with Statement

Many applications acquire resources, such as files, network connections, database connections and more. You should release resources as soon as they’re no longer needed. This practice ensures that other applications can use the resources. Python’s with statement:

	acquires a resource (in this case, the file object for accounts.txt) and assigns its corresponding object to a variable (accounts in this example),

	allows the application to use the resource via that variable, and

	calls the resource object’s close method to release the resource when program control reaches the end of the with statement’s suite.

Built-In Function open

The built-in open function opens the file accounts.txt and associates it with a file object. The mode argument specifies the file-open mode, indicating whether to open a file for reading from the file, for writing to the file or both. The mode 'w' opens the file for writing, creating the file if it does not exist. If you do not specify a path to the file, Python creates it in the current folder (ch09). Be careful—opening a file for writing deletes all the existing data in the file. By convention, the

.txt file extension indicates a plain text file.

Writing to the File

The with statement assigns the object returned by open to the variable accounts in the as clause. In the with statement’s suite, we use the variable accounts to interact with the file. In this case, we call the file object’s write method five times to write five records to the file, each as a separate line of text ending in a newline. At the end of the with statement’s suite, the with statement implicitly calls the file object’s close method to close the file.

Contents of accounts.txt File

After executing the previous snippet, your ch09 directory contains the file accounts.txt with the following contents, which you can view by opening the file in a text editor:

100 Jones 24.98

200 Doe 345.67

300 White 0.00

400 Stone -42.16

500 Rich 224.62

In the next section, you’ll read the file and display its contents.

[image:] Self Check

	(Fill-In) The implicitly releases resources when its suite finishes executing.

Answer: with.

	(True/False) It’s good practice to keep resources open until your program terminates.

Answer: False. It’s good practice to close resources as soon as the program no longer needs them.

	(IPython Session) Create a grades.txt file and write to it the following three records consisting of student IDs, last names and letter grades:

1 Red A

2 Green B

3 White A

Answer:

In [1]: with open('grades.txt', mode='w') as grades:

 ...: grades.write('1 Red A\n')

 ...: grades.write('2 Green B\n')

 ...: grades.write('3 White A\n')

 ...:

After the preceding snippet executed, we used a text editor to view the grades.txt file:

1 Red A

2 Green B

3 White A

9.3.2 Reading Data from a Text File

We just created the text file accounts.txt and wrote data to it. Now let’s read that data from the file sequentially from beginning to end. The following session reads records from the file accounts.txt and displays the contents of each record in columns with the Account and Name columns left aligned and the Balance column right aligned, so the decimal points align vertically:

In [1]: with open('accounts.txt', mode='r') as accounts:

 ...: print(f'{"Account":<10}{"Name":<10}{"Balance":>10}')

 ...: for record in accounts:

 ...: account, name, balance = record.split()

 ...: print(f'{account:<10}{name:<10}{balance:>10}')

 ...:

Account Name Balance

100 Jones 24.98

200 Doe 345.67

300 White 0.00

400 Stone -42.16

500 Rich 224.62

If the contents of a file should not be modified, open the file for reading only—another example of the principle of least privilege. This prevents the program from accidentally modifying the file. You open a file for reading by passing the 'r' file-open mode as function open’s second argument. If you do not specify the folder in which to store the file, open assumes the file is in the current folder.

Iterating through a file object, as shown in the preceding for statement, reads one line at a time from the file and returns it as a string. For each record (that is, line) in the file, string method split returns tokens in the line as a list, which we unpack into the variables account, name and balance.1 The last statement in the for statement’s suite displays these variables in columns using field widths.
1. When splitting strings on spaces (the default), split automatically discards the newline character.

File Method readlines

The file object’s readlines method also can be used to read an entire text file. The method returns each line as a string in a list of strings. For small files, this works well, but iterating over the lines in a file object, as shown above, can be more efficient.2 Calling readlines for a large file can be a time-consuming operation, which must complete before you can begin using the list of strings. Using the file object in a for statement enables your program to process each text line as it’s read.
2. https://docs.python.org/3/tutorial/inputoutput.html#methods-of-file-objects.

Seeking to a Specific File Position

While reading through a file, the system maintains a file-position pointer representing the location of the next character to read. Sometimes it’s necessary to process a file sequentially from the beginning several times during a program’s execution. Each time, you must reposition the file-position pointer to the beginning of the file, which you can do either by closing and reopening the file, or by calling the file object’s seek method, as in

file_object.seek(0)

The latter approach is faster.

[image: tick mark] Self Check

	(Fill-In) A file object’s method can be used to reposition the file-position pointer.

Answer: seek.

	(True/False) By default, iterating through a file object with a for statement reads one line at a time from the file and returns it as a string.

Answer: True.

	(IPython Session) Read the file grades.txt that you created in the previous section’s Self Check and display it in columns with the column heads 'ID', 'Name' and 'Grade'.

Answer:

In [1]: with open('grades.txt', 'r') as grades:

 ...: print(f'{"ID":<4}{"Name":<7}{"Grade"}')

 ...: for record in grades:

 ...: student_id, name, grade = record.split()

 ...: print(f'{student_id:<4}{name:<7}{grade}')

 ...:

ID Name Grade

1 Red A

2 Green B

3 White A

9.4 Updating Text Files

Formatted data written to a text file cannot be modified without the risk of destroying other data. If the name 'White' needs to be changed to 'Williams' in accounts.txt, the old name cannot simply be overwritten. The original record for White is stored as

300 White 0.00

If you overwrite the name 'White' with the name 'Williams', the record becomes

300 Williams00

The new last name contains three more characters than the original one, so the characters beyond the second “i” in 'Williams' overwrite other characters in the line. The problem is that in the formatted input–output model, records and their fields can vary in size. For example, 7, 14, –117, 2074 and 27383 are all integers and are stored in the same number of “raw data” bytes internally (typically 4 or 8 bytes in today’s systems). However, when these integers are output as formatted text, they become different-sized fields. For example, 7 is one character, 14 is two characters and 27383 is five characters.

To make the preceding name change, we can:

	copy the records before 300 White 0.00 into a temporary file,

	write the updated and correctly formatted record for account 300 to this file,

	copy the records after 300 White 0.00 to the temporary file,

	delete the old file and

	rename the temporary file to use the original file’s name.

This can be cumbersome because it requires processing every record in the file, even if you need to update only one record. Updating a file as described above is more efficient when an application needs to update many records in one pass of the file.3

3. In the chapter, “Big Data: Hadoop, Spark, NoSQL and IoT,” you’ll see that database systems solve this “update in place” problem efficiently.

Updating accounts.txt

Let’s use a with statement to update the accounts.txt file to change account 300’s name from 'White' to 'Williams' as described above:

In [1]: accounts = open('accounts.txt', 'r')

In [2]: temp_file = open('temp_file.txt', 'w')

In [3]: with accounts, temp_file:

 ...: for record in accounts:

 ...: account, name, balance = record.split()

 ...: if account != '300':

 ...: temp_file.write(record)

 ...: else:

 ...: new_record = ' '.join([account, 'Williams', balance])

 ...: temp_file.write(new_record + '\n')

 ...:

For readability, we opened the file objects (snippets [1] and [2]), then specified their variable names in the first line of snippet [3]. This with statement manages two resource objects, specified in a comma-separated list after with. The for statement unpacks each record into account, name and balance. If the account is not '300', we write record (which contains a newline) to temp_file. Otherwise, we assemble the new record containing 'Williams' in place of 'White' and write it to the file. After snippet [3], temp_file.txt contains:

100 Jones 24.98

200 Doe 345.67

300 Williams 0.00

400 Stone -42.16

500 Rich 224.62

os Module File-Processing Functions

At this point, we have the old accounts.txt file and the new temp_file.txt. To complete the update, let’s delete the old accounts.txt file, then rename temp_file.txt as accounts.txt. The os module4 provides functions for interacting with the operating system, including several that manipulate your system’s files and directories. Now that we’ve created the temporary file, let’s use the remove function5 to delete the original file:
4. https://docs.python.org/3/library/os.html.
5. Use remove with caution—it does not warn you that you’re permanently deleting the file.

In [4]: import os

In [5]: os.remove('accounts.txt')

Next, let’s use the rename function to rename the temporary file as 'accounts.txt':

In [6]: os.rename('temp_file.txt', 'accounts.txt')

[image: tick mark] Self Check

	(Fill-In) The os module’s and functions delete a file and specify a new name for a file, respectively.

Answer: remove, rename.

	(True/False) Formatted data in a text file can be updated in place because records and their fields are fixed in size.

Answer: False. Such data cannot be modified without the risk of destroying other data in the file, because records and their fields can vary in size.

	(IPython Session) In the accounts.txt file, update the last name 'Doe' to 'Smith'.

Answer:

In [1]: accounts = open('accounts.txt', 'r')

In [2]: temp_file = open('temp_file.txt', 'w')

In [3]: with accounts, temp_file:

 ...: for record in accounts:

 ...: account, name, balance = record.split()

 ...: if name != 'Doe':

 ...: temp_file.write(record)

 ...: else:

 ...: new_record = ' '.join([account, 'Smith', balance])

 ...: temp_file.write(new_record + '\n')

 ...:

In [4]: import os

In [5]: os.remove('accounts.txt')

In [6]: os.rename('temp_file.txt', 'accounts.txt')

9.5 Serialization with JSON

Many libraries we’ll use to interact with cloud-based services such as Twitter, IBM Watson and others communicate with your applications via JSON objects. JSON (JavaScript Object Notation) is a text-based, human-and-computer-readable, data-interchange format used to represent objects (such as dictionaries, lists and more) as collections of name–value pairs. JSON can even represent objects of custom classes like those you’ll build in the next chapter.

JSON has become the preferred data format for transmitting objects across platforms. This is especially true for invoking cloud-based web services, which are functions and methods that you call over the Internet. You’ll become proficient at working with JSON data. In the “Big Data: Hadoop, Spark, NoSQL and IoT” chapter, we’ll store JSON tweet objects that we obtain from Twitter in MongoDB, a popular NoSQL database.

JSON Data Format

JSON objects are similar to Python dictionaries. Each JSON object contains a comma-separated list of property names and values, in curly braces. For example, the following key–value pairs might represent a client record:

{"account": 100, "name": "Jones", "balance": 24.98}

JSON also supports arrays which, like Python lists, are comma-separated values in square brackets. For example, the following is an acceptable JSON array of numbers:

[100, 200, 300]

Values in JSON objects and arrays can be:

	strings in double quotes (like "Jones"),

	numbers (like 100 or 24.98),

	JSON Boolean values (represented as true or false in JSON),

	null (to represent no value, like None in Python),

	arrays (like [100, 200, 300]), and

	other JSON objects.

Python Standard Library Module json

The json module enables you to convert objects to JSON (JavaScript Object Notation) text format. This is known as serializing the data. Consider the following dictionary, which contains one key–value pair consisting of the key 'accounts' with its associated value being a list of dictionaries representing two accounts. Each account dictionary contains three key–value pairs for the account number, name and balance:

In [1]: accounts_dict = {'accounts': [

 ...: {'account': 100, 'name': 'Jones', 'balance': 24.98},

 ...: {'account': 200, 'name': 'Doe', 'balance': 345.67}]}

Serializing an Object to JSON

Let’s write that object in JSON format to a file:

In [2]: import json

In [3]: with open('accounts.json', 'w') as accounts:

 ...: json.dump(accounts_dict, accounts)

 ...:

Snippet [3] opens the file accounts.json and uses the json module’s dump function to serialize the dictionary accounts_dict into the file. The resulting file contains the following text, which we reformatted slightly for readability:

{"accounts":

 [{"account": 100, "name": "Jones", "balance": 24.98},

 {"account": 200, "name": "Doe", "balance": 345.67}]}

Note that JSON delimits strings with double-quote characters.

Deserializing the JSON Text

The json module’s load function reads the entire JSON contents of its file object argument and converts the JSON into a Python object. This is known as deserializing the data. Let’s reconstruct the original Python object from this JSON text:

In [4]: with open('accounts.json', 'r') as accounts:

 ...: accounts_json = json.load(accounts)

 ...:

 ...:

We can now interact with the loaded object. For example, we can display the dictionary:

In [5]: accounts_json

Out[5]:

{'accounts': [{'account': 100, 'name': 'Jones', 'balance': 24.98},

 {'account': 200, 'name': 'Doe', 'balance': 345.67}]}

As you’d expect, you can access the dictionary’s contents. Let’s get the list of dictionaries associated with the 'accounts' key:

In [6]: accounts_json['accounts']

Out[6]:

[{'account': 100, 'name': 'Jones', 'balance': 24.98},

 {'account': 200, 'name': 'Doe', 'balance': 345.67}]

Now, let’s get the individual account dictionaries:

In [7]: accounts_json['accounts'][0]

Out[7]: {'account': 100, 'name': 'Jones', 'balance': 24.98}

In [8]: accounts_json['accounts'][1]

Out[8]: {'account': 200, 'name': 'Doe', 'balance': 345.67}

Though we did not do so here, you can modify the dictionary as well. For example, you could add accounts to or remove accounts from the list, then write the dictionary back into the JSON file.

Displaying the JSON Text

The json module’s dumps function (dumps is short for “dump string”) returns a Python string representation of an object in JSON format. Using dumps with load, you can read the JSON from the file and display it in a nicely indented format—sometimes called “pretty printing” the JSON. When the dumps function call includes the indent keyword argument, the string contains newline characters and indentation for pretty printing—you also can use indent with the dump function when writing to a file:

In [9]: with open('accounts.json', 'r') as accounts:

 ...: print(json.dumps(json.load(accounts), indent=4))

 ...:

{

 "accounts": [

 {

 "account": 100,

 "name": "Jones",

 "balance": 24.98

 },

 {

 "account": 200,

 "name": "Doe",

 "balance": 345.67

 }

]

}

[image: tick mark] Self Check

	(Fill-In) Converting objects to JSON text format is known as , and reconstructing the original Python object from the JSON text is known as .

Answer: serialization, deserialization.

	(True/False) JSON is both a human-readable and computer-readable format that makes it convenient to send and receive objects across the Internet.

Answer: True.

	(IPython Session) Create a JSON file named grades.json and write into it the following dictionary:

grades_dict = {'gradebook':

 [{'student_id': 1, 'name': 'Red', 'grade': 'A'},

 {'student_id': 2, 'name': 'Green', 'grade': 'B'},

 {'student_id': 3, 'name': 'White', 'grade': 'A'}]}

Then, read the file and display its pretty-printed JSON.

Answer:

In [1]: import json

In [2]: grades_dict = {'gradebook':

 ...: [{'student_id': 1, 'name': 'Red', 'grade': 'A'},

 ...: {'student_id': 2, 'name': 'Green', 'grade': 'B'},

 ...: {'student_id': 3, 'name': 'White', 'grade': 'A'}]}

 ...:

In [3]: with open('grades.json', 'w') as grades:

 ...: json.dump(grades_dict, grades)

 ...:

In [4]: with open('grades.json', 'r') as grades:

 ...: print(json.dumps(json.load(grades), indent=4))

 ...:

{

 "gradebook": [

 {

 "student_id": 1,

 "name": "Red",

 "grade": "A"

 },

 {

 "student_id": 2,

 "name": "Green",

 "grade": "B"

 },

 {

 "student_id": 3,

 "name": "White",

 "grade": "A"

 }

]

}

9.6 Focus on Security: pickle Serialization and Deserialization

The Python Standard Library’s pickle module can serialize objects into in a Python-specific data format. Caution: The Python documentation provides the following warnings about pickle:

	“Pickle files can be hacked. If you receive a raw pickle file over the network, don’t trust it! It could have malicious code in it, that would run arbitrary Python when you try to de-pickle it. However, if you are doing your own pickle writing and reading, you’re safe (provided no one else has access to the pickle file, of course.)”6
6. https://wiki.python.org/moin/UsingPickle.

	“Pickle is a protocol which allows the serialization of arbitrarily complex Python objects. As such, it is specific to Python and cannot be used to communicate with applications written in other languages. It is also insecure by default: deserializing pickle data coming from an untrusted source can execute arbitrary code, if the data was crafted by a skilled attacker.”7
7. https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files.

We do not recommend using pickle, but it’s been used for many years, so you’re likely to encounter it in legacy code—old code that’s often no longer supported. For this reason, we’ve included an end-of-chapter pickle exercise, which explains how to use it.

9.7 Additional Notes Regarding Files

The following table summarizes the various file-open modes for text files, including the modes for reading and writing we’ve introduced. The writing and appending modes create the file if it does not exist. The reading modes raise a FileNotFoundError if the file does not exist. Each text-file mode has a corresponding binary-file mode specified with b, as in 'rb' or 'wb+'. You’d use these modes, for example, if you were reading or writing binary files, such as images, audio, video, compressed ZIP files and many other popular custom file formats.

[image: A table lists modes and a description of their function.]

9.7-2 Full Alternative Text

Other File Object Methods

Here are a few more useful file-object methods.

	For a text file, the read method returns a string containing the number of characters specified by the method’s integer argument. For a binary file, the method returns the specified number of bytes. If no argument is specified, the method returns the entire contents of the file.

	The readline method returns one line of text as a string, including the newline character if there is one. This method returns an empty string when it encounters the end of the file.

	The writelines method receives a list of strings and writes its contents to a file.

The classes that Python uses to create file objects are defined in the Python Standard Library’s io module (https://docs.python.org/3/library/io.html).

[image: tick mark] Self Check

	(Fill-In) The classes that Python uses to create file objects are defined in the Python Standard Library’s module.

Answer: io.

	(True/False) The read method always returns the entire contents of a file.

Answer: False. You may specify an argument indicating the number of characters (or bytes for a binary file) to read from the file.

9.8 Handling Exceptions

Various types of exceptions can occur when you work with files, including:

	A FileNotFoundError occurs if you attempt to open a non-existent file for reading with the 'r' or 'r+' modes.

	A PermissionsError occurs if you attempt an operation for which you do not have permission. This might occur if you try to open a file that your account is not allowed to access or create a file in a folder where your account does not have permission to write, such as where your computer’s operating system is stored.

	A ValueError (with the error message 'I/O operation on closed file.') occurs when you attempt to write to a file that has already been closed.

9.8.1 Division by Zero and Invalid Input

Let’s revisit two exceptions that you saw earlier in the book.

Division By Zero

Recall that attempting to divide by 0 results in a ZeroDivisionError:

In [1]: 10 / 0

ZeroDivisionError Traceback (most recent call last)

<ipython-input-1-a243dfbf119d> in <module>()

----> 1 10 / 0

ZeroDivisionError: division by zero

In [2]:

In this case, the interpreter is said to raise an exception of type ZeroDivisionError. When an exception is raised in IPython, it:

	terminates the snippet,

	displays the exception’s traceback, then

	shows the next In [] prompt so you can input the next snippet.

If an exception occurs in a script, IPython terminates the script and displays the exception’s traceback.

Invalid Input

Recall that the int function raises a ValueError if you attempt to convert to an integer a string (like 'hello') that does not represent a number:

In [2]: value = int(input('Enter an integer: '))

Enter an integer: hello

ValueError Traceback (most recent call last)

<ipython-input-2-b521605464d6> in <module>()

----> 1 value = int(input('Enter an integer: '))

ValueError: invalid literal for int() with base 10: 'hello'

In [3]:

9.8.2 try Statements

Now let’s see how to handle these exceptions so that you can enable code to continue processing. Consider the following script and sample execution. Its loop attempts to read two integers from the user, then display the first number divided by the second. The script uses exception handling to catch and handle (i.e., deal with) any ZeroDivisionErrors and ValueErrors that arise—in this case, allowing the user to re-enter the input.

 1 # dividebyzero.py

 2 """Simple exception handling example."""

 3

 4 while True:

 5 # attempt to convert and divide values

 6 try:

 7 number1 = int(input('Enter numerator: '))

 8 number2 = int(input('Enter denominator: '))

 9 result = number1 / number2

10 except ValueError: # tried to convert non-numeric value to int

11 print('You must enter two integers\n')

12 except ZeroDivisionError: # denominator was 0

13 print('Attempted to divide by zero\n')

14 else: # executes only if no exceptions occur

15 print(f'{number1:.3f} / {number2:.3f} = {result:.3f}')

16 break # terminate the loop

Enter numerator: 100

Enter denominator: 0

Attempted to divide by zero

Enter numerator: 100

Enter denominator: hello

You must enter two integers

Enter numerator: 100

Enter denominator: 7

100.000 / 7.000 = 14.286

try Clause

Python uses try statements (like lines 6–16) to enable exception handling. The try statement’s try clause (lines 6–9) begins with keyword try, followed by a colon (:) and a suite of statements that might raise exceptions.

except Clause

A try clause may be followed by one or more except clauses (lines 10–11 and 12–13) that immediately follow the try clause’s suite. These also are known as exception handlers. Each except clause specifies the type of exception it handles. In this example, each exception handler just displays a message indicating the problem that occurred.

else Clause

After the last except clause, an optional else clause (lines 14–16) specifies code that should execute only if the code in the try suite did not raise exceptions. If no exceptions occur in this example’s try suite, line 15 displays the division result and line 16 terminates the loop.

Flow of Control for a ZeroDivisionError

Now let’s consider this example’s flow of control, based on the first three lines of the sample output:

	First, the user enters 100 for the numerator in response to line 7 in the try suite.

	Next, the user enters 0 for the denominator in response to line 8 in the try suite.

	At this point, we have two integer values, so line 9 attempts to divide 100 by 0, causing Python to raise a ZeroDivisionError. The point in the program at which an exception occurs is often referred to as the raise point.

When an exception occurs in a try suite, it terminates immediately. If there are any except handlers following the try suite, program control transfers to the first one. If there are no except handlers, a process called stack unwinding occurs, which we discuss later in the chapter.

In this example, there are except handlers, so the interpreter searches for the first one that matches the type of the raised exception:

	The except clause at lines 10–11 handles ValueErrors. This does not match the type ZeroDivisionError, so that except clause’s suite does not execute and program control transfers to the next except handler.

	The except clause at lines 12–13 handles ZeroDivisionErrors. This is a match, so that except clause’s suite executes, displaying "Attempted to divide by zero".

When an except clause successfully handles the exception, program execution resumes with the finally clause (if there is one), then with the next statement after the try statement. In this example, we reach the end of the loop, so execution resumes with the next loop iteration. Note that after an exception is handled, program control does not return to the raise point. Rather, control resumes after the try statement. We’ll discuss the finally clause shortly.

Flow of Control for a ValueError

Now let’s consider the flow of control, based on the next three lines of the sample output:

	First, the user enters 100 for the numerator in response to line 7 in the try suite.

	Next, the user enters hello for the denominator in response to line 8 in the try suite. The input is not a valid integer, so the int function raises a ValueError.

The exception terminates the try suite and program control transfers to the first except handler. In this case, the except clause at lines 10–11 is a match, so its suite executes, displaying "You must enter two integers". Then, program execution resumes with the next statement after the try statement. Again, that’s the end of the loop, so execution resumes with the next loop iteration.

Flow of Control for a Successful Division

Now let’s consider the flow of control, based on the last three lines of the sample output:

	First, the user enters 100 for the numerator in response to line 7 in the try suite.

	Next, the user enters 7 for the denominator in response to line 8 in the try suite.

	At this point, we have two valid integer values and the denominator is not 0, so line 9 successfully divides 100 by 7.

When no exceptions occur in the try suite, program execution resumes with the else clause (if there is one); otherwise, program execution resumes with the next statement after the try statement. In this example’s else clause, we display the division result, then terminate the loop, and the program terminates.

[image: tick mark] Self Check

	(Fill-In) The statement that raises an exception is sometimes called the of the exception.

Answer: raise point.

	(True/False) In Python, it’s possible to return to the raise point of an exception via keyword return.

Answer: False. Program control continues from the first statement after the try statement in which the exception was handled.

	(IPython Session) Before executing the IPython session, determine what the following function displays if you call it with the value 10.7 then the value 'Python'?

def try_it(value)

 try:

 x = int(value)

 except ValueError:

 print(f'{value} could not be converted to an integer')

 else:

 print(f'int({value}) is {int(value)}')

Answer:

In [1]: def try_it(value):

 ...: try:

 ...: x = int(value)

 ...: except ValueError:

 ...: print(f'{value} could not be converted to an integer')

 ...: else:

 ...: print(f'int({value}) is {int(value)}')

 ...:

In [2]: try_it(10.7)

int(10.7) is 10

In [3]: try_it('Python')

Python could not be converted to an integer

9.8.3 Catching Multiple Exceptions in One except Clause

It’s relatively common for a try clause to be followed by several except clauses to handle various types of exceptions. If several except suites are identical, you can catch those exception types by specifying them as a tuple in a single except handler, as in:

except (type1, type2, …) as variable_name:

The as clause is optional. Typically, programs do not need to reference the caught exception object directly. If you do, you can use the variable in the as clause to reference the exception object in the except suite.

9.8.4 What Exceptions Does a Function or Method Raise?

Exceptions may surface via statements in a try suite, via functions or methods called directly or indirectly from a try suite, or via the Python interpreter as it executes the code (for example, ZeroDivisionErrors).

Before using any function or method, read its online API documentation, which specifies what exceptions are thrown (if any) by the function or method and indicates reasons why such exceptions may occur. Next, read the online API documentation for each exception type to see potential reasons why such an exception occurs.

9.8.5 What Code Should Be Placed in a try Suite?

Place in a try suite a significant logical section of a program in which several statements can raise exceptions, rather than wrapping a separate try statement around every statement that raises an exception. However, for proper exception-handling granularity, each try statement should enclose a section of code small enough that, when an exception occurs, the specific context is known and the except handlers can process the exception properly. If many statements in a try suite raise the same exception types, multiple try statements may be required to determine each exception’s context.

9.9 finally Clause

Operating systems typically can prevent more than one program from manipulating a file at once. When a program finishes processing a file, the program should close it to release the resource. This enables other programs to use the file (if they’re allowed to access it). Closing the file helps prevent a resource leak in which the file resource is not available to other programs because a program using the file never closes it.

The finally Clause of the try Statement

A try statement may have a finally clause as its last clause after any except clauses or else clause. The finally clause is guaranteed to execute, regardless of whether its try suite executes successfully or an exception occurs.8 In other languages that have finally, this makes the finally suite an ideal location to place resource-deallocation code for resources acquired in the corresponding try suite. In Python, we prefer the with statement for this purpose and place other kinds of “clean up” code in the finally suite.
8. The only reason a finally suite will not execute if program control enters the corresponding try suite is if the application terminates first, for example by calling the sys module’s exit function. In this case, the operating system would “clean up” any resources that the program did not release.

Example

The following IPython session demonstrates that the finally clause always executes, regardless of whether an exception occurs in the corresponding try suite. First, let’s consider a try statement in which no exceptions occur in the try suite:

In [1]: try:

 ...: print('try suite with no exceptions raised')

 ...: except:

 ...: print('this will not execute')

 ...: else:

 ...: print('else executes because no exceptions in the try suite')

 ...: finally:

 ...: print('finally always executes')

 ...:

try suite with no exceptions raised

else executes because no exceptions in the try suite

finally always executes

In [2]:

The preceding try suite displays a message but does not raise any exceptions. When program control successfully reaches the end of the try suite, the except clause is skipped, the else clause executes and the finally clause displays a message showing that it always executes. When the finally clause terminates, program control continues with the next statement after the try statement. In an IPython session, the next In [] prompt appears.

Now let’s consider a try statement in which an exception occurs in the try suite:

In [2]: try:

 ...: print('try suite that raises an exception')

 ...: int('hello')

 ...: print('this will not execute')

 ...: except ValueError:

 ...: print('a ValueError occurred')

 ...: else:

 ...: print('else will not execute because an exception occurred')

 ...: finally:

 ...: print('finally always executes')

 ...:

try suite that raises an exception

a ValueError occurred

finally always executes

In [3]:

This try suite begins by displaying a message. The second statement attempts to convert the string 'hello' to an integer, which causes the int function to raise a ValueError. The try suite immediately terminates, skipping its last print statement. The except clause catches the ValueError exception and displays a message. The else clause does not execute because an exception occurred. Then, the finally clause displays a message showing that it always executes. When the finally clause terminates, program control continues with the next statement after the try statement. In an IPython session, the next In [] prompt appears.

Combining with Statements and try…except Statements

Most resources that require explicit release, such as files, network connections and database connections, have potential exceptions associated with processing those resources. For example, a program that processes a file might raise IOErrors. For this reason, robust file-processing code normally appears in a try suite containing a with statement to guarantee that the resource gets released. The code is in a try suite, so you can catch in except handlers any exceptions that occur and you do not need a finally clause because the with statement handles resource deallocation.

To demonstrate this, first let’s assume you’re asking the user to supply the name of a file and they provide that name incorrectly, such as gradez.txt rather than the file we created earlier grades.txt. In this case, the open call raises a FileNotFoundError by attempting to open a non-existent file:

In [3]: open('gradez.txt')

FileNotFoundError Traceback (most recent call last)

<ipython-input-3-b7f41b2d5969> in <module>()

----> 1 open('gradez.txt')

FileNotFoundError: [Errno 2] No such file or directory: 'gradez.txt'

To catch exceptions like FileNotFoundError that occur when you try to open a file for reading, wrap the with statement in a try suite, as in:

In [4]: try:

 ...: with open('gradez.txt', 'r') as accounts:

 ...: print(f'{"ID":<3}{"Name":<7}{"Grade"}')

 ...: for record in accounts:

 ...: student_id, name, grade = record.split()

 ...: print(f'{student_id:<3}{name:<7}{grade}')

 ...: except FileNotFoundError:

 ...: print('The file name you specified does not exist')

 ...:

The file name you specified does not exist

[image: tick mark] Self Check

	(True/False) If a finally clause appears in a function, that finally clause is guaranteed to execute when the function executes, regardless of whether the function raises an exception.

Answer: False. The finally clause will execute only if program control enters the corresponding try suite.

	(Fill-In) Closing a file helps prevent a(n) in which the file resource is not available to other programs because a program using the file never closes it.

Answer: resource leak.

	(IPython Session) Before executing the IPython session, determine what the following function displays if you call it with the value 10.7, then the value 'Python'?

def try_it(value)

 try:

 x = int(value)

 except ValueError:

 print(f'{value} could not be converted to an integer')

 else:

 print(f'int({value}) is {int(value)}')

 finally:

 print('finally executed')

Answer:

In [1]: def try_it(value):

 ...: try:

 ...: x = int(value)

 ...: except ValueError:

 ...: print(f'{value} could not be converted to an integer')

 ...: else:

 ...: print(f'int({value}) is {int(value)}')

 ...: finally:

 ...: print('finally executed')

 ...:

In [2]: try_it(10.7)

int(10.7) is 10

finally executed

In [3]: try_it('Python')

Python could not be converted to an integer

finally executed

9.10 Explicitly Raising an Exception

You’ve seen various exceptions raised by your Python code. Sometimes you might need to write functions that raise exceptions to inform callers of errors that occur. The raise statement explicitly raises an exception. The simplest form of the raise statement is

raise ExceptionClassName

The raise statement creates an object of the specified exception class. Optionally, the exception class name may be followed by parentheses containing arguments to initialize the exception object—typically to provide a custom error message string. Code that raises an exception first should release any resources acquired before the exception occurred. In the next section, we’ll show an example of raising an exception.

In most cases, when you need to raise an exception, it’s recommended that you use one of Python’s many built-in exception types9 listed at:
9. You may be tempted to create custom exception classes that are specific to your application. We’ll say more about custom exceptions in the next chapter.

https://docs.python.org/3/library/exceptions.html

[image: tick mark] Self Check

	(Fill-In) Use the statement to indicate that a problem occurred at execution time.

Answer: raise.

9.11 (Optional) Stack Unwinding and Tracebacks

Each exception object stores information indicating the precise series of function calls that led to the exception. This is helpful when debugging your code. Consider the following function definitions—function1 calls function2 and function2 raises an Exception:

In [1]: def function1():

 ...: function2()

 ...:

In [2]: def function2():

 ...: raise Exception('An exception occurred')

 ...:

Calling function1 results in the following traceback. For emphasis, we placed in bold the parts of the traceback indicating the lines of code that led to the exception:

In [3]: function1()

Exception Traceback (most recent call last)

<ipython-input-3-c0b3cafe2087> in <module>()

----> 1 function1()

<ipython-input-1-a9f4faeeeb0c> in function1()

 1 def function1():

----> 2 function2()

 3

<ipython-input-2-c65e19d6b45b> in function2()

 1 def function2():

----> 2 raise Exception('An exception occurred')

Exception: An exception occurred

Traceback Details

The traceback shows the type of exception that occurred (Exception) followed by the complete function call stack that led to the raise point. The stack’s bottom function call is listed first and the top is last, so the interpreter displays the following text as a reminder:

Traceback (most recent call last)

In this traceback, the following text indicates the bottom of the function-call stack—the function1 call in snippet [3] (indicated by ipython-input-3):

<ipython-input-3-c0b3cafe2087> in <module>()

----> 1 function1()

Next, we see that function1 called function2 from line 2 in snippet [1]:

<ipython-input-1-a9f4faeeeb0c> in function1()

 1 def function1():

----> 2 function2()

 3

Finally, we see the raise point—in this case, line 2 in snippet [2] raised the exception:

<ipython-input-2-c65e19d6b45b> in function2()

 1 def function2():

----> 2 raise Exception('An exception occurred')

Stack Unwinding

In our previous exception-handling examples, the raise point occurred in a try suite, and the exception was handled in one of the try statement’s corresponding except handlers. When an exception is not caught in a given function, stack unwinding occurs. Let’s consider stack unwinding in the context of this example:

	In function2, the raise statement raises an exception. This is not in a try suite, so function2 terminates, its stack frame is removed from the function-call stack, and control returns to the statement in function1 that called function2.

	In function1, the statement that called function2 is not in a try suite, so function1 terminates, its stack frame is removed from the function-call stack, and control returns to the statement that called function1—snippet [3] in the IPython session.

	The call in snippet [3] call is not in a try suite, so that function call terminates. Because the exception was not caught (known as an uncaught exception), IPython displays the traceback, then awaits your next input. If this occurred in a typical script, the script would terminate.10
10. In more advanced applications that use threads, an uncaught exception terminates only the thread in which the exception occurs, not necessarily the entire application.

Tip for Reading Tracebacks

You’ll often call functions and methods that belong to libraries of code you did not write. Sometimes those functions and methods raise exceptions. When reading a traceback, start from the end of the traceback and read the error message first. Then, read upward through the traceback, looking for the first line that indicates code you wrote in your program. Typically, this is the location in your code that led to the exception.

Exceptions in finally Suites

Raising an exception in a finally suite can lead to subtle, hard-to-find problems. If an exception occurs and is not processed by the time the finally suite executes, stack unwinding occurs. If the finally suite raises a new exception that the suite does not catch, the first exception is lost, and the new exception is passed to the next enclosing try statement. For this reason, a finally suite should always enclose in a try statement any code that may raise an exception, so that the exceptions will be processed within that suite.

[image: tick mark] Self Check

	(Fill-In) An uncaught exception in a function causes . The function’s stack frame is removed from the function-call stack.

Answer: stack unwinding.

	(True/False) Exceptions always are handled in the function that raises the exception.

Answer: False. Although it is possible to handle an exception in the function that raises it, normally an exception is handled by a calling function on the function-call stack.

	(True/False) Exceptions can be raised only by code in try statements.

Answer: False. Exceptions can be raised by any code, regardless of whether the code is wrapped in a try statement.

9.12 Intro to Data Science: Working with CSV Files

Throughout this book, you’ll work with many datasets as you learn data-science concepts. CSV (comma-separated values) is a particularly popular file format. In this section, we’ll demonstrate CSV file processing with a Python Standard Library module and pandas.

9.12.1 Python Standard Library Module csv

The csv module11 provides functions for working with CSV files. Many other Python libraries also have built-in CSV support.
11. https://docs.python.org/3/library/csv.html.

Writing to a CSV File

Let’s create an accounts.csv file using CSV format. The csv module’s documentation recommends opening CSV files with the additional keyword argument newline='' to ensure that newlines are processed properly:

In [1]: import csv

In [2]: with open('accounts.csv', mode='w', newline='') as accounts:

 ...: writer = csv.writer(accounts)

 ...: writer.writerow([100, 'Jones', 24.98])

 ...: writer.writerow([200, 'Doe', 345.67])

 ...: writer.writerow([300, 'White', 0.00])

 ...: writer.writerow([400, 'Stone', -42.16])

 ...: writer.writerow([500, 'Rich', 224.62])

 ...:

The .csv file extension indicates a CSV-format file. The csv module’s writer function returns an object that writes CSV data to the specified file object. Each call to the writer’s writerow method receives an iterable to store in the file. Here we’re using lists. By default, writerow delimits values with commas, but you can specify custom delimiters.12 After the preceding snippet, accounts.csv contains:
12. https://docs.python.org/3/library/csv.html#csv-fmt-params.

100,Jones,24.98

200,Doe,345.67

300,White,0.00

400,Stone,-42.16

500,Rich,224.62

CSV files generally do not contain spaces after commas, but some people use them to enhance readability. The writerow calls above can be replaced with one writerows call that outputs a comma-separated list of iterables representing the records.

If you write data that contains commas within a given string, writerow encloses that string in double quotes. For example, consider the following Python list:

[100, 'Jones, Sue', 24.98]

The single-quoted string 'Jones, Sue' contains a comma separating the last name and first name. In this case, writerow would output the record as

100,"Jones, Sue",24.98

The quotes around "Jones, Sue" indicate that this is a single value. Programs reading this from a CSV file would break the record into three pieces—100, 'Jones, Sue' and 24.98.

Reading from a CSV File

Now let’s read the CSV data from the file. The following snippet reads records from the file accounts.csv and displays the contents of each record, producing the same output we showed earlier:

In [3]: with open('accounts.csv', 'r', newline='') as accounts:

 ...: print(f'{"Account":<10}{"Name":<10}{"Balance":>10}')

 ...: reader = csv.reader(accounts)

 ...: for record in reader:

 ...: account, name, balance = record

 ...: print(f'{account:<10}{name:<10}{balance:>10}')

 ...:

Account Name Balance

100 Jones 24.98

200 Doe 345.67

300 White 0.0

400 Stone -42.16

500 Rich 224.62

The csv module’s reader function returns an object that reads CSV-format data from the specified file object. Just as you can iterate through a file object, you can iterate through the reader object one record of comma-delimited values at a time. The preceding for statement returns each record as a list of values, which we unpack into the variables account, name and balance, then display.

Caution: Commas in CSV Data Fields

Be careful when working with strings containing embedded commas, such as the name 'Jones, Sue'. If you accidentally enter this as the two strings 'Jones' and 'Sue', then writerow would, of course, create a CSV record with four fields, not three. Programs that read CSV files typically expect every record to have the same number of fields; otherwise, problems occur. For example, consider the following two lists:

[100, 'Jones', 'Sue', 24.98]

[200, 'Doe' , 345.67]

The first list contains four values and the second contains only three. If these two records were written into the CSV file, then read into a program using the previous snippet, the following statement would fail when we attempt to unpack the four-field record into only three variables:

account, name, balance = record

Caution: Missing Commas and Extra Commas in CSV Files

Be careful when preparing and processing CSV files. For example, suppose your file is composed of records, each with four comma-separated int values, such as:

100,85,77,9

If you accidentally omit one of these commas, as in:

100,8577,9

then the record has only three fields, one with the invalid value 8577.

If you put two adjacent commas where only one is expected, as in:

100,85,,77,9

then you have five fields rather than four, and one of the fields erroneously would be empty. Each of these comma-related errors could confuse programs trying to process the record.

[image: tick mark] Self Check

	(Fill-In) The csv module provides capabilities for writing and reading files in (CSV) format.

Answer: comma-separated values.

	(True/False) The csv module’s reader function returns an object that reads from the specified file object CSV-format data.

Answer: True.

	(IPython Session) Create a text file named grades.csv and write to it the following three records consisting of student IDs, last names and letter grades:

1,Red,A

2,Green,B

3,White,A

Then, read the file grades.csv and display it in columns with the column heads 'ID', 'Name' and 'Grade'.

Answer:

In [1]: import csv

In [2]: with open('grades.csv', mode='w', newline='') as grades:

 ...: writer = csv.writer(grades)

 ...: writer.writerow([1, 'Red', 'A'])

 ...: writer.writerow([2, 'Green', 'B'])

 ...: writer.writerow([3, 'White', 'A'])

 ...:

In [3]: with open('grades.csv', 'r', newline='') as grades:

 ...: print(f'{"ID":<4}{"Name":<7}{"Grade"}')

 ...: reader = csv.reader(grades)

 ...: for record in reader:

 ...: student_id, name, grade = record

 ...: print(f'{student_id:<4}{name:<7}{grade}')

 ...:

ID Name Grade

1 Red A

2 Green B

3 White A

9.12.2 Reading CSV Files into Pandas DataFrames

In the Intro to Data Science sections in the previous two chapters, we introduced many Pandas fundamentals. Here, we demonstrate pandas’ ability to load files in CSV format, then perform some basic data-analysis tasks.

Datasets

In the data-science case studies, we’ll use various free and open datasets to demonstrate machine learning and natural language processing concepts. There’s an enormous variety of free datasets available online. The popular Rdatasets repository provides links to over 1100 free datasets in comma-separated values (CSV) format. These were originally provided with the R programming language for people learning about and developing statistical software, though they are not specific to R. They are now available on GitHub at:

https://vincentarelbundock.github.io/Rdatasets/datasets.html

This repository is so popular that there’s a pydataset module specifically for accessing Rdatasets. For instructions on installing pydataset and accessing datasets with it, see:

https://github.com/iamaziz/PyDataset

Another large source of datasets is:
https://github.com/awesomedata/awesome-public-datasets A commonly used machine-learning dataset for beginners is the Titanic disaster dataset, which lists all the passengers and whether they survived when the ship Titanic struck an iceberg and sank April 14–15, 1912. We’ll use it here to show how to load a dataset, view some of its data and display some descriptive statistics. We’ll dig deeper into a variety of popular datasets in the data-science chapters later in the book.

Working with Locally Stored CSV Files

You can load a CSV dataset into a DataFrame with the pandas function read_csv. The following loads and displays the CSV file accounts.csv that you created earlier in this chapter:

In [1]: import pandas as pd

In [2]: df = pd.read_csv('accounts.csv',

 ...: names=['account', 'name', 'balance'])

 ...:

In [3]: df

Out[3]:

 account name balance

0 100 Jones 24.98

1 200 Doe 345.67

2 300 White 0.00

3 400 Stone -42.16

4 500 Rich 224.62

The names keyword argument specifies the DataFrame’s column names. If you do not supply this argument, read_csv assumes that the CSV file’s first row is a comma-delimited list of column names.

To save a DataFrame to a file using CSV format, call DataFrame method to_csv:

In [4]: df.to_csv('accounts_from_dataframe.csv', index=False)

The index=False keyword argument indicates that the row names (0–4 at the left of the DataFrame’s output in snippet [3]) are not written to the file. The resulting file contains the column names as the first row:

account,name,balance

100,Jones,24.98

200,Doe,345.67

300,White,0.0

400,Stone,-42.16

500,Rich,224.62

9.12.3 Reading the Titanic Disaster Dataset

The Titanic disaster dataset is one of the most popular machine-learning datasets. In the “Machine Learning” chapter, an exercise asks you to use this dataset to “predict” whether passengers would live or die, based only on attributes like gender, age and passenger class. The dataset is available in many formats, including CSV.

Loading the Titanic Dataset via a URL

If you have a URL representing a CSV dataset, you can load it into a DataFrame with read_csv. Let’s load the Titanic Disaster dataset directly from GitHub:

In [1]: import pandas as pd

In [2]: titanic = pd.read_csv('https://vincentarelbundock.github.io/' +

 ...: 'Rdatasets/csv/carData/TitanicSurvival.csv')

 ...:

Viewing Some of the Rows in the Titanic Dataset

This dataset contains over 1300 rows, each representing one passenger. According to Wikipedia, there were approximately 1317 passengers and 815 of them died.13 For large datasets, displaying the DataFrame shows only the first 30 rows, followed by “…” and the last 30 rows. To save space, let’s view the first five and last five rows with DataFrame methods head and tail. Both methods return five rows by default, but you can specify the number of rows to display as an argument:
13. https://en.wikipedia.org/wiki/Passengers_of_the_RMS_Titanic.

In [3]: pd.set_option('precision', 2) # format for floating-point values

In [4]: titanic.head()

Out[4]:

 Unnamed: 0 survived sex age passengerClass

0 Allen, Miss. Elisabeth Walton yes female 29.00 1st

1 Allison, Master. Hudson Trevor yes male 0.92 1st

2 Allison, Miss. Helen Loraine no female 2.00 1st

3 Allison, Mr. Hudson Joshua Crei no male 30.00 1st

4 Allison, Mrs. Hudson J C (Bessi no female 25.00 1st

In [9]: titanic.tail()

Out[9]:

 Unnamed: 0 survived sex age passengerClass

1304 Zabour, Miss. Hileni no female 14.50 3rd

1305 Zabour, Miss. Thamine no female NaN 3rd

1306 Zakarian, Mr. Mapriededer no male 26.50 3rd

1307 Zakarian, Mr. Ortin no male 27.00 3rd

1308 Zimmerman, Mr. Leo no male 29.00 3rd

Note that pandas adjusts each column’s width, based on the widest value in the column or based on the column name, whichever is wider. Also, note the value in the age column of row 1305 is NaN (not a number), indicating a missing value in the dataset.

Customizing the Column Names

The first column in this dataset has a strange name ('Unnamed: 0'). We can clean that up by setting the column names. Let’s change 'Unnamed: 0' to 'name' and let’s shorten 'passengerClass' to 'class':

In [5]: titanic.columns = ['name', 'survived', 'sex', 'age', 'class']

In [6]: titanic.head()

Out[6]:

 name survived sex age class

0 Allen, Miss. Elisabeth Walton yes female 29.00 1st

1 Allison, Master. Hudson Trevor yes male 0.92 1st

2 Allison, Miss. Helen Loraine no female 2.00 1st

3 Allison, Mr. Hudson Joshua Crei no male 30.00 1st

4 Allison, Mrs. Hudson J C (Bessi no female 25.00 1st

9.12.4 Simple Data Analysis with the Titanic Disaster Dataset

Now, you can use pandas to perform some simple analysis. For example, let’s look at some descriptive statistics. When you call describe on a DataFrame containing both numeric and non-numeric columns, describe calculates these statistics only for the numeric columns—in this case, just the age column:

In [7]: titanic.describe()

Out[7]:

 age

count 1046.00

mean 29.88

std 14.41

min 0.17

25% 21.00

50% 28.00

75% 39.00

max 80.00

Note the discrepancy in the count (1046) vs. the dataset’s number of rows (1309—the last row’s index was 1308 when we called tail). Only 1046 (the count above) of the records contained an age value. The rest were missing and marked as NaN, as in row 1305. When performing calculations, Pandas ignores missing data (NaN) by default. For the 1046 people with valid ages, the average (mean) age was 29.88 years old. The youngest passenger (min) was just over two months old (0.17 * 12 is 2.04), and the oldest (max) was 80. The median age was 28 (indicated by the 50% quartile). The 25% quartile is the median age in the first half of the passengers (sorted by age), and the 75% quartile is the median of the second half of passengers.

Let’s say you want to determine some statistics about people who survived. We can compare the survived column to 'yes' to get a new Series containing True/False values, then use describe to summarize the results:

In [8]: (titanic.survived == 'yes').describe()

Out[8]:

count 1309

unique 2

top False

freq 809

Name: survived, dtype: object

For non-numeric data, describe displays different descriptive statistics:

	count is the total number of items in the result.

	unique is the number of unique values (2) in the result—True (survived) and False (died).

	top is the most frequently occurring value in the result.

	freq is the number of occurrences of the top value.

9.12.5 Passenger Age Histogram

Visualization is a nice way to get to know your data. Pandas has many built-in visualization capabilities that are implemented with Matplotlib. To use them, first enable Matplotlib support in IPython:

In [9]: %matplotlib

A histogram visualizes the distribution of numerical data over a range of values. A DataFrame’s hist method automatically analyzes each numerical column’s data and produces a corresponding histogram. To view histograms of each numerical data column, call hist on your DataFrame:

In [10]: histogram = titanic.hist()

The Titanic dataset contains only one numerical data column, so the diagram below shows one histogram for the age distribution. For datasets with multiple numerical columns (as we’ll see in the exercises), hist creates a separate histogram for each numerical column.

[image: An example of a histogram for the age data.]

[image: tick mark] Self Check

	(Fill-In) Pandas function __________ loads a CSV dataset from a URL or the local file system into a DataFrame.

Answer: read_csv.

	(IPython Session) Load the grades.csv file you created in the Section 9.12.1’s Self Check into a DataFrame, then display it.

Answer:

In [11]: pd.read_csv('grades.csv', names=['ID', 'Name', 'Grade'])

Out[11]:

 ID Name Grade

0 1 Red A

1 2 Green B

2 3 White A

9.13 Wrap-Up

In this chapter, we introduced text-file processing and exception handling. Files are used to store data persistently. We discussed file objects and mentioned that Python views a file as a sequence of characters or bytes. We also mentioned the standard file objects that are automatically created for you when a Python program begins executing.

We showed how to create, read, write and update text files. We considered several popular file formats—plain text, JSON (JavaScript Object Notation) and CSV (comma-separated values). We used the built-in open function and the with statement to open a file, write to or read from the file and automatically close the file to prevent resource leaks when the with statement terminates. We used the Python Standard Library’s json module to serialize objects into JSON format and store them in a file, load JSON objects from a file, deserialize them into Python objects and pretty-print a JSON object for readability.

We discussed how exceptions indicate execution-time problems and listed the various exceptions you’ve already seen. We showed how to deal with exceptions by wrapping code in try statements that provide except clauses to handle specific types of exceptions that may occur in the try suite, making your programs more robust and fault-tolerant.

We discussed the try statement’s finally clause for executing code if program flow entered the corresponding try suite. You can use either the with statement or a try statement’s finally clause for this purpose—we prefer the with statement.

In the Intro to Data Science section, we used both the Python Standard Library’s csv module and capabilities of the pandas library to load, manipulate and store CSV data. Finally, we loaded the Titanic disaster dataset into a pandas DataFrame, changed some column names for readability, displayed the head and tail of the dataset, and performed simple analysis of the data. In the next chapter, we’ll discuss Python’s object-oriented programming capabilities.

Exercises

	9.1 (Class Average: Writing Grades to a Plain Text File) Figure 3.2 presented a class-average script in which you could enter any number of grades followed by a sentinel value, then calculate the class average. Another approach would be to read the grades from a file. In an IPython session, write code that enables you to store any number of grades into a grades.txt plain text file.

	9.2 (Class Average: Reading Grades from a Plain Text File) In an IPython session, write code that reads the grades from the grades.txt file you created in the previous exercise. Display the individual grades and their total, count and average.

	9.3 (Class Average: Writing Student Records to a CSV File) An instructor teaches a class in which each student takes three exams. The instructor would like to store this information in a file named grades.csv for later use. Write code that enables an instructor to enter each student’s first name and last name as strings and the student’s three exam grades as integers. Use the csv module to write each record into the grades.csv file. Each record should be a single line of text in the following CSV format:

firstname,lastname,exam1grade,exam2grade,exam3grade

	9.4 (Class Average: Reading Student Records from a CSV File) Use the csv module to read the grades.csv file from the previous exercise. Display the data in tabular format.

	9.5 (Class Average: Creating a Grade Report from a CSV File) Modify your solution to the preceding exercise to create a grade report that displays each student’s average to the right of that student’s row and the class average for each exam below that exam’s column.

	9.6 (Class Average: Writing a Gradebook Dictionary to a JSON File) Reimplement Exercise 9.3 using the json module to write the student information to the file in JSON format. For this exercise, create a dictionary of student data in the following format:

gradebook_dict = {'students': [student1dictionary, student2dictionary, ...]}

Each dictionary in the list represents one student and contains the keys 'first_name', 'last_name', 'exam1', 'exam2' and 'exam3', which map to the values representing each student’s first name (string), last name (string) and three exam scores (integers). Output the gradebook_dict in JSON format to the file grades.json.

	9.7 (Class Average: Reading a Gradebook Dictionary from a JSON File) Reimplement Exercise 9.4 using the json module to read the grades.json file created in the previous exercise. Display the data in tabular format, including an additional column showing each student’s average to the right of that student’s three exam grades and an additional row showing the class average on each exam below that exam’s column.

	9.8 (pickle Object Serialization and Deserialization) We mentioned that we prefer to use JSON for object serialization due to the Python documentation’s stern security warnings about pickle. However, pickle has been used to serialize objects for many years, so you’re likely to encounter it in Python legacy code. According to the documentation, “If you are doing your own pickle writing and reading, you’re safe (provided no one else has access to the pickle file, of course.)”14 Reimplement your solutions to Exercises 9.6–9.7 using the pickle module’s dump function to serialize the dictionary into a file and its load function to deserialize the object. Pickle is a binary format, so this exercise requires binary files. Use the file-open mode 'wb' to open the binary file for writing and 'rb' to open the binary file for reading. Function dump receives as arguments an object to serialize and a file object in which to write the serialized object. Function load receives the file object containing the serialized data and returns the original object. The Python documentation suggests the pickle file extension .p.
14. https://wiki.python.org/moin/UsingPickle.

	9.9 (Telephone-Number Word Generator) In Exercise 5.12, you created a telephone-number word-generator program. Modify that program to write its output to a text file.

	9.10 (Project: Analyzing a Book from Project Gutenberg) A great source of plain text files is the collection of over 57,000 free e-books at Project Gutenberg:

https://www.gutenberg.org

These books are out of copyright in the United States. For information about Project Gutenberg’s Terms of Use and copyright in other countries, see:

https://www.gutenberg.org/wiki/Gutenberg:Terms_of_Use
Download the text-file version of Pride and Prejudice from Project Gutenberg

https://www.gutenberg.org/ebooks/1342

Create a script that reads Pride and Prejudice from a text file. Produce statistics about the book, including the total word count, the total character count, the average word length, the average sentence length, a word distribution containing frequency counts of all words, and the top 10 longest words. In the “Natural Language Processing (NLP)” chapter, you’ll find lots of more sophisticated techniques for analyzing and comparing such texts.

Each Project Gutenberg e-book begins and ends with some additional text, such as licensing information, which is not part of the e-book itself. You may want to remove that text from your copy of the book before analyzing its text.

	9.11 (Project: Visualizing Word Frequencies with a Word Cloud) A word cloud visualizes words, displaying more frequently occurring words in larger fonts. In this exercise, you’ll create a word cloud that visualizes the top 200 words in Pride and Prejudice. You’ll use the open-source wordcloud module’s15 WordCloud class to generate a word cloud with just a few lines of code.
15. https://github.com/amueller/word_cloud.

To install wordcloud, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or shell (Linux) and enter the command:

conda install -c conda-forge wordcloud

You create and configure a WordCloud object as follows:

from wordcloud import WordCloud

wordcloud = WordCloud(colormap='prism', background_color='white')

Using the techniques from the previous exercise, create a frequencies dictionary containing the frequencies of the top-200 words in Pride and Prejudice. Then execute the following statements to generate a rectangular word cloud and save its image to a file on disk:

wordcloud = wordcloud.fit_words(frequencies)

wordcloud = wordcloud.to_file('PrideAndPrejudice.png')

You can then double-click the PrideAndPrejudice.png image file on your system to view it. In the “Natural Language Processing” chapter, we’ll show you how to place your word clouds into shapes. For example, we placed our Romeo and Juliet word cloud into a heart.

	9.12 (Project: State-of-the-Union Speeches) Text files of all U.S. Presidents’ State-of-the-Union speeches are available online. Download one of these speeches. Write a script that reads the speech from the file, then displays statistics about the speech, including the total word count, the total character count, the average word length, the average sentence length, a word distribution of the words frequencies, and the top 10 longest words. In the “Natural Language Processing (NLP)” chapter, you’ll find lots of more sophisticated techniques for analyzing and comparing such texts.

	9.13 (Project: Building a Basic Sentiment Analyzer) We’ll do lots of sentiment analysis in the data-science chapters. For example, we’ll look at large numbers of tweets from Twitter on various topics, determining whether people had positive or negative opinions about those topics. We’ll see that many software packages have built-in sentiment-analysis capabilities. In this exercise, you’ll build a basic sentiment analyzer. A basic way to do this is to search online for files of positive words (like happy, pleasant, …) and files of negative words (like sad, angry, …). Then, search through a text to see how many positive words and how many negative words it contains. Based on those counts, rate the text as positive, negative or neutral.

	9.14 (Project: Basic Similarity Detection via Average Sentence Length and Average Word Length) Who actually wrote William Shakespeare’s works? Some researchers believe that Sir Francis Bacon may have authored some or all of these works. Download one of Shakespeare’s works and one of Bacon’s works from Project Gutenberg. For each, calculate the average sentence length and average word length. Are these close? Compute other statistics as well.

	9.15 (Project: Working with CSV Datasets Using the csv Module) In the Intro to Data Science section, we loaded the Titanic disaster dataset into a pandas DataFrame, then used DataFrame capabilities to perform some simple analysis of that data. For this exercise, use the csv module to read the Titanic disaster dataset, then manually count the records that contain a value for the age column. Those that do not will have the value 'NA'. For only those records that have an age value, calculate the average age. For this exercise, investigate and use the csv module’s DictReader class.

	9.16 (Working with the diamonds.csv Dataset in Pandas) In this book’s data-science chapters, you’ll work extensively with datasets, many in CSV format. You’ll frequently use pandas to load datasets and prepare their data for use in machine-learning studies. Datasets are available for almost anything you’d want to study. There are numerous dataset repositories from which you can download datasets in CSV and other formats. In this chapter, we mentioned:

https://vincentarelbundock.github.io/Rdatasets/datasets.html

and

https://github.com/awesomedata/awesome-public-datasets

The Kaggle competition site:16

16. To download data from Kaggle, you must register for a free account. This is true of various other dataset repository sites as well.
https://www.kaggle.com/datasets?filetype=csv

has approximately 11,000 datasets with over 7500 in CSV format. The U.S. government’s data.gov site:
https://catalog.data.gov/dataset?res_format=CSV&_res_format_limit=0

has over 300,000 datasets with approximately 19,000 in CSV format.

In this exercise, you’ll use the diamonds dataset to perform tasks similar to those you saw in the Intro to Data Science section. This dataset is available as diamonds.csv from various sources, including the Kaggle and Rdatasets sites listed above. The dataset contains information on 53,940 diamonds, including each diamond’s carats, cut, color, clarity, depth, table (flat top surface), price and x, y and z measurements. The Kaggle site’s web page for this dataset describes each column’s content.17
17. https://www.kaggle.com/shivam2503/diamonds.

Perform the following tasks to study and analyze the diamonds dataset:

	Download diamonds.csv from one of the dataset repositories.

	Load the dataset into a pandas DataFrame with the following statement, which uses the first column of each record as the row index:

df = pd.read_csv('diamonds.csv', index_col=0)

	Display the first seven rows of the DataFrame.

	Display the last seven rows of the DataFrame.

	Use the DataFrame method describe (which looks only at the numerical columns) to calculate the descriptive statistics for the numerical columns—carat, depth, table, price, x, y and z.

	Use Series method describe to calculate the descriptive statistics for the categorical data (text) columns—cut, color and clarity.

	What are the unique category values (use the Series method unique)?

	Pandas has many built-in graphing capabilities. Execute the %matplotlib magic to enable Matplotlib support in IPython. Then, to view histograms of each numerical data column, call your DataFrame’s hist method. The following figure shows the results for the DataFrame’s seven numerical columns:

[image: 7 histograms for carat, depth, price, table, X, Y, and Z data.]

	9.17 (Working with the Iris.csv Dataset in Pandas) Another popular dataset for machine-learning novices is the Iris dataset, which contains 150 records of information about three Iris plant species. Like this diamonds dataset, the Iris dataset is available from various online sources, including Kaggle. Investigate the Iris dataset’s columns,18 then perform the following tasks to study and analyze the dataset:
18. https://www.kaggle.com/uciml/iris/home.

	Download Iris.csv from one of the dataset repositories.

	Load the dataset into a pandas DataFrame with the following statement, which uses the first column of each record as the row index:

df = pd.read_csv('Iris.csv', index_col=0)

	Display the DataFrame’s head.

	Display the DataFrame’s tail.

	Use the DataFrame method describe to calculate the descriptive statistics for the numerical data columns—SepalLengthCm, SepalWidthCm, PetalLengthCm and PetalWidthCm.

	Pandas has many built-in graphing capabilities. Execute the %matplotlib magic to enable Matplotlib support in IPython. Then, to view histograms of each numerical data column, call your DataFrame’s hist method.

	9.18 (Project: Anscombe’s Quartet CSV) Locate a CSV file online containing the data for Anscombe’s Quartet. Load the data into a pandas DataFrame. Investigate pandas built-in scatter-plot capability for plotting x-y coordinate pairs and use it to plot the x-y coordinate pairs in Anscombe’s Quartet.

	9.19 (Challenging Project: A Crossword-Puzzle Generator) Most people have worked crossword puzzles, but few have ever attempted to generate one by hand. Generating a crossword puzzle is suggested here as a string-manipulation and file-processing project requiring substantial sophistication and effort.

There are many issues you must resolve to get even the most straightforward crossword-puzzle-generator application working. For example, how do you represent the grid of squares of a crossword puzzle inside the computer? Consider using a two-dimensional list where each element is one square. Some of those elements will be “black” and some will be “white.” Some of the “white” cells will include a number that corresponds to a number in your across and down clues.

You need a source of words (i.e., a computerized dictionary) that can be directly referenced by the script. In what form should these words be stored to facilitate the complex manipulations required by the application? Consider using a Python dictionary for this purpose.

You’ll want to generate the clues portion of the puzzle, in which the word definitions for each across and down word are printed. Merely printing a version of the blank puzzle itself is not a simple problem, especially if you’d like the black-squared regions to be symmetric as they often are in published crossword puzzles.

	9.20 (Challenging Project: A Spell Checker) Many apps you use daily have built-in spell checkers. In the “Natural Language Processing,” “Machine Learning” and “Deep Learning” chapters, you’ll learn techniques that can be used to build sophisticated spell checkers. In this project, you’ll take a simpler, more mechanical approach. You’ll need a computerized dictionary as a source of words.

Why do we type so many words incorrectly? In some cases, it’s because we do not know the correct spelling, so we guess. In some cases, it’s because we transpose two letters (e.g., “defualt” instead of “default”). Sometimes we accidentally double-type a letter (e.g., “hanndy” instead of “handy”). Sometimes we type a nearby key instead of the one we intended (e.g., “biryhday” instead of “birthday”), and so on.

Design and implement a spell-checker application. Create a text file that has some words spelled correctly and some misspelled. Your script should look up each word in the dictionary. Your script should point out each incorrect word and suggest some correct alternatives that might have been what was intended.

For example, you can try all possible single transpositions of adjacent letters to discover that the word “default” is a direct match for “default.” Of course, this implies that your application will check all other single transpositions, such as “edfault,” “dfeault,” “deafult,” “defalut” and “defautl.” When you find a new transposition that matches a word in the dictionary, print it in a message, such as

Did you mean "default"?

Implement other tests, such as replacing each double letter with a single letter, and any other tests you can develop to improve the value of your spell checker.

10 Object-Oriented Programming

Objectives

In this chapter you’ll:

	Create custom classes and objects of those classes.

	Understand the benefits of crafting valuable classes.

	Control access to attributes.

	Appreciate the value of object orientation.

	Use Python special methods __repr__, __str__ and __format__ to get an object’s string representations.

	Use Python special methods to overload (redefine) operators to use them with objects of new classes.

	Inherit methods, properties and attributes from existing classes into new classes, then customize those classes.

	Understand the inheritance notions of base classes (superclasses) and derived classes (subclasses).

	Understand duck typing and polymorphism that enable “programming in the general.”

	Understand class object from which all classes inherit fundamental capabilities.

	Compare composition and inheritance.

	Build test cases into docstrings and run these tests with doctest,

	Understand namespaces and how they affect scope.

Outline

	10.1 Introduction

	10.2 Custom Class Account

	10.2.1 Test-Driving Class Account

	10.2.2 Account Class Definition

	10.2.3 Composition: Object References as Members of Classes

	10.3 Controlling Access to Attributes

	10.4 Properties for Data Access

	10.4.1 Test-Driving Class Time

	10.4.2 Class Time Definition

	10.4.3 Class Time Definition Design Notes

	10.5 Simulating “Private” Attributes

	10.6 Case Study: Card Shuffling and Dealing Simulation

	10.6.1 Test-Driving Classes Card and DeckOfCards

	10.6.2 Class Card—Introducing Class Attributes

	10.6.3 Class DeckOfCards

	10.6.4 Displaying Card Images with Matplotlib

	10.7 Inheritance: Base Classes and Subclasses

	10.8 Building an Inheritance Hierarchy; Introducing Polymorphism

	10.8.1 Base Class CommissionEmployee

	10.8.2 Subclass SalariedCommissionEmployee

	10.8.3 Processing CommissionEmployees and SalariedCommissionEmployees Polymorphically

	10.8.4 A Note About Object-Based and Object-Oriented Programming

	10.9 Duck Typing and Polymorphism

	10.10 Operator Overloading

	10.10.1 Test-Driving Class Complex

	10.10.2 Class Complex Definition

	10.11 Exception Class Hierarchy and Custom Exceptions

	10.12 Named Tuples

	10.13 A Brief Intro to Python 3.7’s New Data Classes

	10.13.1 Creating a Card Data Class

	10.13.2 Using the Card Data Class

	10.13.3 Data Class Advantages over Named Tuples

	10.13.4 Data Class Advantages over Traditional Classes

	10.14 Unit Testing with Docstrings and doctest

	10.15 Namespaces and Scopes

	10.16 Intro to Data Science: Time Series and Simple Linear Regression

	10.17 Wrap-Up

	Exercises

10.1 Introduction

Section 1.5 introduced the basic terminology and concepts of object-oriented programming. Everything in Python is an object, so you’ve been using objects constantly throughout this book. Just as houses are built from blueprints, objects are built from classes—one of the core technologies of object-oriented programming. Building a new object from even a large class is simple—you typically write one statement.

Crafting Valuable Classes

You’ve already used lots of classes created by other people. In this chapter you’ll learn how to create your own custom classes. You’ll focus on “crafting valuable classes” that help you meet the requirements of the applications you’ll build. You’ll use object-oriented programming with its core technologies of classes, objects, inheritance and polymorphism. Software applications are becoming larger and more richly functional. Object-oriented programming makes it easier for you to design, implement, test, debug and update such edge-of-the-practice applications. Read Sections 10.1 through 10.9 for a code-intensive introduction to these technologies. Most people can skip Sections 10.10 through 10.15, which provide additional perspectives on these technologies and present additional related features.

Class Libraries and Object-Based Programming

The vast majority of object-oriented programming you’ll do in Python is object-based programming in which you primarily create and use objects of existing classes. You’ve been doing this throughout the book with built-in types like int, float, str, list, tuple, dict and set, with Python Standard Library types like Decimal, and with NumPy arrays, Matplotlib Figures and Axes, and pandas Series and DataFrames.

To take maximum advantage of Python you must familiarize yourself with lots of preexisting classes. Over the years, the Python open-source community has crafted an enormous number of valuable classes and packaged them into class libraries. This makes it easy for you to reuse existing classes rather than “reinventing the wheel.” Widely used open-source library classes are more likely to be thoroughly tested, bug free, performance tuned and portable across a wide range of devices, operating systems and Python versions. You’ll find abundant Python libraries on the Internet at sites like GitHub, BitBucket, SourceForge and more—most easily installed with conda or pip. This is a key reason for Python’s popularity. The vast majority of the classes you’ll need are likely to be freely available in open-source libraries.

Creating Your Own Custom Classes

Classes are new data types. Each Python Standard Library class and third-party library class is a custom type built by someone else. In this chapter, you’ll develop application-specific classes, like CommissionEmployee, Time, Card, DeckOfCards and more. The dozens of chapter exercises challenge you to create additional classes for a wide variety of applications.

Most applications you’ll build for your own use will commonly use either no custom classes or just a few. If you become part of a development team in industry, you may work on applications that contain hundreds, or even thousands, of classes. You can contribute your custom classes to the Python open-source community, but you are not obligated to do so. Organizations often have policies and procedures related to open-sourcing code.

Inheritance

Perhaps most exciting is the notion that new classes can be formed through inheritance and composition from classes in abundant class libraries. Eventually, software will be constructed predominantly from standardized, reusable components just as hardware is constructed from interchangeable parts today. This will help meet the challenges of developing ever more powerful software.

When creating a new class, instead of writing all new code, you can designate that the new class is to be formed initially by inheriting the attributes (variables) and methods (the class version of functions) of a previously defined base class (also called a superclass). The new class is called a derived class (or subclass). After inheriting, you then customize the derived class to meet the specific needs of your application. To minimize the customization effort, you should always try to inherit from the base class that’s closest to your needs. To do that effectively, you should familiarize yourself with the class libraries that are geared to the kinds of applications you’ll be building.

Polymorphism

We explain and demonstrate polymorphism, which enables you to conveniently program “in the general” rather than “in the specific.” You simply send the same method call to objects possibly of many different types. Each object responds by “doing the right thing.” So the same method call takes on “many forms,” hence the term “poly-morphism.” We’ll explain how to implement polymorphism through inheritance and a Python feature called duck typing. We’ll explain both and show examples of each.

An Entertaining Case Study: Card-Shuffling-and-Dealing Simulation

You’ve already used a random-numbers-based die-rolling simulation and used those techniques to implement the popular dice game craps. Here, we present a card-shuffling-and-dealing simulation, which you can use to implement your favorite card games. You’ll use Matplotlib with attractive public-domain card images to display the full deck of cards both before and after the deck is shuffled. In the exercises, you can implement the popular card games blackjack and solitaire, and evaluate a five-card poker hand.

Data Classes

Python 3.7’s new data classes help you build classes faster by using a more concise notation and by autogenerating portions of the classes. The Python community’s early reaction to data classes has been positive. As with any major new feature, it may take time before it’s widely used. We present class development with both the older and newer technologies.

Other Concepts Introduced in This Chapter

Other concepts you’ll learn include:

	How to specify that certain identifiers should be used only inside a class and not be accessible to clients of the class.

	Special methods for creating string representations of your classes’ objects and specifying how objects of your classes work with Python’s built-in operators (a process called operator overloading).

	An introduction to the Python exception class hierarchy and creating custom exception classes.

	Testing code with the Python Standard Library’s doctest module.

	How Python uses namespaces to determine the scopes of identifiers.

10.2 Custom Class Account

Let’s begin with a bank Account class that holds an account holder’s name and balance. An actual bank account class would likely include lots of other information, such as address, birth date, telephone number, account number and more. The Account class accepts deposits that increase the balance and withdrawals that decrease the balance.

10.2.1 Test-Driving Class Account

Each new class you create becomes a new data type that can be used to create objects. This is one reason why Python is said to be an extensible language

. Before we look at class Account’s definition, let’s demonstrate its capabilities.

Importing Classes Account and Decimal

To use the new Account class, launch your IPython session from the ch10 examples folder, then import class Account:

In [1]: from account import Account

Class Account maintains and manipulates the account balance as a Decimal, so we also import class Decimal:

In [2]: from decimal import Decimal

Create an Account Object with a Constructor Expression

To create a Decimal object, we can write:

value = Decimal('12.34')

This is known as a constructor expression because it builds and initializes an object of the class, similar to the way a house is constructed from a blueprint then painted with the buyer’s preferred colors. Constructor expressions create new objects and initialize their data using argument(s) specified in parentheses. The parentheses following the class name are required, even if there are no arguments.

Let’s use a constructor expression to create an Account object and initialize it with an account holder’s name (a string) and balance (a Decimal):

In [3]: account1 = Account('John Green', Decimal('50.00'))

Getting an Account’s Name and Balance

Let’s access the Account object’s name and balance attributes:

In [4]: account1.name

Out[4]: 'John Green'

In [5]: account1.balance

Out[5]: Decimal('50.00')

Depositing Money into an Account

An Account’s deposit method receives a positive dollar amount and adds it to the balance:

In [6]: account1.deposit(Decimal('25.53'))

In [7]: account1.balance

Out[7]: Decimal('75.53')

Account Methods Perform Validation

Class Account’s methods validate their arguments. For example, if a deposit amount is negative, deposit raises a ValueError:

In [8]: account1.deposit(Decimal('-123.45'))

ValueError Traceback (most recent call last)

<ipython-input-8-27dc468365a7> in <module>()

----> 1 account1.deposit(Decimal('-123.45'))

~/Documents/examples/ch10/account.py in deposit(self, amount)

 21 # if amount is less than 0.00, raise an exception

 22 if amount < Decimal('0.00'):

---> 23 raise ValueError('Deposit amount must be positive.')

 24

 25 self.balance += amount

ValueError: Deposit amount must be positive.

[image:] Self Check

	(Fill-In) Each new class you create becomes a new data type that can be used to create objects. This is one reason why Python is said to be a(n) _________ language.

Answer: extensible.

	(Fill-In) A(n) _________ expression creates and initializes an object of a class.

Answer: constructor.

10.2.2 Account Class Definition

Now, let’s look at Account’s class definition, which is located in the file account.py.

Defining a Class

A class definition begins with the keyword class (line 5) followed by the class’s name and a colon (:). This line is called the class header. The Style Guide for Python Code recommends that you begin each word in a multi-x (for example, CommissionEmployee). Every statement in a class’s suite is indented.

1 # account.py

2 """Account class definition."""

3 from decimal import Decimal

4

5 class Account:

6 """Account class for maintaining a bank account balance."""

7

Each class typically provides a descriptive docstring (line 6). When provided, it must appear in the line or lines immediately following the class header. To view any class’s docstring in IPython, type the class name and a question mark, then press Enter:

In [9]: Account?

Init signature: Account(name, balance)

Docstring: Account class for maintaining a bank account balance.

Init docstring: Initialize an Account object.

File: ~/Documents/examples/ch10/account.py

Type: type

The identifier Account is both the class name and the name used in a constructor expression to create an Account object and invoke the class’s __init__ method. For this reason, IPython’s help mechanism shows both the class’s docstring ("Docstring:") and the __init__ method’s docstring ("Init docstring:").

Initializing Account Objects: Method __init__

The constructor expression in snippet [3] from the preceding section:

account1 = Account('John Green', Decimal('50.00'))

creates a new object, then initializes its data by calling the class’s __init__ method. Each new class you create can provide an __init__ method that specifies how to initialize an object’s data attributes. Returning a value other than None from __init__ results in a TypeError. Recall that None is returned by any function or method that does not contain a return statement. Class Account’s __init__ method (lines 8–16) initializes an Account object’s name and balance attributes if the balance is valid:

8 def __init__(self, name, balance):

9 """Initialize an Account object."""

10

11 # if balance is less than 0.00, raise an exception

12 if balance < Decimal('0.00'):

13 raise ValueError('Initial balance must be >= to 0.00.')

14

15 self.name = name

16 self.balance = balance

17

When you call a method for a specific object, Python implicitly passes a reference to that object as the method’s first argument. For this reason, all methods of a class must specify at least one parameter. By convention most Python programmers call a method’s first parameter self. A class’s methods must use that reference (self) to access the object’s attributes and other methods. Class Account’s __init__ method also specifies parameters for the name and balance.

The if statement validates the balance parameter. If balance is less than 0.00, __init__ raises a ValueError, which terminates the __init__ method. Otherwise, the method creates and initializes the new Account object’s name and balance attributes.

When an object of class Account is created, it does not yet have any attributes. They’re added dynamically via assignments of the form:

self.attribute_name = value

Python classes may define many special methods, like __init__, each identified by leading and trailing double-underscores (__) in the method name. Python class object, which we’ll discuss later in this chapter, defines the special methods that are available for all Python objects.

Method deposit

The Account class’s deposit method adds a positive amount to the account’s balance attribute. If the amount argument is less than 0.00, the method raises a ValueError, indicating that only positive deposit amounts are allowed. If the amount is valid, line 25 adds it to the object’s balance attribute.

18 def deposit(self, amount):

19 """Deposit money to the account."""

20

21 # if amount is less than 0.00, raise an exception

22 if amount < Decimal('0.00'):

23 raise ValueError('amount must be positive.')

24

25 self.balance += amount

10.2.3 Composition: Object References as Members of Classes

An Account has a name, and an Account has a balance. Recall that “everything in Python is an object.” This means that an object’s attributes are references to objects of other classes. For example, an Account object’s name attribute is a reference to a string object and an Account object’s balance attribute is a reference to a Decimal object. Embedding references to objects of other types is a form of software reusability known as composition and is sometimes referred to as the “has a” relationship. An end-of-chapter exercise asks you to implement composition with Circle and Point classes—a Circle “has a” Point that represents the Circle’s center location. Later in this chapter, we’ll discuss inheritance, which establishes “is a” relationships.

[image: tick mark] Self Check

	(Fill-In) A class’s _________ method is called by a constructor expression to initialize a new object of the class.

Answer: __init__.

	(True/False) A class’s __init__ method returns an object of the class.

Answer: False. A class’s __init__ method initializes an object of the class and implicitly returns None.

	(IPython Session) Add a withdraw method to class Account. If the withdrawal amount is greater than the balance, raise a ValueError, indicating that the withdrawal amount must be less than or equal to the balance. If the withdrawal amount is less than 0.00, raise a ValueError indicating that the withdrawal amount must be positive. If the withdrawal amount is valid, subtract it from the balance attribute. Create an Account object, then test method withdraw first with a valid withdrawal amount, then with a withdrawal amount greater than the balance and finally with a negative withdrawal amount.

Answer: The new method in class Account is:

def withdraw(self, amount):

 """Withdraw money from the account."""

 # if amount is greater than balance, raise an exception

 if amount > self.balance:

 raise ValueError('amount must be <= to balance.')

 elif amount < Decimal('0.00'):

 raise ValueError('amount must be positive.')

 self.balance -= amount

Testing method withdraw:

In [1]: from account import Account

In [2]: from decimal import Decimal

In [3]: account1 = Account('John Green', Decimal('50.00'))

In [4]: account1.withdraw(Decimal('20.00'))

In [5]: account1.balance

Out[5]: Decimal('30.00')

In [6]: account1.withdraw(Decimal('100.00'))

ValueError Traceback (most recent call last)

<ipython-input-6-61bb6aa89aa4> in <module>()

----> 1 account1.withdraw(Decimal('100.00'))

~/Documents/examples/ch10/snippets_py/account.py in withdraw(self,

amount)

 30 # if amount is greater than balance, raise an exception

 31 if amount > self.balance:

---> 32 raise ValueError('amount must be <= to balance.')

 33 elif amount < Decimal('0.00'):

 34 raise ValueError('amount must be positive.')

ValueError: amount must be <= to balance.

In [7]: account1.withdraw(Decimal('-10.00'))

ValueError Traceback (most recent call last)

<ipython-input-7-ab50927d9727> in <module>()

----> 1 account1.withdraw(Decimal('-10.00'))

~/Documents/examples/ch10/snippets_py/account.py in withdraw(self,

amount)

 32 raise ValueError('amount must be <= to balance.')

 33 elif amount < Decimal('0.00'):

---> 34 raise ValueError('amount must be positive.')

 35

 36 self.balance -= amount

ValueError: amount must be positive.

10.3 Controlling Access to Attributes

Class Account’s methods validate their arguments to ensure that the balance is always valid—that is, always greater than or equal to 0.00. In the previous example, we used the attributes name and balance only to get the values of those attributes. It turns out that we also can use those attributes to modify their values. Consider the Account object in the following IPython session:

In [1]: from account import Account

In [2]: from decimal import Decimal

In [3]: account1 = Account('John Green', Decimal('50.00'))

In [4]: account1.balance

Out[4]: Decimal('50.00')

Initially, account1 contains a valid balance. Now, let’s set the balance attribute to an invalid negative value, then display the balance:

In [5]: account1.balance = Decimal('-1000.00')

In [6]: account1.balance

Out[6]: Decimal('-1000.00')

Snippet [6]’s output shows that account1’s balance is now negative. As you can see, unlike methods, data attributes cannot validate the values you assign to them.

Encapsulation

A class’s client code is any code that uses objects of the class. Most object-oriented programming languages enable you to encapsulate (or hide) an object’s data from the client code. Such data in these languages is said to be private data.

Leading Underscore (_) Naming Convention

Python does not have private data. Instead, you use naming conventions to design classes that encourage correct use. By convention, Python programmers know that any attribute name beginning with an underscore (_) is for a class’s internal use only. Client code should use the class’s methods and—as you’ll see in the next section—the class’s properties to interact with each object’s internal-use data attributes. Attributes whose identifiers do not begin with an underscore (_) are considered publicly accessible for use in client code. In the next section, we’ll define a Time class and use these naming conventions. However, even when we use these conventions, attributes are always accessible.

[image: tick mark] Self Check

	(True/False) Like most object-oriented programming languages, Python provides capabilities for encapsulating an object’s data attributes so client code cannot access the data directly.

Answer: False. In Python, all data attributes are accessible. You use attribute naming conventions to indicate that attributes should not be accessed directly from client code.

10.4 Properties for Data Access

Let’s develop a Time class that stores the time in 24-hour clock format with hours in the range 0–23, and minutes and seconds each in the range 0–59. For this class, we’ll provide properties, which look like data attributes to client-code programmers, but control the manner in which they get and modify an object’s data. This assumes that other programmers follow Python conventions to correctly use objects of your class.

10.4.1 Test-Driving Class Time

Before we look at class Time’s definition, let’s demonstrate its capabilities. First, ensure that you’re in the ch10 folder, then import class Time from timewithproperties.py:

In [1]: from timewithproperties import Time

Creating a Time Object

Next, let’s create a Time object. Class Time’s __init__ method has hour, minute and second parameters, each with a default argument value of 0. Here, we specify the hour and minute—second defaults to 0:

In [2]: wake_up = Time(hour=6, minute=30)

Displaying a Time Object

Class Time defines two methods that produce string representations of Time object. When you evaluate a variable in IPython as in snippet [3], IPython calls the object’s __repr__ special method to produce a string representation of the object. Our __repr__ implementation creates a string in the following format:

In [3]: wake_up

Out[3]: Time(hour=6, minute=30, second=0)

We’ll also provide the __str__ special method, which is called when an object is converted to a string, such as when you output the object with print.1 Our __str__ implementation creates a string in 12-hour clock format:
1. If a class does not provide __str__ and an object of the class is converted to a string, the class’s __repr__ method is called instead.

In [4]: print(wake_up)

6:30:00 AM

Getting an Attribute Via a Property

Class time provides hour, minute and second properties, which provide the convenience of data attributes for getting and modifying an object’s data. However, as you’ll see, properties are implemented as methods, so they may contain additional logic, such as specifying the format in which to return a data attribute’s value or validating a new value before using it to modify a data attribute. Here, we get the wake_up object’s hour value:

In [5]: wake_up.hour

Out[5]: 6

Though this snippet appears to simply get an hour data attribute’s value, it’s actually a call to an hour method that returns the value of a data attribute (which we named _hour, as you’ll see in the next section).

Setting the Time

You can set a new time with the Time object’s set_time method. Like method __init__, method set_time provides hour, minute and second parameters, each with a default of 0:

In [6]: wake_up.set_time(hour=7, minute=45)

In [7]: wake_up

Out[7]: Time(hour=7, minute=45, second=0)

Setting an Attribute via a Property

Class Time also supports setting the hour, minute and second values individually via its properties. Let’s change the hour value to 6:

In [8]: wake_up.hour = 6

In [9]: wake_up

Out[9]: Time(hour=6, minute=45, second=0)

Though snippet [8] appears to simply assign a value to a data attribute, it’s actually a call to an hour method that takes 6 as an argument. The method validates the value, then assigns it to a corresponding data attribute (which we named _hour, as you’ll see in the next section).

Attempting to Set an Invalid Value

To prove that class Time’s properties validate the values you assign to them, let’s try to assign an invalid value to the hour property, which results in a ValueError:

In [10]: wake_up.hour = 100

ValueError Traceback (most recent call last)

<ipython-input-10-1fce0716ef14> in <module>()

----> 1 wake_up.hour = 100

~/Documents/examples/ch10/timewithproperties.py in hour(self, hour)

 20 """Set the hour."""

 21 if not (0 <= hour < 24):

---> 22 raise ValueError(f'Hour ({hour}) must be 0-23')

 23

 24 self._hour = hour

ValueError: Hour (100) must be 0-23

[image: tick mark] Self Check

	(Fill-In) The print function implicitly invokes special method _________.

Answer: __str__.

	(Fill-In) IPython calls an object’s special method _________ to produce a string representation of the object

Answer: __repr__.

	(True/False) Properties are used like methods.

Answer: False. Properties are used like data attributes, but (as we’ll see in the next section) are implemented as methods.

10.4.2 Class Time Definition

Now that we’ve seen class Time in action, let’s look at its definition.

Class Time: __init__ Method with Default Parameter Values

Class Time’s __init__ method specifies hour, minute and second parameters, each with a default argument of 0. Similar to class Account’s __init__ method, recall that the self parameter is a reference to the Time object being initialized. The statements containing self.hour, self.minute and self.second appear to create hour, minute and second attributes for the new Time object (self). However, these statements actually call methods that implement the class’s hour, minute and second properties (lines 13–50). Those methods then create attributes named _hour, _minute and _second that are meant for use only inside the class:

1 # timewithproperties.py

2 """Class Time with read-write properties."""

3

4 class Time:

5 """Class Time with read-write properties."""

6

7 def __init__(self, hour=0, minute=0, second=0):

8 """Initialize each attribute."""

9 self.hour = hour # 0-23

10 self.minute = minute # 0-59

11 self.second = second # 0-59

12

Class Time: hour Read-Write Property

Lines 13–24 define a publicly accessible read-write property named hour that manipulates a data attribute named _hour. The single-leading-underscore (_) naming convention indicates that client code should not access _hour directly. As you saw in the previous section’s snippets [5] and [8], properties look like data attributes to programmers working with Time objects. However, notice that properties are implemented as methods. Each property defines a getter method which gets (that is, returns) a data attribute’s value and can optionally define a setter method which sets a data attribute’s value:

13 @property

14 def hour(self):

15 """Return the hour."""

16 return self._hour

17

18 @hour.setter

19 def hour(self, hour):

20 """Set the hour."""

21 if not (0 <= hour < 24):

22 raise ValueError(f'Hour ({hour}) must be 0-23')

23

24 self._hour = hour

25

The @property decorator precedes the property’s getter method, which receives only a self parameter. Behind the scenes, a decorator adds code to the decorated function—in this case to make the hour function work with attribute syntax. The getter method’s name is the property name. This getter method returns the _hour data attribute’s value. The following client-code expression invokes the getter method:

wake_up.hour

You also can use the getter method inside the class, as you’ll see shortly.

A decorator of the form @property_name.setter (in this case, @hour.setter) precedes the property’s setter method. The method receives two parameters—self and a parameter (hour) representing the value being assigned to the property. If the hour parameter’s value is valid, this method assigns it to the self object’s _hour attribute; otherwise, the method raises a ValueError. The following client-code expression invokes the setter by assigning a value to the property:

wake_up.hour = 8

We also invoked this setter inside the class at line 9 of __init__:

self.hour = hour

Using the setter enabled us to validate __init__’s hour argument before creating and initializing the object’s _hour attribute, which occurs the first time the hour property’s setter executes as a result of line 9. A read-write property has both a getter and a setter. A read-only property has only a getter.

Class Time: minute and second Read-Write Properties

Lines 26–37 and 39–50 define read-write minute and second properties. Each property’s setter ensures that its second argument is in the range 0–59 (the valid range of values for minutes and seconds):

26 @property

27 def minute(self):

28 """Return the minute."""

29 return self._minute

30

31 @minute.setter

32 def minute(self, minute):

33 """Set the minute."""

34 if not (0 <= minute < 60):

35 raise ValueError(f'Minute ({minute}) must be 0-59')

36

37 self._minute = minute

38

39 @property

40 def second(self):

41 """Return the second."""

42 return self._second

43

44 @second.setter

45 def second(self, second):

46 """Set the second."""

47 if not (0 <= second < 60):

48 raise ValueError(f'Second ({second}) must be 0-59')

49

50 self._second = second

51

Class Time: Method set_time

We provide method set_time as a convenient way to change all three attributes with a single method call. Lines 54–56 invoke the setters for the hour, minute and second properties:

52 def set_time(self, hour=0, minute=0, second=0):

53 """Set values of hour, minute, and second."""

54 self.hour = hour

55 self.minute = minute

56 self.second = second

57

Class Time: Special Method __repr__

When you pass an object to built-in function repr—which happens implicitly when you evaluate a variable in an IPython session—the corresponding class’s __repr__ special method is called to get a string representation of the object:

58 def __repr__(self):

59 """Return Time string for repr()."""

60 return (f'Time(hour={self.hour}, minute={self.minute}, ' +

61 f'second={self.second})')

62

The Python documentation indicates that __repr__ returns the “official” string representation of the object. Typically this string looks like a constructor expression that creates and initializes the object,2 as in:
2. https://docs.python.org/3/reference/datamodel.html.

'Time(hour=6, minute=30, second=0)'

This is similar to the constructor expression in the previous section’s snippet [2]. Python has a built-in function eval that could receive the preceding string as an argument and use it to create and initialize a Time object containing values specified in the string.

Class Time: Special Method __str__

For our class Time we also define the __str__ special method. This method is called implicitly when you convert an object to a string with the built-in function str, such as when you print an object or call str explicitly. Our implementation of __str__ creates a string in 12-hour clock format, such as '7:59:59 AM' or '12:30:45 PM':

63 def __str__(self):

64 """Print Time in 12-hour clock format."""

65 return (('12' if self.hour in (0, 12) else str(self.hour % 12)) +

66 f':{self.minute:0>2}:{self.second:0>2}' +

67 (' AM' if self.hour < 12 else ' PM'))

[image: tick mark] Self Check

	(Fill-In) The print function implicitly invokes special method _________.

Answer: __str__.

	(Fill-In) A(n) _________ property has both a getter and setter. If only a getter is provided, the property is a(n) _________ property, meaning that you only can get the property’s value.

Answer: read-write, read-only.

	(IPython Session) Add to class Time a read-write property time in which the getter returns a tuple containing the values of the hour, minute and second properties, and the setter receives a tuple containing hour, minute and second values and uses them to set the time. Create a Time object and test the new property.

Answer: The new read-write property definition is shown below:

@property

def time(self):

 """Return hour, minute and second as a tuple."""

 return (self.hour, self.minute, self.second)

@time.setter

def time(self, time_tuple):

 """Set time from a tuple containing hour, minute and second."""

 self.set_time(time_tuple[0], time_tuple[1], time_tuple[2])

In [1]: from timewithproperties import Time

In [2]: t = Time()

In [3]: t

Out[3]: Time(hour=0, minute=0, second=0)

In [4]: t.time = (12, 30, 45)

In [5]: t

Out[5]: Time(hour=12, minute=30, second=45)

In [6]: t.time

Out[6]: (12, 30, 45)

Note that the self.set_time call in the time property’s setter method may be expressed more concisely as

self.set_time(*time_tuple)

The expression *time_tuple uses the unary * operator to unpack the time_tuple’s values, then passes them as individual arguments. In the preceding IPython session, the setter would receive the tuple (12, 30, 45), then unpack the tuple and call self.set_time as follows:

self.set_time(12, 30, 45)

10.4.3 Class Time Definition Design Notes

Let’s consider some class-design issues in the context of our Time class.

Interface of a Class

Class Time’s properties and methods define the class’s public interface—that is, the set of properties and methods programmers should use to interact with objects of the class.

Attributes Are Always Accessible

Though we provided a well-defined interface, Python does not prevent you from directly manipulating the data attributes _hour, _minute and _second, as in:

In [1]: from timewithproperties import Time

In [2]: wake_up = Time(hour=7, minute=45, second=30)

In [3]: wake_up._hour

Out[3]: 7

In [4]: wake_up._hour = 100

In [5]: wake_up

Out[5]: Time(hour=100, minute=45, second=30)

After snippet [4], the wake_up object contains invalid data. Unlike many other object-oriented programming languages, such as C++, Java and C#, data attributes in Python cannot be hidden from client code. The Python tutorial says, “nothing in Python makes it possible to enforce data hiding—it is all based upon convention.”3

3. https://docs.python.org/3/tutorial/classes.html#random-remarks.

Internal Data Representation

We chose to represent the time as three integer values for hours, minutes and seconds. It would be perfectly reasonable to represent the time internally as the number of seconds since midnight. Though we’d have to reimplement the properties hour, minute and second, programmers could use the same interface and get the same results without being aware of these changes. An exercise at the end of this chapter asks you to make this change and show that client code using Time objects does not need to change.

Evolving a Class’s Implementation Details

When you design a class, carefully consider the class’s interface before making that class available to other programmers. Ideally, you’ll design the interface such that existing code will not break if you update the class’s implementation details—that is, the internal data representation or how its method bodies are implemented.

If Python programmers follow convention and do not access attributes that begin with leading underscores, then class designers can evolve class implementation details without breaking client code.

Properties

It may seem that providing properties with both setters and getters has no benefit over accessing the data attributes directly, but there are subtle differences. A getter seems to allow clients to read the data at will, but the getter can control the formatting of the data. A setter can scrutinize attempts to modify the value of a data attribute to prevent the data from being set to an invalid value.

Utility Methods

Not all methods need to serve as part of a class’s interface. Some serve as utility methods used only inside the class and are not intended to be part of the class’s public interface used by client code. Such methods should be named with a single leading underscore. In other object-oriented languages like C++, Java and C#, such methods typically are implemented as private methods.

Module datetime

In professional Python development, rather than building your own classes to represent times and dates, you’ll typically use the Python Standard Library’s datetime module capabilities. You can learn more about the datetime module at:

https://docs.python.org/3/library/datetime.html

An exercise at the end of the chapter has you manipulate dates and times with this module.

[image: tick mark] Self Check

	(Fill-In) A class’s _________ is the set of public properties and methods programmers should use to interact with objects of the class.

Answer: interface.

	(Fill-In) A class’s _________ methods are used only inside the class and are not intended to be used by client code.

Answer: utility.

10.5 Simulating “Private” Attributes

In programming languages such as C++, Java and C#, classes state explicitly which class members are publicly accessible. Class members that may not be accessed outside a class definition are private and visible only within the class that defines them. Python programmers often use “private” attributes for data or utility methods that are essential to a class’s inner workings but are not part of the class’s public interface.

As you’ve seen, Python objects’ attributes are always accessible. However, Python has a naming convention for “private” attributes. Suppose we want to create an object of class Time and to prevent the following assignment statement:

wake_up._hour = 100

that would set the hour to an invalid value. Rather than _hour, we can name the attribute __hour with two leading underscores. This convention indicates that __hour is “private” and should not be accessible to the class’s clients. To help prevent clients from accessing “private” attributes, Python renames them by preceding the attribute name with _ClassName, as in _Time__hour. This is called name mangling. If you try assign to __hour, as in

wake_up.__hour = 100

Python raises an AttributeError, indicating that the class does not have an __hour attribute. We’ll show this momentarily.

IPython Auto-Completion Shows Only “Public” Attributes

In addition, IPython does not show attributes with one or two leading underscores when you try to auto-complete an expression like

wake_up.

by pressing Tab. Only attributes that are part of the wake_up object’s “public” interface are displayed in the IPython auto-completion list.

Demonstrating “Private” Attributes

To demonstrate name mangling, consider class PrivateClass with one “public” data attribute public_data and one “private” data attribute __private_data:

1 # private.py

2 """Class with public and private attributes."""

3

4 class PrivateClass:

5 """Class with public and private attributes."""

6

7 def __init__(self):

8 """Initialize the public and private attributes."""

9 self.public_data = "public" # public attribute

10 self.__private_data = "private" # private attribute

Let’s create an object of class PrivateData to demonstrate these data attributes:

In [1]: from private import PrivateClass

In [2]: my_object = PrivateClass()

Snippet [3] shows that we can access the public_data attribute directly:

In [3]: my_object.public_data

Out[3]: 'public'

However, when we attempt to access __private_data directly in snippet [4], we get an AttributeError indicating that the class does not have an attribute by that name:

In [4]: my_object.__private_data

AttributeError Traceback (most recent call last)

<ipython-input-4-d896bfdf2053> in <module>()

----> 1 my_object.__private_data

AttributeError: 'PrivateClass' object has no attribute '__private_data'

This occurs because python changed the attribute’s name. Unfortunately, as you’ll see in one of this section’s Self Check exercises, __private_data is still indirectly accessible.

[image: tick mark] Self Check

	(Fill-In) Python mangles attribute names that begin with _________ underscore(s).

Answer: two.

	(True/False) An attribute that begins with a single underscore is a private attribute.

Answer: False. An attribute that begins with a single underscore simply conveys the convention that a client of the class should not access the attribute directly, but it does allow access. Again, “nothing in Python makes it possible to enforce data hiding—it is all based upon convention.”4

4. https://docs.python.org/3/tutorial/classes.html#random-remarks.

	(IPython Session) Even with double-underscore (__) naming, we can still access and modify __private_data, because we know that Python renames attributes simply by prefixing their names with '_ClassName'. Demonstrate this for class PrivateData’s data attribute __private_data.

Answer:

In [5]: my_object._PrivateClass__private_data

Out[5]: 'private'

In [6]: my_object._PrivateClass__private_data = 'modified'

In [7]: my_object._PrivateClass__private_data

Out[7]: 'modified'

10.6 Case Study: Card Shuffling and Dealing Simulation

Our next example presents two custom classes that you can use to shuffle and deal a deck of cards. Class Card represents a playing card that has a face ('Ace', '2', '3', …, 'Jack', 'Queen', 'King') and a suit ('Hearts', 'Diamonds', 'Clubs', 'Spades'). Class DeckOfCards represents a deck of 52 playing cards as a list of Card objects. First, we’ll test-drive these classes in an IPython session to demonstrate card shuffling and dealing capabilities and displaying the cards as text. Then we’ll look at the class definitions. Finally, we’ll use another IPython session to display the 52 cards as images using Matplotlib. We’ll show you where to get nice-looking public-domain card images.

10.6.1 Test-Driving Classes Card and DeckOfCards

Before we look at classes Card and DeckOfCards, let’s use an IPython session to demonstrate their capabilities.

Creating, Shuffling and Dealing the Cards

First, import class DeckOfCards from deck.py and create an object of the class:

In [1]: from deck import DeckOfCards

In [2]: deck_of_cards = DeckOfCards()

DeckOfCards method __init__ creates the 52 Card objects in order by suit and by face within each suit. You can see this by printing the deck_of_cards object, which calls the DeckOfCards class’s __str__ method to get the deck’s string representation. Read each row left-to-right to confirm that all the cards are displayed in order from each suit (Hearts, Diamonds, Clubs and Spades):

In [3]: print(deck_of_cards)

Ace of Hearts 2 of Hearts 3 of Hearts 4 of Hearts

5 of Hearts 6 of Hearts 7 of Hearts 8 of Hearts

9 of Hearts 10 of Hearts Jack of Hearts Queen of Hearts

King of Hearts Ace of Diamonds 2 of Diamonds 3 of Diamonds

4 of Diamonds 5 of Diamonds 6 of Diamonds 7 of Diamonds

8 of Diamonds 9 of Diamonds 10 of Diamonds Jack of Diamonds

Queen of Diamonds King of Diamonds Ace of Clubs 2 of Clubs

3 of Clubs 4 of Clubs 5 of Clubs 6 of Clubs

7 of Clubs 8 of Clubs 9 of Clubs 10 of Clubs

Jack of Clubs Queen of Clubs King of Clubs Ace of Spades

2 of Spades 3 of Spades 4 of Spades 5 of Spades

6 of Spades 7 of Spades 8 of Spades 9 of Spades

10 of Spades Jack of Spades Queen of Spades King of Spades

Next, let’s shuffle the deck and print the deck_of_cards object again. We did not specify a seed for reproducibility, so each time you shuffle, you’ll get different results:

In [4]: deck_of_cards.shuffle()

In [5]: print(deck_of_cards)

King of Hearts Queen of Clubs Queen of Diamonds 10 of Clubs

5 of Hearts 7 of Hearts 4 of Hearts 2 of Hearts

5 of Clubs 8 of Diamonds 3 of Hearts 10 of Hearts

8 of Spades 5 of Spades Queen of Spades Ace of Clubs

8 of Clubs 7 of Spades Jack of Diamonds 10 of Spades

4 of Diamonds 8 of Hearts 6 of Spades King of Spades

9 of Hearts 4 of Spades 6 of Clubs King of Clubs

3 of Spades 9 of Diamonds 3 of Clubs Ace of Spades

Ace of Hearts 3 of Diamonds 2 of Diamonds 6 of Hearts

King of Diamonds Jack of Spades Jack of Clubs 2 of Spades

5 of Diamonds 4 of Clubs Queen of Hearts 9 of Clubs

10 of Diamonds 2 of Clubs Ace of Diamonds 7 of Diamonds

9 of Spades Jack of Hearts 6 of Diamonds 7 of Clubs

Dealing Cards

We can deal one Card at a time by calling method deal_card. IPython calls the returned Card object’s __repr__ method to produce the string output shown in the Out[] prompt:

In [6]: deck_of_cards.deal_card()

Out[6]: Card(face='King', suit='Hearts')

Class Card’s Other Features

To demonstrate class Card’s __str__ method, let’s deal another card and pass it to the built-in str function:

In [7]: card = deck_of_cards.deal_card()

In [8]: str(card)

Out[8]: 'Queen of Clubs'

Each Card has a corresponding image file name, which you can get via the image_name read-only property. We’ll use this soon when we display the Cards as images:

In [9]: card.image_name

Out[9]: 'Queen_of_Clubs.png'

10.6.2 Class Card—Introducing Class Attributes

Each Card object contains three string properties representing that Card’s face, suit and image_name (a file name containing a corresponding image). As you saw in the preceding section’s IPython session, class Card also provides methods for initializing a Card and for getting various string representations.

Class Attributes FACES and SUITS

Each object of a class has its own copies of the class’s data attributes. For example, each Account object has its own name and balance. Sometimes, an attribute should be shared by all objects of a class. A class attribute (also called a class variable) represents class-wide information. It belongs to the class, not to a specific object of that class. Class Card defines two class attributes (lines 5–7):

	FACES is a list of the card face names.

	SUITS is a list of the card suit names.

1 # card.py

2 """Card class that represents a playing card and its image file name."""

3

4 class Card:

5 FACES = ['Ace', '2', '3', '4', '5', '6',

 '7', '8', '9', '10', 'Jack', 'Queen', 'King']

7 SUITS = ['Hearts', 'Diamonds', 'Clubs', 'Spades']

8

You define a class attribute by assigning a value to it inside the class’s definition, but not inside any of the class’s methods or properties (in which case, they’d be local variables). FACES and SUITS are constants that are not meant to be modified. Recall that the Style Guide for Python Code recommends naming your constants with all capital letters.5

5. Recall that Python does not have true constants, so FACES and SUITS are still modifiable.

We’ll use elements of these lists to initialize each Card we create. However, we do not need a separate copy of each list in every Card object. Class attributes can be accessed through any object of the class, but are typically accessed through the class’s name (as in, Card.FACES or Card.SUITS). Class attributes exist as soon as you import their class’s definition.

Card Method __init__

When you create a Card object, method __init__ defines the object’s _face and _suit data attributes:

9 def __init__(self, face, suit):

10 """Initialize a Card with a face and suit."""

11 self._face = face

12 self._suit = suit

13

Read-Only Properties face, suit and image_name

Once a Card is created, its face, suit and image_name do not change, so we implement these as read-only properties (lines 14–17, 19–22 and 24–27). Properties face and suit return the corresponding data attributes _face and _suit. A property is not required to have a corresponding data attribute. To demonstrate this, the Card property image_name’s value is created dynamically by getting the Card object’s string representation with str(self), replacing any spaces with underscores and appending the '.png' filename extension. So, 'Ace of Spades' becomes 'Ace_of_Spades.png'. We’ll use this file name to load a PNG-format image representing the Card. PNG (Portable Network Graphics) is a popular image format for web-based images.

14 @property

15 def face(self):

16 """Return the Card's self._face value."""

17 return self._face

18

19 @property

20 def suit(self):

21 """Return the Card's self._suit value."""

22 return self._suit

23

24 @property

25 def image_name(self):

26 """Return the Card's image file name."""

27 return str(self).replace(' ', '_') + '.png'

28

Methods That Return String Representations of a Card

Class Card provides three special methods that return string representations. As in class Time, method __repr__ returns a string representation that looks like a constructor expression for creating and initializing a Card object:

29 def __repr__(self):

30 """Return string representation for repr()."""

31 return f"Card(face='{self.face}', suit='{self.suit}')"

32

Method __str__ returns a string of the format 'face of suit', such as 'Ace of Hearts':

33 def __str__(self):

34 """Return string representation for str()."""

35 return f'{self.face} of {self.suit}'

36

When the preceding section’s IPython session printed the entire deck, you saw that the Cards were displayed in four left-aligned columns. As you’ll see in the __str__ method of class DeckOfCards, we use f-strings to format the Cards in fields of 19 characters each. Class Card’s special method __format__ is called when a Card object is formatted as a string, such as in an f-string:

37 def __format__(self, format):

38 """Return formatted string representation for str()."""

39 return f'{str(self):{format}}'

This method’s second argument is the format string used to format the object. To use the format parameter’s value as the format specifier, enclose the parameter name in braces to the right of the colon. In this case, we’re formatting the Card object’s string representation returned by str(self). We’ll discuss __format__ again when we present the __str__ method in class DeckOfCards.

10.6.3 Class DeckOfCards

Class DeckOfCards has a class attribute NUMBER_OF_CARDS, representing the number of Cards in a deck, and creates two data attributes:

	_current_card keeps track of which Card will be dealt next (0–51) and

	_deck (line 12) is a list of 52 Card objects.

Method __init__

DeckOfCards method __init__ initializes a _deck of Cards. The for statement fills the list _deck by appending new Card objects, each initialized with two strings—one from the list Card.FACES and one from Card.SUITS. The calculation count % 13 always results in a value from 0 to 12 (the 13 indices of Card.FACES), and the calculation count // 13 always results in a value from 0 to 3 (the four indices of Card.SUITS). When the _deck list is initialized, it contains the Cards with faces 'Ace' through 'King' in order for all the Hearts, then the Diamonds, then the Clubs, then the Spades.

1 # deck.py

2 """Deck class represents a deck of Cards."""

3 import random

4 from card import Card

5

6 class DeckOfCards:

7 NUMBER_OF_CARDS = 52 # constant number of Cards

8

9 def __init__(self):

10 """Initialize the deck."""

11 self._current_card = 0

12 self._deck = []

13

14 for count in range(DeckOfCards.NUMBER_OF_CARDS):

15 self._deck.append(Card(Card.FACES[count % 13],

16 Card.SUITS[count // 13]))

17

Method shuffle

Method shuffle resets _current_card to 0, then shuffles the Cards in _deck using the random module’s shuffle function:

18 def shuffle(self):

19 """Shuffle deck."""

20 self._current_card = 0

21 random.shuffle(self._deck)

22

Method deal_card

Method deal_card deals one Card from _deck. Recall that _current_card indicates the index (0–51) of the next Card to be dealt (that is, the Card at the top of the deck). Line 26 tries to get the _deck element at index _current_card. If successful, the method increments _current_card by 1, then returns the Card being dealt; otherwise, the method returns None to indicate there are no more Cards to deal.

23 def deal_card(self):

24 """Return one Card."""

25 try:

26 card = self._deck[self._current_card]

27 self._current_card += 1

28 return card

29 except:

30 return None

31

Method __str__

Class DeckOfCards also defines special method __str__ to get a string representation of the deck in four columns with each Card left aligned in a field of 19 characters. When line 37 formats a given Card, its __format__ special method is called with format specifier '<19' as the method’s format argument. Method __format__ then uses '<19' to create the Card’s formatted string representation.

32 def __str__(self):

33 """Return a string representation of the current _deck."""

34 s = ''

35

36 for index, card in enumerate(self._deck):

37 s += f'{self._deck[index]:<19}'

38 if (index + 1) % 4 == 0:

39 s += '\n'

40

41 return s

10.6.4 Displaying Card Images with Matplotlib

So far, we’ve displayed Cards as text. Now, let’s display Card images. For this demonstration, we downloaded public-domain6 card images from Wikimedia Commons:
6. https://creativecommons.org/publicdomain/zero/1.0/deed.en.

https://commons.wikimedia.org/wiki/Category:SVG_English_pattern_playing_cards

These are located in the ch10 examples folder’s card_images subfolder. First, let’s create a DeckOfCards:

In [1]: from deck import DeckOfCards

In [2]: deck_of_cards = DeckOfCards()

Enable Matplotlib in IPython

Next, enable Matplotlib support in IPython by using the %matplotlib magic:

In [3]: %matplotlib

Using matplotlib backend: Qt5Agg

Create the Base Path for Each Image

Before displaying each image, we must load it from the card_images folder. We’ll use the pathlib module’s Path class to construct the full path to each image on our system. Snippet [5] creates a Path object for the current folder (the ch10 examples folder), which is represented by '.', then uses Path method joinpath to append the subfolder containing the card images:

In [4]: from pathlib import Path

In [5]: path = Path('.').joinpath('card_images')

Import the Matplotlib Features

Next, let’s import the Matplotlib modules we’ll need to display the images. We’ll use a function from matplotlib.image to load the images:

In [6]: import matplotlib.pyplot as plt

In [7]: import matplotlib.image as mpimg

Create the Figure and Axes Objects

The following snippet uses Matplotlib function subplots to create a Figure object in which we’ll display the images as 52 subplots with four rows (nrows) and 13 columns (ncols). The function returns a tuple containing the Figure and an array of the subplots’ Axes objects. We unpack these into variables figure and axes_list:

In [8]: figure, axes_list = plt.subplots(nrows=4, ncols=13)

When you execute this statement in IPython, the Matplotlib window appears immediately with 52 empty subplots.

Configure the Axes Objects and Display the Images

Next, we iterate through all the Axes objects in axes_list. Recall that ravel provides a one-dimensional view of a multidimensional array. For each Axes object, we perform the following tasks:

	We’re not plotting data, so we do not need axis lines and labels for each image. The first two statements in the loop hide the x- and y-axes.

	The third statement deals a Card and gets its image_name.

	The fourth statement uses Path method joinpath to append the image_name to the Path, then calls Path method resolve to determine the full path to the image on our system. We pass the resulting Path object to the built-in str function to get the string representation of the image’s location. Then, we pass that string to the matplotlib.image module’s imread function, which loads the image.

	The last statement calls Axes method imshow to display the current image in the current subplot.

In [9]: for axes in axes_list.ravel():

 ...: axes.get_xaxis().set_visible(False)

 ...: axes.get_yaxis().set_visible(False)

 ...: image_name = deck_of_cards.deal_card().image_name

 ...: img = mpimg.imread(str(path.joinpath(image_name).resolve()))

 ...: axes.imshow(img)

 ...:

Maximize the Image Sizes

At this point, all the images are displayed. To make the cards as large as possible, you can maximize the window, then call the Matplotlib Figure object’s tight_layout method. This removes most of the extra white space in the window:

In [10]: figure.tight_layout()

The following image shows the contents of the resulting window:

[image: The resulting window shows the cards divided by suits into 4 rows of cards ace through king from left to right.]

Shuffle and Re-Deal the Deck

To see the images shuffled, call method shuffle, then re-execute snippet [9]’s code:

In [11]: deck_of_cards.shuffle()

In [12]: for axes in axes_list.ravel():

 ...: axes.get_xaxis().set_visible(False)

 ...: axes.get_yaxis().set_visible(False)

 ...: image_name = deck_of_cards.deal_card().image_name

 ...: img = mpimg.imread(str(path.joinpath(image_name).resolve()))

 ...: axes.imshow(img)

 ...:

[image: The resulting window shows all the cards randomly arranged into 4 equal rows, regardless of suit or numerical order.]

[image: tick mark] Self Check

	(Fill-In) Matplotlib function _________ returns a tuple containing a Figure and an array of Axes objects.

Answer: subplots.

	(True/False) Path method appendpath appends to a Path object.

Answer: False. Path method joinpath appends to a Path object

	(Fill-In) The Path object Path('.') represents _________.

Answer: the current folder from which the code was executed.

	(IPython Session) Continue this section’s session by reshuffling the cards, then creating a new Figure containing two rows of five cards each—these might represent two five-card poker hands.

In [13]: deck_of_cards.shuffle()

In [14]: figure, axes_list = plt.subplots(nrows=2, ncols=5)

In [15]: for axes in axes_list.ravel():

 ...: axes.get_xaxis().set_visible(False)

 ...: axes.get_yaxis().set_visible(False)

 ...: image_name = deck_of_cards.deal_card().image_name

 ...: img = mpimg.imread(str(path.joinpath(image_name).resolve()))

 ...: axes.imshow(img)

 ...:

In [16]: figure.tight_layout()

Answer:

[image: The resulting window shows 2 5 card hands.]

10.6-3 Full Alternative Text

10.7 Inheritance: Base Classes and Subclasses

Often, an object of one class is an object of another class as well. For example, a CarLoan is a Loan as are HomeImprovementLoans and MortgageLoans. Class CarLoan can be said to inherit from class Loan. In this context, class Loan is a base class, and class CarLoan is a subclass. A CarLoan is a specific type of Loan, but it’s incorrect to claim that every Loan is a CarLoan—the Loan could be any type of loan. The following table lists several simple examples of base classes and subclasses—base classes tend to be “more general” and subclasses “more specific”:

[image: A table of base classes and their corresponding subclasses.]

10.7-4 Full Alternative Text

Because every subclass object is an object of its base class, and one base class can have many subclasses, the set of objects represented by a base class is often larger than the set of objects represented by any of its subclasses. For example, the base class Vehicle represents all vehicles, including cars, trucks, boats, bicycles and so on. By contrast, subclass Car represents a smaller, more specific subset of vehicles.

CommunityMember Inheritance Hierarchy

Inheritance relationships form tree-like hierarchical structures. A base class exists in a hierarchical relationship with its subclasses. Let’s develop a sample class hierarchy (shown in the following diagram), also called an inheritance hierarchy. A university community has thousands of members, including employees, students and alumni. Employees are either faculty or staff members. Faculty members are either administrators (e.g., deans and department chairpersons) or teachers. The hierarchy could contain many other classes. For example, students can be graduate or undergraduate students. Undergraduate students can be freshmen, sophomores, juniors or seniors. With single inheritance, a class is derived from one base class. With multiple inheritance, a subclass inherits from two or more base classes. Single inheritance is straightforward. Multiple inheritance is beyond the scope of this book. Before you use it, search online for the “diamond problem in Python multiple inheritance.”

[image: A hierarchy for community members.]

10.7-5 Full Alternative Text

Each arrow in the hierarchy represents an is-a relationship. As we follow the arrows upward in this class hierarchy, we can state, for example, that “an Employee is a CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct base class of Employee, Student and Alum and is an indirect base class of all the other classes in the diagram. Starting from the bottom, you can follow the arrows and apply the is-a relationship up to the topmost superclass. For example, Administrator is a Faculty member, is an Employee, is a CommunityMember and, of course, ultimately is an object.

Shape Inheritance Hierarchy

Now consider the Shape inheritance hierarchy in the following class diagram, which begins with base class Shape, followed by subclasses TwoDimensionalShape and ThreeDimensionalShape. Each Shape is either a TwoDimensionalShape or a ThreeDimensionalShape. The third level of this hierarchy contains specific types of TwoDimensionalShapes and ThreeDimensionalShapes. Again, we can follow the arrows from the bottom of the diagram to the topmost base class in this class hierarchy to identify several is-a relationships. For example, a Triangle is a TwoDimensionalShape and is a Shape, while a Sphere is a ThreeDimensionalShape and is a Shape. This hierarchy could contain many other classes. For example, ellipses and trapezoids also are TwoDimensionalShapes, and cones and cylinders also are ThreeDimensionalShapes.

[image: An example of a class diagram for shapes.]

10.7-6 Full Alternative Text

“is a” vs. “has a”

Inheritance produces “is-a” relationships in which an object of a subclass type may also be treated as an object of the base-class type. You’ve also seen “has-a” (composition) relationships in which a class has references to one or more objects of other classes as members.

[image: tick mark] Self Check

	(Fill-In) A base class exists in a(n) _________ relationship with its subclasses.

Answer: hierarchical.

	(Fill-In) In this section’s Shape class hierarchy, TwoDimensionalShape is a(n) _________ of Shape and a(n) _________ of Circle, Square and Triangle.

Answer: subclass, base class.

10.8 Building an Inheritance Hierarchy; Introducing Polymorphism

Let’s use a hierarchy containing types of employees in a company’s payroll app to discuss the relationship between a base class and its subclass. All employees of the company have a lot in common, but commission employees (who will be represented as objects of a base class) are paid a percentage of their sales, while salaried commission employees (who will be represented as objects of a subclass) receive a percentage of their sales plus a base salary.

First, we present base class CommissionEmployee. Next, we create a subclass SalariedCommissionEmployee that inherits from class CommissionEmployee. Then, we use an IPython session to create a SalariedCommissionEmployee object and demonstrate that it has all the capabilities of the base class and the subclass, but calculates its earnings differently.

10.8.1 Base Class CommissionEmployee

Consider class CommissionEmployee, which provides the following features:

	Method __init__ (lines 8–15), which creates the data attributes _first_name, _last_name and _ssn (Social Security number), and uses the setters of properties gross_sales and commission_rate to create their corresponding data attributes.

	Read-only properties first_name (lines 17–19), last_name (lines 21–23) and ssn (line 25–27), which return the corresponding data attributes.

	Read-write properties gross_sales (lines 29–39) and commission_rate (lines 41–52), in which the setters perform data validation.

	Method earnings (lines 54–56), which calculates and returns a CommissionEmployee’s earnings.

	Method __repr__ (lines 58–64), which returns a string representation of a CommissionEmployee.

1 # commmissionemployee.py

2 """CommissionEmployee base class."""

3 from decimal import Decimal

4

5 class CommissionEmployee:

6 """An employee who gets paid commission based on gross sales."""

7

8 def __init__(self, first_name, last_name, ssn,

9 gross_sales, commission_rate):

10 """Initialize CommissionEmployee's attributes."""

11 self._first_name = first_name

12 self._last_name = last_name

13 self._ssn = ssn

14 self.gross_sales = gross_sales # validate via property

15 self.commission_rate = commission_rate # validate via property

16

17 @property

18 def first_name(self):

19 return self._first_name

20

21 @property

22 def last_name(self):

23 return self._last_name

24

25 @property

26 def ssn(self):

27 return self._ssn

28

29 @property

30 def gross_sales(self):

31 return self._gross_sales

32

33 @gross_sales.setter

34 def gross_sales(self, sales):

35 """Set gross sales or raise ValueError if invalid."""

36 if sales < Decimal('0.00'):

37 raise ValueError('Gross sales must be >= to 0')

38

39 self._gross_sales = sales

40

41 @property

42 def commission_rate(self):

43 return self._commission_rate

44

45 @commission_rate.setter

46 def commission_rate(self, rate):

47 """Set commission rate or raise ValueError if invalid."""

48 if not (Decimal('0.0') < rate < Decimal('1.0')):

49 raise ValueError(

50 'Interest rate must be greater than 0 and less than 1')

51

52 self._commission_rate = rate

53

54 def earnings(self):

55 """Calculate earnings."""

56 return self.gross_sales * self.commission_rate

57

58 def __repr__(self):

59 """Return string representation for repr()."""

60 return ('CommissionEmployee: ' +

61 f'{self.first_name} {self.last_name}\n' +

62 f'social security number: {self.ssn}\n' +

63 f'gross sales: {self.gross_sales:.2f}\n' +

64 f'commission rate: {self.commission_rate:.2f}')

Properties first_name, last_name and ssn are read-only. We chose not to validate them, though we could have. For example, we could validate the first and last names—perhaps by ensuring that they’re of a reasonable length. We could validate the Social Security number to ensure that it contains nine digits, with or without dashes (for example, to ensure that it’s in the format ###-##-#### or #########, where each # is a digit).

All Classes Inherit Directly or Indirectly from Class object

You use inheritance to create new classes from existing ones. In fact, every Python class inherits from an existing class. When you do not explicitly specify the base class for a new class, Python assumes that the class inherits directly from class object. The Python class hierarchy begins with class object, the direct or indirect base class of every class. So, class CommissionEmployee’s header could have been written as

class CommissionEmployee(object):

The parentheses after CommissionEmployee indicate inheritance and may contain a single class for single inheritance or a comma-separated list of base classes for multiple inheritance. Once again, multiple inheritance is beyond the scope of this book.

Class CommissionEmployee inherits all the methods of class object. Class object does not have any data attributes. Two of the many methods inherited from object are __repr__ and __str__. So every class has these methods that return string representations of the objects on which they’re called. When a base-class method implementation is inappropriate for a derived class, that method can be overridden (i.e., redefined) in the derived class with an appropriate implementation. Method __repr__ (lines 58–64) overrides the default implementation inherited into class CommissionEmployee from class object.7

7. See https://docs.python.org/3/reference/datamodel.html for object’s overridable methods.

Testing Class CommissionEmployee

Let’s quickly test some of CommissionEmployee’s features. First, create and display a CommissionEmployee:

In [1]: from commissionemployee import CommissionEmployee

In [2]: from decimal import Decimal

In [3]: c = CommissionEmployee('Sue', 'Jones', '333-33-3333',

 ...: Decimal('10000.00'), Decimal('0.06'))

 ...:

In [4]: c

Out[4]:

CommissionEmployee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00

commission rate: 0.06

Next, let’s calculate and display the CommissionEmployee’s earnings:

In [5]: print(f'{c.earnings():,.2f}')

600.00

Finally, let’s change the CommissionEmployee’s gross sales and commission rate, then recalculate the earnings:

In [6]: c.gross_sales = Decimal('20000.00')

In [7]: c.commission_rate = Decimal('0.1')

In [8]: print(f'{c.earnings():,.2f}')

2,000.00

[image: tick mark] Self Check

	(Fill-In) When a base-class method implementation is inappropriate for a derived class, that method can be _________ (i.e., redefined) in the derived class with an appropriate implementation.

Answer: overridden.

	(What Does This Code Do?) In this section’s IPython session, explain in detail what snippet [6] does:

c.gross_sales = Decimal('20000.00')

This statement creates a Decimal object and assigns it to a CommissionEmployee’s gross_sales property, invoking the property’s setter. The setter checks whether the new value is less than Decimal('0.00'). If so, the setter raises a ValueError, indicating that the value must be greater than or equal to 0; otherwise, the setter assigns the new value to the CommissionEmployee’s _gross_sales attribute.

10.8.2 Subclass SalariedCommissionEmployee

With single inheritance, the subclass starts essentially the same as the base class. The real strength of inheritance comes from the ability to define in the subclass additions, replacements or refinements for the features inherited from the base class.

Many of a SalariedCommissionEmployee’s capabilities are similar, if not identical, to those of class CommissionEmployee. Both types of employees have first name, last name, Social Security number, gross sales and commission rate data attributes, and properties and methods to manipulate that data. To create class SalariedCommissionEmployee without using inheritance, we could have copied class CommissionEmployee’s code and pasted it into class SalariedCommissionEmployee. Then we could have modified the new class to include a base salary data attribute, and the properties and methods that manipulate the base salary, including a new earnings method. This copy-and-paste approach is often error-prone. Worse yet, it can spread many physical copies of the same code (including errors) throughout a system, making your code less maintainable. Inheritance enables us to “absorb” the features of a class without duplicating code. Let’s see how.

Declaring Class SalariedCommissionEmployee

We now declare the subclass SalariedCommissionEmployee, which inherits most of its capabilities from class CommissionEmployee (line 6). A SalariedCommissionEmployee is a CommissionEmployee (because inheritance passes on the capabilities of class CommissionEmployee), but class SalariedCommissionEmployee also has the following features:

	Method __init__ (lines 10–15), which initializes all the data inherited from class CommissionEmployee (we’ll say more about this momentarily), then uses the base_salary property’s setter to create a _base_salary data attribute.

	Read-write property base_salary (lines 17–27), in which the setter performs data validation.

	A customized version of method earnings (lines 29–31).

	A customized version of method __repr__ (lines 33–36).

 1 # salariedcommissionemployee.py

 2 """SalariedCommissionEmployee derived from CommissionEmployee."""

 3 from commissionemployee import CommissionEmployee

 4 from decimal import Decimal

 5

 6 class SalariedCommissionEmployee(CommissionEmployee):

 7 """An employee who gets paid a salary plus

 8 commission based on gross sales."""

 9

10 def __init__(self, first_name, last_name, ssn,

11 gross_sales, commission_rate, base_salary):

12 """Initialize SalariedCommissionEmployee's attributes."""

13 super().__init__(first_name, last_name, ssn,

14 gross_sales, commission_rate)

15 self.base_salary = base_salary # validate via property

16

17 @property

18 def base_salary(self):

19 return self._base_salary

20

21 @base_salary.setter

22 def base_salary(self, salary):

23 """Set base salary or raise ValueError if invalid."""

24 if salary < Decimal('0.00'):

25 raise ValueError('Base salary must be >= to 0')

26

27 self._base_salary = salary

28

29 def earnings(self):

30 """Calculate earnings."""

31 return super().earnings() + self.base_salary

32

33 def __repr__(self):

34 """Return string representation for repr()."""

35 return ('Salaried' + super().__repr__() +

36 f'\nbase salary: {self.base_salary:.2f}')

Inheriting from Class CommissionEmployee

To inherit from a class, you must first import its definition (line 3). Line 6

class SalariedCommissionEmployee(CommissionEmployee):

specifies that class SalariedCommissionEmployee inherits from CommissionEmployee. Though you do not see class CommissionEmployee’s data attributes, properties and methods in class SalariedCommissionEmployee, they’re nevertheless part of the new class, as you’ll soon see.

Method __init__ and Built-In Function super

Each subclass __init__ must explicitly call its base class’s __init__ to initialize the data attributes inherited from the base class. This call should be the first statement in the subclass’s __init__ method. SalariedCommissionEmployee’s __init__ method explicitly calls class CommissionEmployee’s __init__ method (lines 13–14) to initialize the base-class portion of a SalariedCommissionEmployee object (that is, the five inherited data attributes from class CommissionEmployee). The notation super().__init__ uses the built-in function super to locate and call the base class’s __init__ method, passing the five arguments that initialize the inherited data attributes.

Overriding Method earnings

Class SalariedCommissionEmployee’s earnings method (lines 29–31) overrides class CommissionEmployee’s earnings method (Section 10.8.1, lines 54–56) to calculate the earnings of a SalariedCommissionEmployee. The new version obtains the portion of the earnings based on commission alone by calling CommissionEmployee’s earnings method with the expression super().earnings() (line 31). SalariedCommissionEmployee’s earnings method then adds the base_salary to this value to calculate the total earnings. By having SalariedCommissionEmployee’s earnings method invoke CommissionEmployee’s earnings method to calculate part of a SalariedCommissionEmployee’s earnings, we avoid duplicating the code and reduce code-maintenance problems.

Overriding Method __repr__

SalariedCommissionEmployee’s __repr__ method (lines 33–36) overrides class CommissionEmployee’s __repr__ method (Section 10.8.1, lines 58–64) to return a String representation that’s appropriate for a SalariedCommissionEmployee. The subclass creates part of the string representation by concatenating 'Salaried' and the string returned by super().__repr__(), which calls CommissionEmployee’s __repr__ method. The overridden method then concatenates the base salary information and returns the resulting string.

Testing Class SalariedCommissionEmployee

Let’s test class SalariedCommissionEmployee to show that it indeed inherited capabilities from class CommissionEmployee. First, let’s create a SalariedCommissionEmployee and print all of its properties:

In [9]: from salariedcommissionemployee import SalariedCommissionEmployee

In [10]: s = SalariedCommissionEmployee('Bob', 'Lewis', '444-44-4444',

 ...: Decimal('5000.00'), Decimal('0.04'), Decimal('300.00'))

 ...:

In [11]: print(s.first_name, s.last_name, s.ssn, s.gross_sales,

 ...: s.commission_rate, s.base_salary)

Bob Lewis 444-44-4444 5000.00 0.04 300.00

Notice that the SalariedCommissionEmployee object has all of the properties of classes CommissionEmployee and SalariedCommissionEmployee.

Next, let’s calculate and display the SalariedCommissionEmployee’s earnings. Because we call method earnings on a SalariedCommissionEmployee object, the subclass version of the method executes:

In [12]: print(f'{s.earnings():,.2f}')

500.00

Now, let’s modify the gross_sales, commission_rate and base_salary properties, then display the updated data via the SalariedCommissionEmployee’s __repr__ method:

In [13]: s.gross_sales = Decimal('10000.00')

In [14]: s.commission_rate = Decimal('0.05')

In [15]: s.base_salary = Decimal('1000.00')

In [16]: print(s)

SalariedCommissionEmployee: Bob Lewis

social security number: 444-44-4444

gross sales: 10000.00

commission rate: 0.05

base salary: 1000.00

Again, because this method is called on a SalariedCommissionEmployee object, the subclass version of the method executes. Finally, let’s calculate and display the SalariedCommissionEmployee’s updated earnings:

In [17]: print(f'{s.earnings():,.2f}')

1,500.00

Testing the “is a” Relationship

Python provides two built-in functions—issubclass and isinstance—for testing “is a” relationships. Function issubclass determines whether one class is derived from another:

In [18]: issubclass(SalariedCommissionEmployee, CommissionEmployee)

Out[18]: True

Function isinstance determines whether an object has an “is a” relationship with a specific type. Because SalariedCommissionEmployee inherits from CommissionEmployee, both of the following snippets return True, confirming the “is a” relationship

In [19]: isinstance(s, CommissionEmployee)

Out[19]: True

In [20]: isinstance(s, SalariedCommissionEmployee)

Out[20]: True

[image: tick mark] Self Check

	(Fill-In) Function _________ determines whether an object has an “is a” relationship with a specific type.

Answer: isinstance.

	(Fill-In) Function _________ determines whether one class is derived from another.

Answer: issubclass.

	(What Does This Code Do?) Explain in detail what the following statement from class SalariedCommissionEmployee’s earnings method does:

return super().earnings() + self.base_salary

This statement calculates a SalariedCommissionEmployee’s earnings by using the built-in function super to invoke the base class CommissionEmployee’s version of method earnings then adding to the result the base_salary.

10.8.3 Processing CommissionEmployees and SalariedCommissionEmployees Polymorphically

With inheritance, every object of a subclass also may be treated as an object of that subclass’s base class. We can take advantage of this “subclass-object-is-a-base-class-object” relationship to perform some interesting manipulations. For example, we can place objects related through inheritance into a list, then iterate through the list and treat each element as a base-class object. This allows a variety of objects to be processed in a general way. Let’s demonstrate this by placing the CommissionEmployee and SalariedCommissionEmployee objects in a list, then for each element displaying its string representation and earnings:

In [21]: employees = [c, s]

In [22]: for employee in employees:

 ...: print(employee)

 ...: print(f'{employee.earnings():,.2f}\n')

 ...:

CommissionEmployee: Sue Jones

social security number: 333-33-3333

gross sales: 20000.00

commission rate: 0.10

2,000.00

SalariedCommissionEmployee: Bob Lewis

social security number: 444-44-4444

gross sales: 10000.00

commission rate: 0.05

base salary: 1000.00

1,500.00

As you can see, the correct string representation and earnings are displayed for each employee. This is called polymorphism—a key capability of object-oriented programming (OOP).

[image: tick mark] Self Check

	(Fill-In)

_________ enables us to take advantage of the “subclass-object-is-a-base-class-object” relationship to process objects in a general way.

Answer: Polymorphism.

10.8.4A Note About Object-Based and Object-Oriented Programming

Inheritance with method overriding is a powerful way to build software components that are like existing components but need to be customized to your application’s unique needs. In the Python open-source world, there are a huge number of well-developed class libraries for which your programming style is:

	know what libraries are available,

	know what classes are available,

	make objects of existing classes, and

	send them messages (that is, call their methods).

This style of programming called object-based programming (OBP). When you do composition with objects of known classes, you’re still doing object-based programming. Adding inheritance with overriding to customize methods to the unique needs of your applications and possibly process objects polymorphically is called object-oriented programming (OOP). If you do composition with objects of inherited classes, that’s also object-oriented programming.

10.9 Duck Typing and Polymorphism

Most other object-oriented programming languages require inheritance-based “is a” relationships to achieve polymorphic behavior. Python is more flexible. It uses a concept called duck typing, which the Python documentation describes as:

A programming style which does not look at an object’s type to determine if it has the right interface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be a duck.”).8
8. https://docs.python.org/3/glossary.html#term-duck-typing.

So, when processing an object at execution time, its type does not matter. As long as the object has the data attribute, property or method (with the appropriate parameters) you wish to access, the code will work.

Let’s reconsider the loop at the end of Section 10.8.3, which processes a list of employees:

for employee in employees:

 print(employee)

 print(f'{employee.earnings():,.2f}\n')

In Python, this loop works properly as long as employees contains only objects that:

	can be displayed with print (that is, they have a string representation) and

	have an earnings method which can be called with no arguments.

All classes inherit from object directly or indirectly, so they all inherit the default methods for obtaining string representations that print can display. If a class has an earnings method that can be called with no arguments, we can include objects of that class in the list employees, even if the object’s class does not have an “is a” relationship with class CommissionEmployee. To demonstrate this, consider class WellPaidDuck:

In [1]: class WellPaidDuck:

 ...: def __repr__(self):

 ...: return 'I am a well-paid duck'

 ...: def earnings(self):

 ...: return Decimal('1_000_000.00')

 ...:

WellPaidDuck objects, which clearly are not meant to be employees, will work with the preceding loop. To prove this, let’s create objects of our classes CommissionEmployee, SalariedCommissionEmployee and WellPaidDuck and place them in a list:

In [2]: from decimal import Decimal

In [3]: from commissionemployee import CommissionEmployee

In [4]: from salariedcommissionemployee import SalariedCommissionEmployee

In [5]: c = CommissionEmployee('Sue', 'Jones', '333-33-3333',

 ...: Decimal('10000.00'), Decimal('0.06'))

 ...:

In [6]: s = SalariedCommissionEmployee('Bob', 'Lewis', '444-44-4444',

 ...: Decimal('5000.00'), Decimal('0.04'), Decimal('300.00'))

 ...:

In [7]: d = WellPaidDuck()

In [8]: employees = [c, s, d]

Now, let’s process the list using the loop from Section 10.8.3. As you can see in the output, Python is able to use duck typing to polymorphically process all three objects in the list:

In [9]: for employee in employees:

 ...: print(employee)

 ...: print(f'{employee.earnings():,.2f}\n')

 ...:

CommissionEmployee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00

commission rate: 0.06

600.00

SalariedCommissionEmployee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

500.00

I am a well-paid duck

1,000,000.00

10.10 Operator Overloading

You’ve seen that you can interact with objects by accessing their attributes and properties and by calling their methods. Method-call notation can be cumbersome for certain kinds of operations, such as arithmetic. In these cases, it would be more convenient to use Python’s rich set of built-in operators.

This section shows how to use operator overloading to define how Python’s operators should handle objects of your own types. You’ve already used operator overloading frequently across wide ranges of types. For example, you’ve used:

	the + operator for adding numeric values, concatenating lists, concatenating strings and adding a value to every element in a NumPy array.

	the [] operator for accessing elements in lists, tuples, strings and arrays and for accessing the value for a specific key in a dictionary.

	the * operator for multiplying numeric values, repeating a sequence and multiplying every element in a NumPy array by a specific value.

You can overload most operators. For every overloadable operator, class object defines a special method, such as __add__ for the addition (+) operator or __mul__ for the multiplication (*) operator. Overriding these methods enables you to define how a given operator works for objects of your custom class. For a complete list of special methods, see

https://docs.python.org/3/reference/datamodel.html#special-method-names

Operator Overloading Restrictions

There are some restrictions on operator overloading:

	The precedence of an operator cannot be changed by overloading. However, parentheses can be used to force evaluation order in an expression.

	The left-to-right or right-to-left grouping of an operator cannot be changed by overloading.

	The “arity” of an operator—that is, whether it’s a unary or binary operator—cannot be changed.

	You cannot create new operators—only existing operators can be overloaded.

	The meaning of how an operator works on objects of built-in types cannot be changed. You cannot, for example, change + so that it subtracts two integers.

	Operator overloading works only with objects of custom classes or with a mixture of an object of a custom class and an object of a built-in type.

Complex Numbers

To demonstrate operator overloading, we’ll define a class named Complex that represents complex numbers. Complex numbers, like –3 + 4i and 6.2 – 11.73i, have the form

realPart + imaginaryPart * i

where i is [image: Equation reads root minus 1]. Like ints, floats and Decimals, complex numbers are arithmetic types. In this section, we’ll create a class Complex that overloads just the + addition operator and the += augmented assignment, so we can add Complex objects using Python’s mathematical notations.9

9. Note that Python has built-in support for complex values. In the exercises, we’ll ask you to explore using these built-in capabilities.

10.10.1 Test-Driving Class Complex

First, let’s use class Complex to demonstrate its capabilities. We’ll discuss the class’s details in the next section. Import class Complex from complexnumber.py:

In [1]: from complexnumber import Complex

Next, create and display a couple of Complex objects. Snippets [3] and [5] implicitly call the Complex class’s __repr__ method to get a string representation of each object:

In [2]: x = Complex(real=2, imaginary=4)

In [3]: x

Out[3]: (2 + 4i)

In [4]: y = Complex(real=5, imaginary=-1)

In [5]: y

Out[5]: (5 - 1i)

We chose the __repr__ string format shown in snippets [3] and [5] to mimic the __repr__ strings produced by Python’s built-in complex type.10

10. Python uses j rather than i for. For example, 3+4j (with no spaces around the operator) creates a complex object with real and imag attributes. The __repr__ string for this complex value is '(3+4j)'.

Now, let’s use the + operator to add the Complex objects x and y. This expression adds the real parts of the two operands (2 and 5) and the imaginary parts of the two operands (4i and -1i), then returns a new Complex object containing the result:

In [6]: x + y

Out[6]: (7 + 3i)

The + operator does not modify either of its operands:

In [7]: x

Out[7]: (2 + 4i)

In [8]: y

Out[8]: (5 - 1i)

Finally, let’s use the += operator to add y to x and store the result in x. The += operator modifies its left operand but not its right operand:

In [9]: x += y

In [10]: x

Out[10]: (7 + 3i)

In [11]: y

Out[11]: (5 - 1i)

10.10.2 Class Complex Definition

Now that we’ve seen class Complex in action, let’s look at its definition to see how those capabilities were implemented.

Method __init__

The class’s __init__ method receives parameters to initialize the real and imaginary data attributes:

 1 # complexnumber.py

 2 """Complex class with overloaded operators."""

 3

 4 class Complex:

 5 """Complex class that represents a complex number

 6 with real and imaginary parts."""

 7

 8 def __init__(self, real, imaginary):

 9 """Initialize Complex class's attributes."""

10 self.real = real

11 self.imaginary = imaginary

12

Overloaded + Operator

The following overridden special method __add__ defines how to overload the + operator for use with two Complex objects:

13 def __add__(self, right):

14 """Overrides the + operator."""

15 return Complex(self.real + right.real,

16 self.imaginary + right.imaginary)

17

Methods that overload binary operators must provide two parameters—the first (self) is the left operand and the second (right) is the right operand. Class Complex’s __add__ method takes two Complex objects as arguments and returns a new Complex object containing the sum of the operands’ real parts and the sum of the operands’ imaginary parts.

We do not modify the contents of either of the original operands. This matches our intuitive sense of how this operator should behave. Adding two numbers does not modify either of the original values.

Overloaded += Augmented Assignment

Lines 18–22 overload special method __iadd__ to define how the += operator adds two Complex objects:

18 def __iadd__(self, right):

19 """Overrides the += operator."""

20 self.real += right.real

21 self.imaginary += right.imaginary

22 return self

23

Augmented assignments modify their left operands, so method __iadd__ modifies the self object, which represents the left operand, then returns self.

Method __repr__

Lines 24–28 return the string representation of a Complex number.

24 def __repr__(self):

25 """Return string representation for repr()."""

26 return (f'({self.real} ' +

27 ('+' if self.imaginary >= 0 else '-') +

28 f' {abs(self.imaginary)}i)')

[image:] Self Check

	(Fill-In) Suppose a and b are integer variables and a program calculates a + b. Now suppose c and d are string variables and a program performs the concatenation c + d. The two + operators here are clearly being used for different purposes. This is an example of _________.

Answer: operator overloading.

	(True/False) Python allows you to create new operators to overload and to change how existing operators work for built-in types.

Answer: False. Python prohibits you from creating new operators, and operator overloading cannot change how an operator works with built-in types.

	(IPython Session) Modify class Complex to support operators - and -=, then test these operators.

Answer:

 def __sub__(self, right):

 """Overrides the - operator."""

 return Complex(self.real - right.real,

 self.imaginary - right.imaginary)

 def __isub__(self, right):

 """Overrides the -= operator."""

 self.real -= right.real

 self.imaginary -= right.imaginary

 return self

In [1]: from complexnumber2 import Complex

In [2]: x = Complex(real=2, imaginary=4)

In [3]: y = Complex(real=5, imaginary=-1)

In [4]: x - y

Out[4]: (-3 + 5i)

In [5]: x -= y

In [6]: x

Out[6]: (-3 + 5i)

In [7]: y

Out[7]: (5 - 1i)

10.11 Exception Class Hierarchy and Custom Exceptions

In the previous chapter, we introduced exception handling. Every exception is an object of a class in Python’s exception class hierarchy11 or an object of a class that inherits from one of those classes. Exception classes inherit directly or indirectly from base class BaseException and are defined in module exceptions.
11. https://docs.python.org/3/library/exceptions.html.

Python defines four primary BaseException subclasses—SystemExit, KeyboardInterrupt, GeneratorExit and Exception:

	SystemExit terminates program execution (or terminates an interactive session) and when uncaught does not produce a traceback like other exception types.

	KeyboardInterrupt exceptions occur when the user types the interrupt command—Ctrl + C (or control + C) on most systems.

	GeneratorExit exceptions occur when a generator closes—normally when a generator finishes producing values or when its close method is called explicitly.

	Exception is the base class for most common exceptions you’ll encounter. You’ve seen exceptions of the Exception subclasses ZeroDivisionError, NameError, ValueError, StatisticsError, TypeError, IndexError, KeyError, RuntimeError and AttributeError. Often, StandardErrors can be caught and handled, so the program can continue running.

Catching Base-Class Exceptions

One of the benefits of the exception class hierarchy is that an except handler can catch exceptions of a particular type or can use a base-class type to catch those base-class exceptions and all related subclass exceptions. For example, an except handler that specifies the base class Exception can catch objects of any subclass of Exception. Placing an except handler that catches type Exception before other except handlers is a logic error, because all exceptions would be caught before other exception handlers could be reached. Thus, subsequent exception handlers are unreachable.

Custom Exception Classes

When you raise an exception from your code, you should generally use one of the existing exception classes from the Python Standard Library. However, using the inheritance techniques you learned earlier in this chapter, you can create your own custom exception classes that derive directly or indirectly from class Exception. Generally, that’s discouraged, especially among novice programmers. Before creating custom exception classes, look for an appropriate existing exception class in the Python exception hierarchy. Define new exception classes only if you need to catch and handle the exceptions differently from other existing exception types. That should be rare.

[image: tick mark] Self Check

	(Fill-In) Most exceptions you’ll encounter inherit from base class _________ and are defined in module _________.

Answer: Exception, exceptions.

	(True/False) When you raise an exception from your code, you should generally use a new exception class.

Answer: False. When you raise an exception from your code, you should generally use one of the existing exception classes from the Python Standard Library.

10.12 Named Tuples

You’ve used tuples to aggregate several data attributes into a single object. The Python Standard Library’s collections module also provides named tuples that enable you to reference a tuple’s members by name rather than by index number.

Let’s create a simple named tuple that might be used to represent a card in a deck of cards. First, import function namedtuple:

In [1]: from collections import namedtuple

Function namedtuple creates a subclass of the built-in tuple type. The function’s first argument is your new type’s name and the second is a list of strings representing the identifiers you’ll use to reference the new type’s members:

In [2]: Card = namedtuple('Card', ['face', 'suit'])

We now have a new tuple type named Card that we can use anywhere a tuple can be used. Let’s create a Card object, access its members by name and display its string representation:

In [3]: card = Card(face='Ace', suit='Spades')

In [4]: card.face

Out[4]: 'Ace'

In [5]: card.suit

Out[5]: 'Spades'

In [6]: card

Out[6]: Card(face='Ace', suit='Spades')

Other Named Tuple Features

Each named tuple type has additional methods. The type’s _make class method (that is, a method called on the class) receives an iterable of values and returns an object of the named tuple type:

In [7]: values = ['Queen', 'Hearts']

In [8]: card = Card._make(values)

In [9]: card

Out[9]: Card(face='Queen', suit='Hearts')

This could be useful, for example, if you have a named tuple type representing records in a CSV file. As you read and tokenize CSV records, you could convert them into named tuple objects.

For a given object of a named tuple type, you can get an OrderedDict dictionary representation of the object’s member names and values. An OrderedDict remembers the order in which its key–value pairs were inserted in the dictionary:

In [10]: card._asdict()

Out[10]: OrderedDict([('face', 'Queen'), ('suit', 'Hearts')])

For additional named tuple features see:

https://docs.python.org/3/library/collections.html#collections.namedtuple

[image:] Self Check

	(Fill-In) The Python Standard Library’s collections module’s _________ function creates a custom tuple type that enables you to reference the tuple’s members by name rather than by index number.

Answer: namedtuple.

	(IPython Session) Create a namedtuple called Time with members named hour, minute and second. Then, create a Time object, access its members and display its string representation.

Answer:

In [1]: from collections import namedtuple

In [2]: Time = namedtuple('Time', ['hour', 'minute', 'second'])

In [3]: t = Time(13, 30, 45)

In [4]: print(t.hour, t.minute, t.second)

13 30 45

In [5]: t

Out[5]: Time(hour=13, minute=30, second=45)

10.13 A Brief Intro to Python 3.7’s New Data Classes

Though named tuples allow you to reference their members by name, they’re still just tuples, not classes. For some of the benefits of named tuples, plus the capabilities that traditional Python classes provide, you can use Python 3.7’s new data classes12 from the Python Standard Library’s dataclasses module.
12. https://www.python.org/dev/peps/pep-0557/.

Data classes are among Python 3.7’s most important new features. They help you build classes faster by using more concise notation and by autogenerating “boilerplate” code that’s common in most classes. They could become the preferred way to define many Python classes. In this section, we’ll present data-class fundamentals. At the end of the section, we’ll provide links to more information.

Data Classes Autogenerate Code

Most classes you’ll define provide an __init__ method to create and initialize an object’s attributes and a __repr__ method to specify an object’s custom string representation. If a class has many data attributes, creating these methods can be tedious.

Data classes autogenerate the data attributes and the __init__ and __repr__ methods for you. This can be particularly useful for classes that primarily aggregate related data items. For example, in an application that processes CSV records, you might want a class that represents each record’s fields as data attributes in an object. You’ll see in an exercise that data classes can be generated dynamically from a list of field names.

Data classes also autogenerate method __eq__, which overloads the == operator. Any class that has an __eq__ method also implicitly supports !=. All classes inherit class object’s default __ne__ (not equals) method implementation, which returns the opposite of __eq__ (or NotImplemented if the class does not define __eq__). Data classes do not automatically generate methods for the <, <=, > and >= comparison operators, but they can.

10.13.1 Creating a Card Data Class

Let’s reimplement class Card from Section 10.6.2 as a data class. The new class is defined in carddataclass.py. As you’ll see, defining a data class requires some new syntax. In the subsequent subsections, we’ll use our new Card data class in class DeckOfCards to show that it’s interchangeable with the original Card class, then discuss some of the benefits of data classes over named tuples and traditional Python classes.

Importing from the dataclasses and typing Modules

The Python Standard Library’s dataclasses module defines decorators and functions for implementing data classes. We’ll use the @dataclass decorator (imported at line 4) to specify that a new class is a data class and causes various code to be written for you. Recall that our original Card class defined class variables FACES and SUITS, which are lists of the strings used to initialize Cards. We use ClassVar and List from the Python Standard Library’s typing module (imported at line 5) to indicate that FACES and SUITS are class variables that refer to lists. We’ll say more about these momentarily:

1 # carddataclass.py

2 """Card data class with class attributes, data attributes,

3 autogenerated methods and explicitly defined methods."""

4 from dataclasses import dataclass

5 from typing import ClassVar, List

6

Using the @dataclass Decorator

To specify that a class is a data class, precede its definition with the @dataclass decorator:13
13. https://docs.python.org/3/library/dataclasses.html#module-level-decorators-classes-and-functions.

7 @dataclass

8 class Card:

Optionally, the @dataclass decorator may specify parentheses containing arguments that help the data class determine what autogenerated methods to include. For example, the decorator @dataclass(order=True) would cause the data class to autogenerate overloaded comparison operator methods for <, <=, > and >=. This might be useful, for example, if you need to sort your data-class objects.

Variable Annotations: Class Attributes

Unlike regular classes, data classes declare both class attributes and data attributes inside the class, but outside the class’s methods. In a regular class, only class attributes are declared this way, and data attributes typically are created in __init__. Data classes require additional information, or hints, to distinguish class attributes from data attributes, which also affects the autogenerated methods’ implementation details.

Lines 9–11 define and initialize the class attributes FACES and SUITS:

 9 FACES: ClassVar[List[str]] = ['Ace', '2', '3', '4', '5', '6', '7',

10 '8', '9', '10', 'Jack', 'Queen', 'King']

11 SUITS: ClassVar[List[str]] = ['Hearts', 'Diamonds', 'Clubs', 'Spades']

12

In lines 9 and 11, The notation

 : ClassVar[List[str]]

is a variable annotation14

,15 (sometimes called a type hint) specifying that FACES is a class attribute (ClassVar) which refers to a list of strings (List[str]). SUITS also is a class attribute which refers to a list of strings.
14. https://www.python.org/dev/peps/pep-0526/.
15. Variable annotations are a recent language feature and are optional for regular classes. You will not see them in most legacy Python code.

Class variables are initialized in their definitions and are specific to the class, not individual objects of the class. Methods __init__, __repr__ and __eq__, however, are for use with objects of the class. When a data class generates these methods, it inspects all the variable annotations and includes only the data attributes in the method implementations.

Variable Annotations: Data Attributes

Normally, we create an object’s data attributes in the class’s __init__ method (or methods called by __init__) via assignments of the form self.attribute_name = value. Because a data class autogenerates its __init__ method, we need another way to specify data attributes in a data class’s definition. We cannot simply place their names inside the class, which generates a NameError, as in:

In [1]: from dataclasses import dataclass

In [2]: @dataclass

 ...: class Demo:

 ...: x # attempting to create a data attribute x

 ...:

NameError Traceback (most recent call last)

<ipython-input-2-79ffe37b1ba2> in <module>()

----> 1 @dataclass

 2 class Demo:

 3 x # attempting to create a data attribute x

 4

<ipython-input-2-79ffe37b1ba2> in Demo()

 1 @dataclass

 2 class Demo:

----> 3 x # attempting to create a data attribute x

 4

NameError: name 'x' is not defined

Like class attributes, each data attribute must be declared with a variable annotation. Lines 13–14 define the data attributes face and suit. The variable annotation ": str" indicates that each should refer to string objects:

13 face: str

14 suit: str

Defining a Property and Other Methods

Data classes are classes, so they may contain properties and methods and participate in class hierarchies. For this Card data class, we defined the same read-only image_name property and custom special methods __str__ and __format__ as in our original Card class earlier in the chapter:

15 @property

16 def image_name(self):

17 """Return the Card's image file name."""

18 return str(self).replace(' ', '_') + '.png'

19

20 def __str__(self):

21 """Return string representation for str()."""

22 return f'{self.face} of {self.suit}'

23

24 def __format__(self, format):

25 """Return formatted string representation."""

26 return f'{str(self):{format}}'

Variable Annotation Notes

You can specify variable annotations using built-in type names (like str, int and float), class types or types defined by the typing module (such as ClassVar and List shown earlier). Even with type annotations, Python is still a dynamically typed language. So, type annotations are not enforced at execution time. So, even though a Card’s face is meant to be a string, you can assign any type of object to face, as you’ll do in a Self Check exercise.

[image: tick mark] Self Check

	(Fill-In) Data classes require _________ that specify each class attribute’s or data attribute’s data type.

Answer: variable annotations.

	(Fill-In) The _________ decorator specifies that a new class is a data class.

Answer: @dataclass.

	(True/False) The Python Standard Library’s annotations module defines the variable annotations that are required in data class definitions.

Answer: False. The typing module defines the variable annotations that are required in data-class definitions.

	(True/False) Data classes have auto-generated <, <=, > and >= operators, by default.

Answer: False. The == and != operators are autogenerated by default. The <, <=, > and >= operators are autogenerated only if the @dataclass decorator specifies the keyword argument order=True.

10.13.2 Using the Card Data Class

Let’s demonstrate the new Card data class. First, create a Card:

In [1]: from carddataclass import Card

In [2]: c1 = Card(Card.FACES[0], Card.SUITS[3])

Next, let’s use Card’s autogenerated __repr__ method to display the Card:

In [3]: c1

Out[3]: Card(face='Ace', suit='Spades')

Our custom __str__ method, which print calls when passing it a Card object, returns a string of the form 'face of suit':

In [4]: print(c1)

Ace of Spades

Let’s access our data class’s attributes and read-only property:

In [5]: c1.face

Out[5]: 'Ace'

In [6]: c1.suit

Out[6]: 'Spades'

In [7]: c1.image_name

Out[7]: 'Ace_of_Spades.png'

Next, let’s demonstrate that Card objects can be compared via the autogenerated == operator and inherited != operator. First, create two additional Card objects—one identical to the first and one different:

In [8]: c2 = Card(Card.FACES[0], Card.SUITS[3])

In [9]: c2

Out[9]: Card(face='Ace', suit='Spades')

In [10]: c3 = Card(Card.FACES[0], Card.SUITS[0])

In [11]: c3

Out[11]: Card(face='Ace', suit='Hearts')

Now, compare the objects using == and !=:

In [12]: c1 == c2

Out[12]: True

In [13]: c1 == c3

Out[13]: False

In [14]: c1 != c3

Out[14]: True

Our Card data class is interchangeable with the Card class developed earlier in this chapter. To demonstrate this, we created the deck2.py file containing a copy of class DeckOfCards from earlier in the chapter and imported the Card data class into the file. The following snippets import class DeckOfCards, create an object of the class and print it. Recall that print implicitly calls the DeckOfCards __str__ method, which formats each Card in a field of 19 characters, resulting in a call to each Card’s __format__ method. Read each row left-to-right to confirm that all the Cards are displayed in order from each suit (Hearts, Diamonds, Clubs and Spades):

In [15]: from deck2 import DeckOfCards # uses Card data class

In [16]: deck_of_cards = DeckOfCards()

In [17]: print(deck_of_cards)

Ace of Hearts 2 of Hearts 3 of Hearts 4 of Hearts

5 of Hearts 6 of Hearts 7 of Hearts 8 of Hearts

9 of Hearts 10 of Hearts Jack of Hearts Queen of Hearts

King of Hearts Ace of Diamonds 2 of Diamonds 3 of Diamonds

4 of Diamonds 5 of Diamonds 6 of Diamonds 7 of Diamonds

8 of Diamonds 9 of Diamonds 10 of Diamonds Jack of Diamonds

Queen of Diamonds King of Diamonds Ace of Clubs 2 of Clubs

3 of Clubs 4 of Clubs 5 of Clubs 6 of Clubs

7 of Clubs 8 of Clubs 9 of Clubs 10 of Clubs

Jack of Clubs Queen of Clubs King of Clubs Ace of Spades

2 of Spades 3 of Spades 4 of Spades 5 of Spades

6 of Spades 7 of Spades 8 of Spades 9 of Spades

10 of Spades Jack of Spades Queen of Spades King of Spades

[image: tick mark] Self Check

	(IPython Session) Python is a dynamically typed language, so variable annotations are not enforced on objects of data classes. To prove this, create a Card object, then assign the integer 100 to its face attribute and display the Card. Display the face attribute’s type before and after the assignment

Answer:

In [1]: from carddataclass import Card

In [2]: c = Card('Ace', 'Spades')

In [3]: c

Out[3]: Card(face='Ace', suit='Spades')

In [4]: type(c.face)

Out[4]: str

In [5]: c.face = 100

In [6]: c

Out[6]: Card(face=100, suit='Spades')

In [7]: type(c.face)

Out[7]: int

10.13.3 Data Class Advantages over Named Tuples

Data classes offer several advantages over named tuples16:
16. https://www.python.org/dev/peps/pep-0526/.

	Although each named tuple technically represents a different type, a named tuple is a tuple and all tuples can be compared to one another. So, objects of different named tuple types could compare as equal if they have the same number of members and the same values for those members. Comparing objects of different data classes always returns False, as does comparing a data class object to a tuple object.

	If you have code that unpacks a tuple, adding more members to that tuple breaks the unpacking code. Data class objects cannot be unpacked. So you can add more data attributes to a data class without breaking existing code.

	A data class can be a base class or a subclass in an inheritance hierarchy.

10.13.4 Data Class Advantages over Traditional Classes

Data classes also offer various advantages over the traditional Python classes you saw earlier in this chapter:

	A data class autogenerates __init__, __repr__ and __eq__, saving you time.

	A data class can autogenerate the special methods that overload the <, <=, > and >= comparison operators.

	When you change data attributes defined in a data class, then use it in a script or interactive session, the autogenerated code updates automatically. So, you have less code to maintain and debug.

	The required variable annotations for class attributes and data attributes enable you to take advantage of static code analysis tools. So, you might be able to eliminate additional errors before they can occur at execution time.

	Some static code analysis tools and IDEs can inspect variable annotations and issue warnings if your code uses the wrong type. This can help you locate logic errors in your code before you execute it. In an end-of-chapter exercise, we ask you to use the static code analysis tool MyPy to demonstrate such warnings.

More Information

Data classes have additional capabilities, such as creating “frozen” instances which do not allow you to assign values to a data class object’s attributes after the object is created. For a complete list of data class benefits and capabilities, see

https://www.python.org/dev/peps/pep-0557/

and

https://docs.python.org/3/library/dataclasses.html

We’ll ask you to experiment with additional data class features in this chapter’s exercises.

10.14 Unit Testing with Docstrings and doctest

A key aspect of software development is testing your code to ensure that it works correctly. Even with extensive testing, however, your code may still contain bugs. According to the famous Dutch computer scientist Edsger Dijkstra, “Testing shows the presence, not the absence of bugs.”17

17. J. N. Buxton and B. Randell, eds, Software Engineering Techniques, April 1970, p. 16. Report on a conference sponsored by the NATO Science Committee, Rome, Italy, 27–31 October 1969

Module doctest and the testmod Function

The Python Standard Library provides the doctest module to help you test your code and conveniently retest it after you make modifications. When you execute the doctest module’s testmod function, it inspects your functions’, methods’ and classes' docstrings looking for sample Python statements preceded by >>>, each followed on the next line by the given statement’s expected output (if any).18 The testmod function then executes those statements and confirms that they produce the expected output. If they do not, testmod reports errors indicating which tests failed so you can locate and fix the problems in your code. Each test you define in a docstring typically tests a specific unit of code, such as a function, a method or a class. Such tests are called unit tests.
18. The notation >>> mimics the standard python interpreter’s input prompts.

Modified Account Class

The file accountdoctest.py contains the class Account from this chapter’s first example. We modified the __init__ method’s docstring to include four tests which can be used to ensure that the method works correctly:

	The test in line 11 creates a sample Account object named account1. This statement does not produce any output.

	The test in line 12 shows what the value of account1’s name attribute should be if line 11 executed successfully. The sample output is shown in line 13.

	The test in line 14 shows what the value of account1’s balance attribute should be if line 11 executed successfully. The sample output is shown in line 15.

	The test in line 18 creates an Account object with an invalid initial balance. The sample output shows that a ValueError exception should occur in this case. For exceptions, the doctest module’s documentation recommends showing just the first and last lines of the traceback.19
19. https://docs.python.org/3/library/doctest.html?highlight=doctest#module-doctest.

You can intersperse your tests with descriptive text, such as line 17.

 1 # accountdoctest.py

 2 """Account class definition."""

 3 from decimal import Decimal

 4

 5 class Account:

 6 """Account class for demonstrating doctest."""

 7

 8 def __init__(self, name, balance):

 9 """Initialize an Account object.

10

11 >>> account1 = Account('John Green', Decimal('50.00'))

12 >>> account1.name

13 'John Green'

14 >>> account1.balance

15 Decimal('50.00')

16

17 The balance argument must be greater than or equal to 0.

18 >>> account2 = Account('John Green', Decimal('-50.00'))

19 Traceback (most recent call last):

20 ...

21 ValueError: Initial balance must be >= to 0.00.

22 """

23

24 # if balance is less than 0.00, raise an exception

25 if balance < Decimal('0.00'):

26 raise ValueError('Initial balance must be >= to 0.00.')

27

28 self.name = name

29 self.balance = balance

30

31 def deposit(self, amount):

32 """Deposit money to the account."""

33

34 # if amount is less than 0.00, raise an exception

35 if amount < Decimal('0.00'):

36 raise ValueError('amount must be positive.')

37

38 self.balance += amount

39

40 if __name__ == '__main__':

41 import doctest

42 doctest.testmod(verbose=True)

Module __main__

When you load any module, Python assigns a string containing the module’s name to a global attribute of the module called __name__. When you execute a Python source file (such as accountdoctest.py) as a script, Python uses the string '__main__' as the module’s name. You can use __name__ in an if statement like lines 40–42 to specify code that should execute only if the source file is executed as a script. In this example, line 41 imports the doctest module and line 42 calls the module’s testmod function to execute the docstring unit tests.

Running Tests

Run the file accountdoctest.py as a script to execute the tests. By default, if you call testmod with no arguments, it does not show test results for successful tests. In that case, if you get no output, all the tests executed successfully. In this example, line 42 calls testmod with the keyword argument verbose=True. This tells testmod to produce verbose output showing every test’s results:

Trying:

 account1 = Account('John Green', Decimal('50.00'))

Expecting nothing

ok

Trying:

 account1.name

Expecting:

 'John Green'

ok

Trying:

 account1.balance

Expecting:

 Decimal('50.00')

ok

Trying:

 account2 = Account('John Green', Decimal('-50.00'))

Expecting:

 Traceback (most recent call last):

 ...

 ValueError: Initial balance must be >= to 0.00.

ok

3 items had no tests:

 __main__

 __main__.Account

 __main__.Account.deposit

1 items passed all tests:

 4 tests in __main__.Account.__init__

4 tests in 4 items.

4 passed and 0 failed.

Test passed.

In verbose mode, testmod shows for each test what it’s "Trying" to do and what it’s "Expecting" as a result, followed by "ok" if the test is successful. After completing the tests in verbose mode, testmod shows a summary of the results.

To demonstrate a failed test, “comment out” lines 25–26 in accountdoctest.py by preceding each with a #, then run accountdoctest.py as a script. To save space, we show just the portions of the doctest output indicating the failed test:

...

**

File "accountdoctest.py", line 18, in __main__.Account.__init__

Failed example:

 account2 = Account('John Green', Decimal('-50.00'))

Expected:

 Traceback (most recent call last):

 ...

 ValueError: Initial balance must be >= to 0.00.

Got nothing

**

1 items had failures:

 1 of 4 in __main__.Account.__init__

4 tests in 4 items.

3 passed and 1 failed.

Test Failed 1 failures.

In this case, we see that line 18’s test failed. The testmod function was expecting a traceback indicating that a ValueError was raised due to the invalid initial balance. That exception did not occur, so the test failed. As the programmer responsible for defining this class, this failing test would be an indication that something is wrong with the validation code in your __init__ method.

IPython %doctest_mode Magic

A convenient way to create doctests for existing code is to use an IPython interactive session to test your code, then copy and paste that session into a docstring. IPython’s In [] and Out[] prompts are not compatible with doctest, so IPython provides the magic %doctest_mode to display prompts in the correct doctest format. The magic toggles between the two prompt styles. The first time you execute %doctest_mode, IPython switches to >>> prompts for input and no output prompts. The second time you execute %doctest_mode, IPython switches back to In [] and Out[] prompts.

[image:] Self Check

	(Fill-In) When you execute a Python source file as a script, Python creates a global attribute __name__ and assigns it the string _________.

Answer: '__main__'.

	(True/False) When you execute the doctest module’s testmod function, it inspects your code and automatically creates tests for you.

Answer: False. When you execute the doctest module’s testmod function, it inspects your code’s function, method and class docstrings looking for sample Python statements preceded by >>>, each followed on the next line by the given statement’s expected output (if any).

	(IPython Session) Add tests to the deposit method’s docstring, then execute the tests. Your test should create an Account object, deposit a valid amount into it, then attempt to deposit an invalid negative amount, which raises a ValueError.

Answer: The updated docstring for method deposit is shown below, followed by the verbose doctest results:

"""Deposit money to the account.

>>> account1 = Account('John Green', Decimal('50.00'))

>>> account1.deposit(Decimal('10.55'))

>>> account1.balance

Decimal('60.55')

>>> account1.deposit(Decimal('-100.00'))

Traceback (most recent call last):

 ...

ValueError: amount must be positive.

"""

Trying:

 account1 = Account('John Green', Decimal('50.00'))

Expecting nothing

ok

Trying:

 account1.name

Expecting:

 'John Green'

ok

Trying:

 account1.balance

Expecting:

 Decimal('50.00')

ok

Trying:

 account2 = Account('John Green', Decimal('-50.00'))

Expecting:

 Traceback (most recent call last):

 ...

 ValueError: Initial balance must be >= to 0.00.

ok

Trying:

 account1 = Account('John Green', Decimal('50.00'))

Expecting nothing

ok

Trying:

 account1.deposit(Decimal('10.55'))

Expecting nothing

ok

Trying:

 account1.balance

Expecting:

Decimal('60.55')

ok

Trying:

 account1.deposit(Decimal('-100.00'))

Expecting:

 Traceback (most recent call last):

 ...

 ValueError: amount must be positive.

ok

2 items had no tests:

 __main__

 __main__.Account

2 items passed all tests:

 4 tests in __main__.Account.__init__

 4 tests in __main__.Account.deposit

8 tests in 4 items.

8 passed and 0 failed.

Test passed.

10.15 Namespaces and Scopes

In the “Functions” chapter, we showed that each identifier has a scope that determines where you can use it in your program, and we introduced the local and global scopes. Here we continue our discussion of scopes with an introduction to namespaces.

Scopes are determined by namespaces, which associate identifiers with objects and are implemented “under the hood” as dictionaries. All namespaces are independent of one another. So, the same identifier may appear in multiple namespaces. There are three primary namespaces—local, global and built-in.

Local Namespace

Each function and method has a local namespace that associates local identifiers (such as, parameters and local variables) with objects. The local namespace exists from the moment the function or method is called until it terminates and is accessible only to that function or method. In a function’s or method’s suite, assigning to a variable that does not exist creates a local variable and adds it to the local namespace. Identifiers in the local namespace are in scope from the point at which you define them until the function or method terminates.

Global Namespace

Each module has a global namespace that associates a module’s global identifiers (such as global variables, function names and class names) with objects. Python creates a module’s global namespace when it loads the module. A module’s global namespace exists and its identifiers are in scope to the code within that module until the program (or interactive session) terminates. An IPython session has its own global namespace for all the identifiers you create in that session.

Each module’s global namespace also has an identifier called __name__ containing the module’s name, such as 'math' for the math module or 'random' for the random module. As you saw in the previous section’s doctest example, __name__ contains '__main__' for a .py file that you run as a script.

Built-In Namespace

The built-in namespace contains associates identifiers for Python’s built-in functions (such as, input and range) and types (such as, int, float and str) with objects that define those functions and types. Python creates the built-in namespace when the interpreter starts executing. The built-in namespace’s identifiers remain in scope for all code until the program (or interactive session) terminates.20
20. This assumes you do not shadow the built-in functions or types by redefining their identifiers in a local or global namespace. We discussed shadowing in the “Functions” chapter.

Finding Identifiers in Namespaces

When you use an identifier, Python searches for that identifier in the currently accessible namespaces, proceeding from local to global to built-in. To help you understand the namespace search order, consider the following IPython session:

In [1]: z = 'global z'

In [2]: def print_variables():

 ...: y = 'local y in print_variables'

 ...: print(y)

 ...: print(z)

 ...:

In [3]: print_variables()

local y in print_variables

global z

The identifiers you define in an IPython session are placed in the session’s global namespace. When snippet [3] calls print_variables, Python searches the local, global and built-in namespaces as follows:

	Snippet [3] is not in a function or method, so the session’s global namespace and the built-in namespace are currently accessible. Python first searches the session’s global namespace, which contains print_variables. So print_variables is in scope and Python uses the corresponding object to call print_variables.

	As print_variables begins executing, Python creates the function’s local namespace. When function print_variables defines the local variable y, Python adds y to the function’s local namespace. The variable y is now in scope until the function finishes executing.

	Next, print_variables calls the built-in function print, passing y as the argument. To execute this call, Python must resolve the identifiers y and print. The identifier y is defined in the local namespace, so it’s in scope and Python will use the corresponding object (the string 'local y in print_variables') as print’s argument. To call the function, Python must find print’s corresponding object. First, it looks in the local namespace, which does not define print. Next, it looks in the session’s global namespace, which does not define print. Finally, it looks in the built-in namespace, which does define print. So, print is in scope and Python uses the corresponding object to call print.

	Next, print_variables calls the built-in function print again with the argument z, which is not defined in the local namespace. So, Python looks in the global namespace. The argument z is defined in the global namespace, so z is in scope and Python will use the corresponding object (the string 'global z') as print’s argument. Again, Python finds the identifier print in the built-in namespace and uses the corresponding object to call print.

	At this point, we reach the end of the print_variables function’s suite, so the function terminates and its local namespace no longer exists, meaning the local variable y is now undefined.

To prove that y is undefined, let’s try to display y:

In [4]: y

NameError Traceback (most recent call last)

<ipython-input-4-9063a9f0e032> in <module>()

----> 1 y

NameError: name 'y' is not defined

In this case, there’s no local namespace, so Python searches for y in the session’s global namespace. The identifier y is not defined there, so Python searches for y in the built-in namespace. Again, Python does not find y. There are no more namespaces to search, so Python raises a NameError, indicating that y is not defined.

The identifiers print_variables and z still exist in the session’s global namespace, so we can continue using them. For example, let’s evaluate z to see its value:

In [5]: z

Out[5]: 'global z'

Nested Functions

One namespace we did not cover in the preceding discussion is the enclosing namespace. Python allows you to define nested functions inside other functions or methods. For example, if a function or method performs the same task several times, you might define a nested function to avoid repeating code in the enclosing function. When you access an identifier inside a nested function, Python searches the nested function’s local namespace first, then the enclosing function’s namespace, then the global namespace and finally the built-in namespace. This is sometimes referred to as the LEGB (local, enclosing, global, built-in) rule. In an exercise, we ask you to create a nested function to demonstrate this namespace search order.

Class Namespace

A class has a namespace in which its class attributes are stored. When you access a class attribute, Python looks for that attribute first in the class’s namespace, then in the base class’s namespace, and so on, until either it finds the attribute or it reaches class object. If the attribute is not found, a NameError occurs.

Object Namespace

Each object has its own namespace containing the object’s methods and data attributes. The class’s __init__ method starts with an empty object (self) and adds each attribute to the object’s namespace. Once you define an attribute in an object’s namespace, clients using the object may access the attribute’s value.

[image: tick mark] Self Check

	(Fill-In) A function’s _________ namespace stores information about identifiers created in the function, such as its parameters and local variables.

Answer: local.

	(True/False) When a function attempts to get an attribute’s value, Python searches the local namespace, then the global namespace, then the built-in namespace until it finds the attribute; otherwise, a NameError occurs.

Answer: True.

10.16 Intro to Data Science: Time Series and Simple Linear Regression

We’ve looked at sequences, such as lists, tuples and arrays. In this section, we’ll discuss time series, which are sequences of values (called observations) associated with points in time. Some examples are daily closing stock prices, hourly temperature readings, the changing positions of a plane in flight, annual crop yields and quarterly company profits. Perhaps the ultimate time series is the stream of time-stamped tweets coming from Twitter users worldwide. In the “Data Mining Twitter” chapter, we’ll study Twitter data in depth.

In this section, we’ll use a technique called simple linear regression to make predictions from time series data. We’ll use the 1895 through 2018 January average high temperatures in New York City to predict future average January high temperatures and to estimate the average January high temperatures for years preceding 1895.

In the “Machine Learning” chapter, we’ll revisit this example using the scikit-learn library. In the “Deep Learning” chapter, we’ll use recurrent neural networks (RNNs) to analyze time series.

In later chapters, we’ll see that time series are popular in financial applications and with the Internet of Things (IoT), which we’ll discuss in the “Big Data: Hadoop, Spark, NoSQL and IoT” chapter.

In this section, we’ll display graphs with Seaborn and pandas, which both use Matplotlib, so launch IPython with Matplotlib support:

ipython --matplotlib

Time Series

The data we’ll use is a time series in which the observations are ordered by year. Univariate time series have one observation per time, such as the average of the January high temperatures in New York City for a particular year. Multivariate time series have two or more observations per time, such as temperature, humidity and barometric pressure readings in a weather application. Here, we’ll analyze a univariate time series.

Two tasks often performed with time series are:

	Time series analysis, which looks at existing time series data for patterns, helping data analysts understand the data. A common analysis task is to look for seasonality in the data. For example, in New York City, the monthly average high temperature varies significantly based on the seasons (winter, spring, summer or fall).

	Time series forecasting, which uses past data to predict the future.

We’ll perform time series forecasting in this section.

Simple Linear Regression

Using a technique called simple linear regression, we’ll make predictions by finding a linear relationship between the months (January of each year) and New York City’s average January high temperatures. Given a collection of values representing an independent variable (the month/year combination) and a dependent variable (the average high temperature for that month/year), simple linear regression describes the relationship between these variables with a straight line, known as the regression line.

Linear Relationships

To understand the general concept of a linear relationship, consider Fahrenheit and Celsius temperatures. Given a Fahrenheit temperature, we can calculate the corresponding Celsius temperature using the following formula:

c = 5 / 9 * (f - 32)

In this formula, f (the Fahrenheit temperature) is the independent variable, and c (the Celsius temperature) is the dependent variable—each value of c depends on the value of f used in the calculation.

Plotting Fahrenheit temperatures and their corresponding Celsius temperatures produces a straight line. To show this, let’s first create a lambda for the preceding formula and use it to calculate the Celsius equivalents of the Fahrenheit temperatures 0–100 in 10-degree increments. We store each Fahrenheit/Celsius pair as a tuple in temps:

In [1]: c = lambda f: 5 / 9 * (f - 32)

In [2]: temps = [(f, c(f)) for f in range(0, 101, 10)]

Next, let’s place the data in a DataFrame, then use its plot method to display the linear relationship between the Fahrenheit and Celsius temperatures. The plot method’s style keyword argument controls the data’s appearance. The period in the string '.-' indicates that each point should appear as a dot, and the dash indicates that lines should connect the dots. We manually set the y-axis label to 'Celsius' because the plot method shows 'Celsius' only in the graph’s upper-left corner legend, by default.

In [3]: import pandas as pd

In [4]: temps_df = pd.DataFrame(temps, columns=['Fahrenheit', 'Celsius'])

In [5]: axes = temps_df.plot(x='Fahrenheit', y='Celsius', style='.-')

In [6]: y_label = axes.set_ylabel('Celsius')

[image: A graph depicts the relationship between Celsius and Fahrenheit. As the Fahrenheit temperature rises, so does the Celsius temperature.]

Components of the Simple Linear Regression Equation

The points along any straight line (in two dimensions) like those shown in the preceding graph can be calculated with the equation:

y = mx + b

where

	

m is the line’s slope,

	

b is the line’s intercept with the y-axis (at x = 0),

	

x is the independent variable (the date in this example), and

	

y is the dependent variable (the temperature in this example).

In simple linear regression, y is the predicted value for a given x.

Function linregress from the SciPy’s stats Module

Simple linear regression determines the slope (m) and intercept (b) of a straight line that best fits your data. Consider the following diagram, which shows a few of the time-series data points we’ll process in this section and a corresponding regression line. We added vertical lines to indicate each data point’s distance from the regression line:

[image: A graph depicts the temperature recorded on specific dates.]

10.16-8 Full Alternative Text

The simple linear regression algorithm iteratively adjusts the slope and intercept and, for each adjustment, calculates the square of each point’s distance from the line. The “best fit” occurs when the slope and intercept values minimize the sum of those squared distances. This is known as an ordinary least squares calculation.21
21. https://en.wikipedia.org/wiki/Ordinary_least_squares.

The SciPy (Scientific Python) library is widely used for engineering, science and math in Python. This library’s linregress function (from the scipy.stats module) performs simple linear regression for you. After calling linregress, you’ll plug the resulting slope and intercept into the y = mx + b equation to make predictions.

Pandas

In the three previous Intro to Data Science sections, you used pandas to work with data. You’ll continue using pandas throughout the rest of the book. In this example, we’ll load the data for New York City’s 1895–2018 average January high temperatures from a CSV file into a DataFrame. We’ll then format the data for use in this example.

Seaborn Visualization

We’ll use Seaborn to plot the DataFrame’s data with a regression line that shows the average high-temperature trend over the period 1895–2018.

Getting Weather Data from NOAA

Let’s get the data for our study. The National Oceanic and Atmospheric Administration (NOAA)22 offers lots of public historical data including time series for average high temperatures in specific cities over various time intervals.
22. http://www.noaa.gov.

We obtained the January average high temperatures for New York City from 1895 through 2018 from NOAA’s “Climate at a Glance” time series at:

https://www.ncdc.noaa.gov/cag/

On that web page, you can select temperature, precipitation and other data for the entire U.S., regions within the U.S., states, cities and more. Once you’ve set the area and time frame, click Plot to display a diagram and view a table of the selected data. At the top of that table are links for downloading the data in several formats including CSV, which we discussed in the “Files and Exceptions” chapter. NOAA’s maximum date range available at the time of this writing was 1895–2018. For your convenience, we provided the data in the ch10 examples folder in the file ave_hi_nyc_jan_1895-2018.csv. If you download the data on your own, delete the rows above the line containing "Date,Value,Anomaly".

This data contains three columns per observation:

	Date—A value of the form 'YYYYMM’ (such as '201801'). MM is always 01 because we downloaded data for only January of each year.

	Value—A floating-point Fahrenheit temperature.

	Anomaly—The difference between the value for the given date and average values for all dates. We do not use the Anomaly value in this example, so we’ll ignore it.

Loading the Average High Temperatures into a DataFrame

Let’s load and display the New York City data from ave_hi_nyc_jan_1895-2018.csv:

In [7]: nyc = pd.read_csv('ave_hi_nyc_jan_1895-2018.csv')

We can look at the DataFrame’s head and tail to get a sense of the data:

In [8]: nyc.head()

Out[8]:

 Date Value Anomaly

0 189501 34.2 -3.2

1 189601 34.7 -2.7

2 189701 35.5 -1.9

3 189801 39.6 2.2

4 189901 36.4 -1.0

In [9]: nyc.tail()

Out[9]:

 Date Value Anomaly

119 201401 35.5 -1.9

120 201501 36.1 -1.3

121 201601 40.8 3.4

122 201701 42.8 5.4

123 201801 38.7 1.3

Cleaning the Data

We’ll soon use Seaborn to graph the Date-Value pairs and a regression line. When plotting data from a DataFrame, Seaborn labels a graph’s axes using the DataFrame’s column names. For readability, let’s rename the 'Value' column as 'Temperature':

In [10]: nyc.columns = ['Date', 'Temperature', 'Anomaly']

In [11]: nyc.head(3)

Out[11]:

 Date Temperature Anomaly

0 189501 34.2 -3.2

1 189601 34.7 -2.7

2 189701 35.5 -1.9

Seaborn labels the tick marks on the x-axis with Date values. Since this example processes only January temperatures, the x-axis labels will be more readable if they do not contain 01 (for January), we’ll remove it from each Date. First, let’s check the column’s type:

In [12]: nyc.Date.dtype

Out[12]: dtype('int64')

The values are integers, so we can divide by 100 to truncate the last two digits. Recall that each column in a DataFrame is a Series. Calling Series method floordiv performs integer division on every element of the Series:

In [13]: nyc.Date = nyc.Date.floordiv(100)

In [14]: nyc.head(3)

Out[14]:

 Date Temperature Anomaly

0 1895 34.2 -3.2

1 1896 34.7 -2.7

2 1897 35.5 -1.9

Calculating Basic Descriptive Statistics for the Dataset

For some quick statistics on the dataset’s temperatures, call describe on the Temperature column. We can see that there are 124 observations, the mean value of the observations is 37.60, and the lowest and highest observations are 26.10 and 47.60 degrees, respectively:

In [15]: pd.set_option('precision', 2)

In [16]: nyc.Temperature.describe()

Out[16]:

count 124.00

mean 37.60

std 4.54

min 26.10

25% 34.58

50% 37.60

75% 40.60

max 47.60

Name: Temperature, dtype: float64

Forecasting Future January Average High Temperatures

The SciPy (Scientific Python) library is widely used for engineering, science and math in Python. Its stats module provides function linregress, which calculates a regression line’s slope and intercept for a given set of data points:

In [17]: from scipy import stats

In [18]: linear_regression = stats.linregress(x=nyc.Date,

 ...: y=nyc.Temperature)

 ...:

Function linregress receives two one-dimensional arrays23 of the same length representing the data points’ x- and y-coordinates. The keyword arguments x and y represent the independent and dependent variables, respectively. The object returned by linregress contains the regression line’s slope and intercept:
23. These arguments also can be one-dimensional array-like objects, such as lists or pandas Series.

In [19]: linear_regression.slope

Out[19]: 0.00014771361132966167

In [20]: linear_regression.intercept

Out[20]: 8.694845520062952

We can use these values with the simple linear regression equation for a straight line, y = mx + b, to predict the average January temperature in New York City for a given year. Let’s predict the average Fahrenheit temperature for January of 2019. In the following calculation, linear_regression.slope is m, 2019 is x (the date value for which you’d like to predict the temperature), and linear_regression.intercept is b:

In [21]: linear_regression.slope * 2019 + linear_regression.intercept

Out[21]: 38.51837136113298

We also can approximate what the average temperature might have been in the years before 1895. For example, let’s approximate the average temperature for January of 1890:

In [22]: linear_regression.slope * 1890 + linear_regression.intercept

Out[22]: 36.612865774980335

For this example, we had data for 1895–2018. You should expect that the further you go outside this range, the less reliable the predictions will be.

Plotting the Average High Temperatures and a Regression Line

Next, let’s use Seaborn’s regplot function to plot each data point with the dates on the x-axis and the temperatures on the y-axis. The regplot function creates the scatter plot or scattergram below in which the scattered blue dots represent the Temperatures for the given Dates, and the straight line displayed through the points is the regression line:

[image: A scatter plot graph depicts temperature data for the years 1990 to 2020. A line is drawn through the middle of the plotted points.]

First, close the prior Matplotlib window if you have not done so already—otherwise, regplot will use the existing window that already contains a graph. Function regplot’s x and y keyword arguments are one-dimensional arrays24 of the same length representing the x-y coordinate pairs to plot. Recall that pandas automatically creates attributes for each column name if the name can be a valid Python identifier:25
24. These arguments also can be one-dimensional array-like objects, such as lists or pandas Series.
25. For readers with a more statistics background, the shaded area surrounding the regression line is the 95% confidence interval for the regression line (https://en.wikipedia.org/wiki/Simple_linear_regression#Confidence_intervals). To draw the diagram without a confidence interval, add the keyword argument ci=None to the regplot function’s argument list.

In [23]: import seaborn as sns

In [24]: sns.set_style('whitegrid')

In [25]: axes = sns.regplot(x=nyc.Date, y=nyc.Temperature)

The regression line’s slope (lower at the left and higher at the right) indicates a warming trend over the last 124 years. In this graph, the y-axis represents a 21.5-degree temperature range between the minimum of 26.1 and the maximum of 47.6, so the data appears to be spread significantly above and below the regression line, making it difficult to see the linear relationship. This is a common issue in data analytics visualizations. When you have axes that reflect different kinds of data (dates and temperatures in this case), how do you reasonably determine their respective scales? In the preceding graph, this is purely an issue of the graph’s height—Seaborn and Matplotlib auto-scale the axes, based on the data’s range of values. We can scale the y-axis range of values to emphasize the linear relationship. Here, we scaled the y-axis from a 21.5-degree range to a 60-degree range (from 10 to 70 degrees):

In [26]: axes.set_ylim(10, 70)

Out[26]: (10, 70)

[image: A scatter plot graph depicts temperature from 10 to 70 degrees on the vertical axis and dates from 1900 to 2020 on the horizontal axis. A slightly sloped line passes through the middle of the plotted points.]

Getting Time Series Datasets

Here are some popular sites where you can find time series to use in your studies:

Sources time-series dataset

	https://data.gov/

This is the U.S. government’s open data portal. Searching for “time series” yields over 7200 time-series datasets.

	https://www.ncdc.noaa.gov/cag/

The National Oceanic and Atmospheric Administration (NOAA) Climate at a Glance portal provides both global and U.S. weather-related time series.

	https://www.esrl.noaa.gov/psd/data/timeseries/

NOAA’s Earth System Research Laboratory (ESRL) portal provides monthly and seasonal climate-related time series.

	https://www.quandl.com/search

Quandl provides hundreds of free financial-related time series, as well as fee-based time series.

	https://datamarket.com/data/list/?q=provider:tsdl

The Time Series Data Library (TSDL) provides links to hundreds of time series datasets across many industries.

	http://archive.ics.uci.edu/ml/datasets.html

The University of California Irvine (UCI) Machine Learning Repository contains dozens of time-series datasets for a variety of topics.

	http://inforumweb.umd.edu/econdata/econdata.html

The University of Maryland’s EconData service provides links to thousands of economic time series from various U.S. government agencies.

[image: tick mark] Self Check

	(Fill-In) Time series _________ looks at existing time series data for patterns, helping data analysts understand the data. Time series _________ uses data from the past to predict the future.

Answer: analysis, forecasting.

	(True/False) In the formula, c = 5 / 9 * (f - 32), f (the Fahrenheit temperature) is the independent variable and c (the Celsius temperature) is the dependent variable.

Answer: True.

	(IPython Session) Assuming that this linear trend continues, based on the slope and intercept values calculated in this section’s interactive session, in what year might the average January temperature in New York City reach 40 degrees Fahrenheit.

Answer:

In [27]: year = 2019

In [28]: slope = linear_regression.slope

In [29]: intercept = linear_regression.intercept

In [30]: temperature = slope * year + intercept

In [31]: while temperature < 40.0:

 ...: year += 1

 ...: temperature = slope * year + intercept

 ...:

In [32]: year

Out[32]: 2120

10.17 Wrap-Up

In this chapter, we discussed the details of crafting valuable classes. You saw how to define a class, create objects of the class, access an object’s attributes and call its methods. You define the special method __init__ to create and initialize a new object’s data attributes.

We discussed controlling access to attributes and using properties. We showed that all object attributes may be accessed directly by a client. We discussed identifiers with single leading underscores (_), which indicate attributes that are not meant to be accessed by client code. We showed how to implement “private” attributes via the double-leading-underscore (__) naming convention, which tells Python to mangle an attribute’s name.

We implemented a card shuffling and dealing simulation consisting of a Card class and a DeckOfCards class that maintained a list of Cards, and displayed the deck both as strings and as card images using Matplotlib. We introduced special methods __repr__, __str__ and __format__ for creating string representations of objects.

Next, we looked at Python’s capabilities for creating base classes and subclasses. We showed how to create a subclass that inherits many of its capabilities from its superclass, then adds more capabilities, possibly by overriding the base class’s methods. We created a list containing both base class and subclass objects to demonstrate Python’s polymorphic programming capabilities.

We introduced operator overloading for defining how Python’s built-in operators work with objects of custom class types. You saw that overloaded operator methods are implemented by overriding various special methods that all classes inherit from class object. We discussed the Python exception class hierarchy and creating custom exception classes.

We showed how to create a named tuple that enables you to access tuple elements via attribute names rather than index numbers. Next, we introduced Python 3.7’s new data classes, which can autogenerate various boilerplate code commonly provided in class definitions, such as the __init__, __repr__ and __eq__ special methods.

You saw how to write unit tests for your code in docstrings, then execute those tests conveniently via the doctest module’s testmod function. Finally, we discussed the various namespaces that Python uses to determine the scopes of identifiers. In the next chapter, we’ll introduce the computer science concepts of recursion, searching and sorting and Big O.

Exercises

	10.1 (What’s Wrong with This Code?) What is wrong with the code in the following IPython session?

In [1]: try:

 ...: raise RuntimeError()

 ...: except Exception:

 ...: print('An Exception occurred')

 ...: except RuntimeError:

 ...: print('A RuntimeError occurred')

 ...:

An Exception occurred

	10.2 (Account Class with Read-Only Properties) Modify Section 10.2.2’s Account class to provide read-only properties for the name and balance. Rename the class attributes with single leading underscores. Re-execute Section 10.2.2’s IPython session to test your updated class. To show that name and balance are read-only, try to assign new values to them.

	10.3 (Time Class Enhancement) Modify Section 10.4.2’s Time class to provide a read-only property universal_str that returns a string representation of a Time in 24-hour clock format with two digits each for the hour, minute and second, as in '22:30:00' (for 10:30 PM) or '06:30:00' (for 6:30 AM). Test your new read-only property.

	10.4 (Modifying the Internal Data Representation of a Class)

 Section 10.4.2’s Time class represents the time as three integer values. Modify the class to store the time as the total number of seconds since midnight. Replace the _hour, _minute and _second attributes with one _total_seconds attribute. Modify the bodies of the hour, minute and second properties’ methods to get and set _total_seconds. Re-execute Section 10.4’s IPython session using the modified Time class to show that the updated class Time is interchangeable with the original one.

	10.5 (Duck Typing) Recall that with duck typing, objects of unrelated classes can respond to the same method calls if they implement those methods. In Section 10.8, you created a list containing a CommissionEmployee and a SalariedCommissionEmployee. Then, you iterated through it, displaying each employee’s string representation and earnings. Create a class SalariedEmployee for an employee that gets paid a fixed weekly salary. Do not inherit from CommissionEmployee or SalariedCommissionEmployee. In class SalariedEmployee, override method __repr__ and provide an earnings method. Demonstrate duck typing by creating an object of your class, adding it to the list at the end of Section 10.8, then executing the loop to show that it properly processes objects of all three classes.

	10.6 (Composition: A Circle “Has a” Point at Its Center) A circle has a point at its center. Create a class Point that represents an (x-y) coordinate pair and provides x and y read-write properties for the attributes _x and _y. Include __init__ and __repr__ methods, and a move method that receives x- and y-coordinate values and sets the Point’s new location. Create a class Circle that has as its attributes _radius and _point (a Point that represents the Circle’s center location). Include __init__ and __repr__ methods, and a move method that receives x- and y-coordinate values and sets a new location for the Circle by calling the composed Point object’s move method. Test your Circle class by creating a Circle object, displaying its string representation, moving the Circle and displaying its string representation again.

	10.7 (Manipulating Dates and Times with Module datetime) The Python Standard Library’s datetime module contains a datetime class for manipulating dates and times. The class provides various overloaded operators. Research class datetime’s capabilities, then perform the following tasks:

	Get the current date and time and store it in variable x.

	Repeat Part (a) and store the result in variable y.

	Display each datetime object.

	Display each datetime object’s data attributes individually.

	Use the comparison operators to compare the two datetime objects.

	Calculate the difference between y and x.

	10.8 (Converting Data Class Objects to Tuples and Dictionaries) In some cases, you might want to treat data class objects as tuples or dictionaries. The dataclasses module provides functions astuple and asdict for this purpose. Research these functions, then create an object of this chapter’s Card data class and use these functions to convert the Card to a tuple and a dictionary. Display the results.

	10.9 (Square Class) Write a class that implements a Square shape. The class should contain a side property. Provide an __init__ method that takes the side length as an argument. Also, provide the following read-only properties:

	perimeter returns 4 × side.

	area returns side

×

 side.

	diagonal returns the square root of the expression (2

×

 side2).

The perimeter, area and diagonal should not have corresponding data attributes; rather, they should use side in calculations that return the desired values. Create a Square object and display its side, perimeter, area and diagonal properties’ values.

	10.10 (Invoice Class) Create a class called Invoice that a hardware store might use to represent an invoice for an item sold at the store. An Invoice should include four pieces of information as data attributes—a part number (a string), a part description (a string), a quantity of the item being purchased (an int) and a price per item (a Decimal). Your class should have an __init__ method that initializes the four data attributes. Provide a property for each data attribute. The quantity and price per item should each be non-negative—use validation in the properties for these data attributes to ensure that they remain valid. Provide a calculate_invoice method that returns the invoice amount (that is, multiplies the quantity by the price per item). Demonstrate class Invoice’s capabilities.

	10.11 (Class Fraction) The Python Standard Library module fractions provides a Fraction class that stores the numerator and denominator of a fraction, such as:

[image: 2 divided by 4]

Research Fraction’s capabilities, then demonstrate:

	Adding two Fractions.

	Subtracting two Fractions.

	Multiplying two Fractions.

	Dividing two Fractions.

	Printing Fractions in the form a/b, where a is the numerator and b is the denominator.

	Converting Fractions to floating-point numbers with built-in function float.

	10.12 (Built-in Type complex) Python supports complex numbers with the built-in type complex. Research complex’s capabilities, then demonstrate:

	Adding two complex numbers.

	Subtracting two complex numbers.

	Printing complex numbers.

	Getting the real and imaginary parts of complex numbers.

	10.13 (doctest) Create a script containing the following maximum function:

def maximum(value1, value2, value3):

 """Return the maximum of three values."""

 max_value = value1

 if value2 > max_value:

 max_value = value2

 if value3 > max_value:

 max_value = value3

 return max_value

Modify the function’s docstring to define tests for calling function maximum with three ints, three floats and three strings. For each type, provide three tests—one with the largest value as the first argument, one with the largest value as the second argument, one with the largest value as the third argument. Use doctest to run your tests and confirm that all execute correctly. Next, modify the maximum function to use < operators rather than > operators. Run your tests again to see which tests fail.

	10.14 (Creating an Account Data Class Dynamically) The dataclasses module’s make_dataclass function creates a data class dynamically from a list of strings that represent the data class’s attributes. Research function make_dataclass, then use it to generate an Account class from the following list of strings:

['account', 'name', 'balance']

Create objects of the new Account class, then display their string representations and compare the objects with the == and != operators.

	10.15 (Immutable Data Class Objects) Built-in types int, float, str and tuple are immutable. Data classes can simulate immutability by designating that objects of the class should be “frozen” after they’re created. Client code cannot assign values to the attributes of a frozen object. Research “frozen” data classes, then reimplement this chapter’s Complex class as a “frozen” data class. Show that you cannot modify a Complex object after you create it.

	10.16 (Account Inheritance Hierarchy) Create an inheritance hierarchy that a bank might use to represent customer bank accounts. All customers at this bank can deposit money into their accounts and withdraw money from their accounts. More specific types of accounts also exist. Savings accounts, for instance, earn interest on the money they hold. Checking accounts, on the other hand, don’t earn interest and charge a fee per transaction.

Start with class Account from this chapter and create two subclasses SavingsAccount and CheckingAccount. A SavingsAccount should also include a data attribute indicating the interest rate. A SavingsAccount’s calculate_interest method should return the Decimal result of multiplying the interest rate by the account balance. SavingsAccount should inherit methods deposit and withdraw without redefining them.

A CheckingAccount should include a Decimal data attribute that represents the fee charged per transaction. Class CheckingAccount should override methods deposit and withdraw so that they subtract the fee from the account balance whenever either transaction is performed successfully. CheckingAccount’s versions of these methods should invoke the base-class Account versions to update the account balance. CheckingAccount’s withdraw method should charge a fee only if money is withdrawn (that is, the withdrawal amount does not exceed the account balance).

Create objects of each class and tests their methods. Add interest to the SavingsAccount object by invoking its calculate_interest method, then passing the returned interest amount to the object’s deposit method.

	10.17 (Nested Functions and Namespaces) Section 10.15 discussed namespaces and how Python uses them to determine which identifiers are in scope. We also mentioned the LEGB (local, enclosing, global, built-in) rule for the order in which Python searches for identifiers in namespaces. For each of the print function calls in the following IPython session, list the namespaces that Python searches for print’s argument:

In [1]: z = 'global z'

In [2]: def print_variables():

 ...: y = 'local y in print_variables'

 ...: print(y)

 ...: print(z)

 ...: def nested_function():

 ...: x = 'x in nested function'

 ...: print(x)

 ...: print(y)

 ...: print(z)

 ...: nested_function()

 ...:

In [3]: print_variables()

local y in print_variables

global z

x in nested function

local y in print_variables

global z

	10.18 (Intro to Data Science: Time Series) Reimplement the Intro to Data Science section’s study using the Los Angeles Average January High Temperatures for 1985 through 2018, which can be found in the file ave_hi_la_jan_1895-2018.csv located in the ch10 examples folder. How does the Los Angeles temperature trend compare to that of New York City?

	10.19 (Project: Static Code Analysis with Prospector and MyPy) In Exercise 3.24, you used the prospector static code analysis tool to check your code for common errors and suggested improvements. The prospector tool includes support for checking variable annotations with the MyPy static code analysis tool. Research MyPy online. Write a script that creates objects of this chapter’s Card data class. In the script, assign integers to a Card’s face and suit string attributes. Then, use MyPy to analyze the script and see the warning messages that MyPy produces. For instructions on using MyPy with prospector, see

https://github.com/PyCQA/prospector/blob/master/docs/supported_tools.rst

	10.20 (Project: Solitaire) Using classes Card and DeckOfCards from this chapter’s examples, implement your favorite solitaire card game.

	10.21 (Project: Blackjack) Using the DeckOfCards class from this chapter, create a simple Blackjack game. The rules of the game are as follows:

	Two cards each are dealt to the dealer and the player. The player’s cards are dealt face up. Only one of the dealer’s cards is dealt face up.

	Each card has a value. A card numbered 2 through 10 is worth its face value. Jacks, queens and kings each count as 10. Aces can count as 1 or 11—whichever value is more beneficial to the player (as we’ll soon see).

	If the sum of the player’s first two cards is 21 (that is, the player was dealt a card valued at 10 and an ace, which counts as 11 in this situation), the player has “blackjack” and immediately wins the game—if the dealer does not also have blackjack, which would result in a “push” (or tie).

	Otherwise, the player can begin taking additional cards one at a time. These cards are dealt face up, and the player decides when to stop taking cards. If the player “busts” (that is, the sum of the player’s cards exceeds 21), the game is over and the player loses. When the player is satisfied with the current set of cards, the player “stands” (that is, stops taking cards), and the dealer’s hidden card is revealed.

	If the dealer’s total is 16 or less, the dealer must take another card; otherwise, the dealer must stand. The dealer must continue taking cards until the sum of the cards is greater than or equal to 17. If the dealer exceeds 21, the player wins. Otherwise, the hand with the higher point total wins. If the dealer and the player have the same point total, the game is a “push,” and no one wins.

An ace’s value for a dealer depends on the dealer’s other card(s) and the casino’s house rules. A dealer typically must hit for totals of 16 or less and must stand for 17 or more. For a “soft 17”—a total of 17 with one ace counted as 11—some casinos require the dealer to hit and some require the dealer to stand (we require the dealer to stand). Such a hand is known as a “soft 17” because taking another card cannot bust the hand.

Enable a player to interact with the game using the keyboard—'H' means hit (take another card and 'S' means stand (do not take another card). Display the dealer’s and player’s hands as card images using Matplotlib, as we did in this chapter.

	10.22 (Project: Card Class with Overloaded Comparison Operators) Modify class Card to support the comparison operators, so you can determine whether one Card is less than, equal to or greater than another. Investigate the functools module’s total_ordering decorator. If your class is preceded by @total_ordering and defines methods __eq__ and __lt__ (for the < operator), the remaining comparison methods for <=, > and >= are autogenerated.

	10.23 (Project: Poker) Exercises 5.25–5.26 asked you to create functions for comparing poker hands. Develop equivalent features for use with this chapter’s DeckOfCards class. Develop a new class called Hand that represents a five-card poker hand. Use operator overloading to enable two Hands to be compared with the comparison operators. Use your new capabilities in a simple poker game script.

	10.24 (Project: PyDealer Library) We demonstrated basic card shuffling and dealing in this chapter, but many card games require significant additional capabilities. As is often the case in Python, libraries already exist that can help you build more substantial card games. One such library is PyDealer. Research this library’s extensive capabilities, then use it to implement your favorite card game.

	10.25 (Project: Enumerations) Many programming languages provide a language element called an enumeration for creating sets of named constants. Often, these are used to make code more readable. The Python Standard Library’s enum module enables you to emulate this concept by creating subclasses of the Enum base class. Investigate the enum module’s capabilities, then create subclasses of Enum that represent card faces and card suits. Modify class Card to use these to represent the face and suit as enum constants rather than as strings.

	10.26 (Software Engineering with Abstract Classes and Abstract Methods) When we think of a class, we assume that programs use it to create objects. Sometimes, it’s useful to declare classes for which you never instantiate objects, because in some way they are incomplete. As you’ll see, such classes can help you engineer effective inheritance hierarchies.

Concrete Classes—Consider Section 10.7’s Shape hierarchy. If Circle, Square and Triangle objects all have draw methods, its reasonable to expect that calling draw on a Circle will display a Circle, calling draw on a Square will display a Square and calling draw on a Triangle will display a Triangle. Objects of each class know all the details of the specific shapes to draw. Classes that provide (or inherit) implementations of every method they define and that can be used to create objects are called concrete classes.

Abstract Classes—Now, let’s consider class TwoDimensionalShape in the Shape hierarchy’s second level. If we were to create a TwoDimensionalShape object and call its draw method, class TwoDimensionalShape knows that all two-dimensional shapes are drawable, but it does not know what specific two-dimensional shape to draw—there are many! So it does not make sense for TwoDimensionalShape to fully implement a draw method. A method that is defined in a given class, but for which you cannot provide an implementation is called an abstract method. Any class with an abstract method has a “hole”—the incomplete method implementation—and is called an abstract class. TypeErrors occur when you try to create objects of abstract classes. In the Shape hierarchy, classes Shape, TwoDimensionalShape and ThreeDimensionalShape all are abstract classes. They all know that shapes should be drawable, but do not know what specific shape to draw. Abstract base classes are too general to create real objects.

Inheriting a Common Design—An abstract class’s purpose is to provide a base class from which subclasses can inherit a common design, such as a specific set of attributes and methods. So, such classes often are called abstract base classes. In the Shape hierarchy, subclasses inherit from the abstract base class Shape the notion of what it means to be a Shape—that is, common properties, such as location and color, and common behaviors, such as draw, move and resize.

Polymorphic Employee Payroll System—Now, let’s develop an Employee class hierarchy that begins with an abstract class, then use polymorphism to perform payroll calculations for objects of two concrete subclasses. Consider the following problem statement:

	A company pays its employees weekly. The employees are of two types. Salaried employees are paid a fixed weekly salary regardless of the number of hours worked. Hourly employees are paid by the hour and receive overtime pay (1.5 times their hourly salary rate) for all hours worked in excess of 40 hours. The company wants to implement an app that performs its payroll calculations polymorphically.

Employee Hierarchy Class Diagram—The following diagram shows the Employee hierarchy. Abstract class Employee represents the general concept of an employee. Subclasses SalariedEmployee and HourlyEmployee inherit from Employee. Employee is italicized by convention to indicate that it’s an abstract class. Concrete class names are not italicized:

[image: A hierarchy shows that salaried and hourly employees are both employees.]

Abstract Base Class Employee—The Python Standard Library’s abc (abstract base class) module helps you define abstract classes by inheriting from the module’s ABC class. Your abstract base class Employee class should declare the methods and properties that all employees should have. Each employee, regardless of the way his or her earnings are calculated, has a first name, a last name and a Social Security number. Also, every employee should have an earnings method, but the specific calculation depends on the employee’s type, so you’ll make earnings an abstract method that the subclasses must override. Your Employee class should contain:

	An __init__ method that initializes the first name, last name and Social Security number data attributes.

	Read-only properties for the first name, last name and Social Security number data attributes.

	An abstract method earnings preceded by the abc module’s @abstractmethod decorator. Concrete subclasses must implement this method. The Python documentation says you should raise a NotImplementedError in abstract methods.26
26. https://docs.python.org/3.7/library/exceptions.html#NotImplementedError.

	A __repr__ method that returns a string containing the first name, last name and Social Security number of the employee.

Concrete Subclass SalariedEmployee—This Employee subclass should override earnings to return a SalariedEmployee’s weekly salary. The class also should include:

	An __init__ method that initializes the first name, last name, Social Security number and weekly salary data attributes. The first three of these should be initialized by calling base class Employee’s __init__ method.

	A read-write weekly_salary property in which the setter ensures that the property is always non-negative.

	A __repr__ method that returns a string starting with 'SalariedEmployee:' and followed by all the information about a SalariedEmployee. This overridden method should call Employee’s version.

Concrete Subclass HourlyEmployee—This Employee subclass should override earnings to return an HourlyEmployee’s earnings, based on the hours worked and wage per hour. The class also should include:

	An __init__ method to initialize the first name, last name, Social Security number, hours and wages data attributes. The first name, last name and Social Security number should be initialized by calling base class Employee’s __init__ method.

	Read-write hours and wages properties in which the setters ensure that the hours are in range (0–168) and wage per hour is always non-negative.

	A __repr__ method that returns a string starting with 'HourlyEmployee:' and followed by all the information about a HourlyEmployee. This overridden method should call Employee’s version.

Testing Your Classes—In an IPython session, test your hierarchy:

	Import the classes Employee, SalariedEmployee and HourlyEmployee.

	Attempt to create an Employee object to see the TypeError that occurs and prove that you cannot create an object of an abstract class.

	Assign objects of the concrete classes SalariedEmployee and HourlyEmployee to variables, then display each employee’s string representation and earnings.

	Place the objects into a list, then iterate through the list and polymorphically process each object, displaying its string representation and earnings.

11 Computer Science Thinking: Recursion, Searching, Sorting and Big O

Objectives

In this chapter you’ll:

	Learn the concept of recursion.

	Write and use recursive functions.

	Determine the base case and recursion step in a recursive algorithm.

	Learn how the system handles recursive function calls.

	Compare recursion and iteration, including when it’s best to use each approach.

	Search for a given value in an array using linear search and binary search.

	Sort arrays using the simple iterative selection and insertion sort algorithms.

	Sort arrays using the more complex but higher-performance recursive merge sort algorithm.

	Use Big O notation to compare the efficiencies of searching and sorting algorithms.

	Use Seaborn and Matplotlib to build an animated selection sort algorithm visualization.

	In the exercises, implement additional sorting algorithms and animated visualizations, and determine the Big O of additional algorithms.

Outline

	11.1 Introduction

	11.2 Factorials

	11.3 Recursive Factorial Example

	11.4 Recursive Fibonacci Series Example

	11.5 Recursion vs. Iteration

	11.6 Searching and Sorting

	11.7 Linear Search

	11.8 Efficiency of Algorithms: Big O

	11.9 Binary Search

	11.9.1 Binary Search Implementation

	11.9.2 Big O of the Binary Search

	11.10 Sorting Algorithms

	11.11 Selection Sort

	11.11.1 Selection Sort Implementation

	11.11.2 Utility Function print_pass

	11.11.3 Big O of the Selection Sort

	11.12 Insertion Sort

	11.12.1 Insertion Sort Implementation

	11.12.2 Big O of the Insertion Sort

	11.13 Merge Sort

	11.13.1 Merge Sort Implementation

	11.13.2 Big O of the Merge Sort

	11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms

	11.15 Visualizing Algorithms

	11.15.1 Generator Functions

	11.15.2 Implementing the Selection Sort Animation

	11.16 Wrap-Up

	Exercises

11.1 Introduction

In this chapter, we concentrate on some key aspects of computer science thinking that go beyond programming fundamentals. Our focus on performance issues is a nice way to transition into the data science chapters, where we’ll use AI and big data techniques that can place extraordinary performance demands on a system’s resources.

We begin with a treatment of recursion. Recursive functions (or methods) call themselves, either directly or indirectly through other functions (or methods). Recursion can often help you solve problems more naturally when an iterative solution is not apparent. We’ll show examples and compare the recursive programming style to the iterative style we’ve used to this point. We’ll indicate where each might be preferable.

Next, we’ll look at the crucial topics of searching and sorting arrays and other sequences. These are fascinating problems, because no matter what algorithms you use, the final result is the same. So you’ll want to choose algorithms that perform "the best"—most likely, the ones that run the fastest or use the least memory. For big data applications, you’ll also want to choose algorithms that are easy to parallelize. That will enable you to put lots of processors to work simultaneously—much as Google does, for example, when answering your search queries quickly.

This chapter focuses on the intimate relationship between algorithm design and performance. You’ll see that the simplest and most apparent algorithms often perform poorly and that developing more sophisticated algorithms can lead to superior performance. We introduce Big O notation, which concisely classifies algorithms by how hard they have to work to get the job done. Big O helps you compare the efficiency of algorithms.

In an optional section at the end of this chapter, we develop an animated visualization of the selection sort so you can see it "in action." This is a great technique for understanding how algorithms work. It can often help you develop better performing algorithms.

The chapter includes a rich selection of recursion, searching and sorting exercises. You’ll attempt some of the classic problems in recursion, implement alternative searching and sorting algorithms, and build animated visualizations of some of these to better understand the deep ties between algorithm design and performance.

11.2 Factorials

Let’s write a program to perform a famous mathematical calculation. Consider the factorial of a positive integer n, which is written n! and pronounced “n factorial.” This is the product

n · (n – 1) · (n – 2) · … · 1

with 1! equal to 1 and 0! defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1, which is equal to 120.

Iterative Factorial Approach

You can calculate 5! iteratively with a for statement, as in:

In [1]: factorial = 1

In [2]: for number in range(5, 0, -1):

 ...: factorial *= number

 ...:

In [3]: factorial

Out[3]: 120

11.3 Recursive Factorial Example

Recursive problem-solving approaches have several elements in common. When you call a recursive function to solve a problem, it’s actually capable of solving only the simplest case(s), or base case(s). If you call the function with a base case, it immediately returns a result. If you call the function with a more complex problem, it typically divides the problem into two pieces—one that the function knows how to do and one that it does not know how to do. To make recursion feasible, this latter piece must be a slightly simpler or smaller version of the original problem. Because this new problem resembles the original problem, the function calls a fresh copy of itself to work on the smaller problem—this is referred to as a recursive call and is also called the recursion step. This concept of separating the problem into two smaller portions is a form of the divide-and-conquer approach introduced earlier in the book.

The recursion step executes while the original function call is still active (i.e., it has not finished executing). It can result in many more recursive calls as the function divides each new subproblem into two conceptual pieces. For the recursion to eventually terminate, each time the function calls itself with a simpler version of the original problem, the sequence of smaller and smaller problems must converge on a base case. When the function recognizes the base case, it returns a result to the previous copy of the function. A sequence of returns ensues until the original function call returns the final result to the caller.

Recursive Factorial Approach

You can arrive at a recursive factorial representation by observing that n! can be written as:

n! = n · (n – 1)!

For example, 5! is equal to 5 · 4!, as in:

5! = 5 · 4 · 3 · 2 · 1

5! = 5 · (4 · 3 · 2 · 1)

5! = 5 · (4!)

Visualizing Recursion

The evaluation of 5! would proceed as shown below. The left column shows how the succession of recursive calls proceeds until 1! (the base case) is evaluated to be 1, which terminates the recursion. The right column shows from bottom to top the values returned from each recursive call to its caller until the final value is calculated and returned.

[image: 2 examples of an evaluation of 5. Example A is a sequence of recursive calls. Example B is values returned from each recursive call.]

11.3-1 Full Alternative Text

Implementing a Recursive Factorial Function

The following session uses recursion to calculate and display the factorials of the integers 0 through 10:

In [1]: def factorial(number):

 ...: """Return factorial of number."""

 ...: if number <= 1:

 ...: return 1

 ...: return number * factorial(number - 1) # recursive call

 ...:

In [2]: for i in range(11):

 ...: print(f'{i}! = {factorial(i)}')

 ...:

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

Snippet [1]’s recursive function factorial first determines whether the terminating condition number <= 1 is True. If this condition is True (the base case), factorial returns 1 and no further recursion is necessary. If number is greater than 1, the second return statement expresses the problem as the product of number and a recursive call to factorial that evaluates factorial(number - 1). This is a slightly smaller problem than the original calculation, factorial(number). Note that function factorial must receive a nonnegative argument. We do not test for this case.

The loop in snippet [2] calls the factorial function for the values from 0 through 10. The output shows that factorial values grow quickly. Python does not limit the size of an integer, unlike many other programming languages.

Indirect Recursion

A recursive function may call another function, which may, in turn, make a call back to the recursive function. This is known as an indirect recursive call or indirect recursion. For example, function A calls function B, which makes a call back to function A. This is still recursion because the second call to function A is made while the first call to function A is active. That is, the first call to function A has not yet finished executing (because it is waiting on function B to return a result to it) and has not returned to function A’s original caller.

Stack Overflow and Infinite Recursion

Of course, the amount of memory in a computer is finite, so only a certain amount of memory can be used to store activation records on the function-call stack. If more recursive function calls occur than can have their activation records stored on the stack, a fatal error known as stack overflow occurs.1 This typically is the result of infinite recursion, which can be caused by omitting the base case or writing the recursion step incorrectly so that it does not converge on the base case. This error is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.
1. This is how the website stackoverflow.com got its name. This is an excellent site for getting answers to your programming questions.

Recursion and the Function-Call Stack

In the “Functions” chapter, we introduced the stack data structure in the context of understanding how Python performs function calls. We discussed both the function-call stack and stack frames. That discussion also applies to recursive function calls. Each recursive function call gets its own stack frame on the function-call stack. When a given call completes, the system pops the function’s stack frame from the stack and control returns to the caller, possibly another copy of the same function.

[image: tick mark] Self Check

	(Fill-In) A(n)_______ case is needed to successfully terminate recursion.

Answer: base.

	(True/False) A function calling itself indirectly is not an example of recursion.

Answer: False. A function calling itself in this manner is an example of indirect recursion.

	(True/False) When a recursive function is called to solve a problem, it’s capable of solving only the simplest case(s), or base case(s)—anything else requires a recursive call.

Answer: True.

	(True/False) To make recursion feasible, the recursion step in a recursive solution must resemble the original problem, but be a slightly larger version of it.

Answer: False. To make recursion feasible, the recursion step in a recursive solution must resemble the original problem, but be a slightly smaller or simpler version of it.

	(IPython Session) Most other programming languages store integers in a fixed amount of space. So their built-in integer types can represent only a limited range of integer values. For example, Java’s int type can represent only values in the range –2,147,483,648 to +2,147,483,647. Python allows integers to become arbitrarily large. Continue this section’s IPython session and execute the function call factorial(50) to demonstrate that Python supports much larger integers.

Answer:

In [3]: factorial(50)

Out[3]: 30414093201713378043612608166064768844377641568960512000000000000

11.4 Recursive Fibonacci Series Example

The Fibonacci series,

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum of the previous two. This series occurs in nature and describes a form of spiral.

The ratio of successive Fibonacci numbers converges on a constant value of 1.618…, a number that has been called the golden ratio or the golden mean. Humans tend to find the golden mean aesthetically pleasing. Architects often design windows, rooms and buildings whose length and width are in the ratio of the golden mean. Postcards often are designed with a golden-mean length-to-width ratio.

The Fibonacci series may be defined recursively as follows:

	fibonacci(0) is defined to be 0

	fibonacci(1) is defined to be 1

	fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

There are two base cases for the Fibonacci calculation:

	fibonacci(0) is 0, and

	fibonacci(1) is 1.

Function fibonacci

Let’s define function fibonacci, which calculates the nth Fibonacci number recursively:

In [1]: def fibonacci(n):

 ...: if n in (0, 1): # base cases

 ...: return n

 ...: else:

 ...: return fibonacci(n - 1) + fibonacci(n - 2)

 ...:

The initial call to function fibonacci is not a recursive call, but all subsequent calls to fibonacci performed from function fibonacci’s block are recursive because at that point the calls are initiated by the function itself. Each time you call fibonacci, it immediately tests for the base cases—n equal to 0 or n equal to 1, which we test simply by checking whether n is in the tuple (0, 1). If so, fibonacci returns n, because fibonacci(0) is 0 and fibonacci(1) is 1. Interestingly, if n is greater than 1, the recursion step generates two recursive calls, each for a slightly smaller problem than the original call to fibonacci.

Testing Function fibonacci

The following for loop tests fibonacci, displaying the Fibonacci values of 0–40. We omitted the outputs for the Fibonacci values of 7–37 to save space:

In [2]: for n in range(41):

 ...: print(f'Fibonacci({n}) = {fibonacci(n)}')

 ...:

Fibonacci(0) = 0

Fibonacci(1) = 1

Fibonacci(2) = 1

Fibonacci(3) = 2

Fibonacci(4) = 3

Fibonacci(5) = 5

Fibonacci(6) = 8

...

Fibonacci(38) = 39088169

Fibonacci(39) = 63245986

Fibonacci(40) = 102334155

You’ll notice that the speed of the calculation slows substantially as you get near the end of the loop. The variable n indicates which Fibonacci number to calculate in each iteration of the loop.

Analyzing the Calls to Function fibonacci

The following diagram shows how function fibonacci evaluates fibonacci(3). At the bottom of the diagram, we’re left with the values 1, 0 and 1—the results of evaluating the base cases. The first two return values (from left to right), 1 and 0, are returned as the values for the calls fibonacci(1) and fibonacci(0). The sum 1 plus 0 is returned as the value of fibonacci(2). This is added to the result (1) of the rightmost call to fibonacci(1), producing the value 2. This final value is then returned as the value of fibonacci(3).

[image: A diagram of the calls to function Fibonacci.]

11.4-2 Full Alternative Text

Complexity Issues

A word of caution is in order about recursive programs like the one we use here to generate Fibonacci numbers. Each invocation of the fibonacci function that does not match one of the base cases (0 or 1) results in two more recursive calls to the fibonacci function (snippet [1]). Hence, this set of recursive calls rapidly gets out of hand. Calculating the Fibonacci value of 20 with the recursive implementation requires 21,891 calls to the fibonacci function; calculating the Fibonacci value of 30 requires 2,692,537 calls!

As you try to calculate larger Fibonacci values, you’ll notice that each consecutive Fibonacci number you calculate results in a substantial increase in calculation time and in the number of calls to the fibonacci function. For example, the Fibonacci value of 31 requires 4,356,617 calls, and the Fibonacci value of 32 requires 7,049,155 calls! As you can see, the number of calls to fibonacci increases quickly—1,664,080 additional calls between Fibonacci values of 30 and 31 and 2,692,538 additional calls between Fibonacci values of 31 and 32! The difference in the number of calls made between Fibonacci values of 31 and 32 is more than 1.5 times the difference in the number of calls for Fibonacci values between 30 and 31. Problems of this nature can humble even the world’s most powerful computers.

In the field of complexity theory, computer scientists study how hard algorithms work to complete their tasks—that is, how many operations do they perform. Complexity issues are discussed in detail in the upper-level computer science curriculum course generally called “Algorithms.” We introduce various complexity issues later in this chapter. In general, you should avoid Fibonacci-style recursive programs, because they result in an exponential “explosion” of function calls.

[image: tick mark] Self Check

	(Fill-In) The ratio of successive Fibonacci numbers converges on a constant value of 1.618…, a number that has been called the _______ or the _______.

Answer: golden ratio, golden mean.

	(True/False) In the field of complexity theory, computer scientists study how hard algorithms work to complete their tasks.

Answer: True.

	(IPython Session) Continuing this section’s IPython session, create a function named iterative_fibonacci that uses looping rather than recursion to calculate Fibonacci numbers. Use both the iterative and recursive versions to calculate the 32nd, 33rd and 34th Fibonacci numbers. Time the calls with %timeit to see the difference in computation time.

Answer:

In [3]: def iterative_fibonacci(n):

 ...: result = 0

 ...: temp = 1

 ...: for j in range(0, n):

 ...: temp, result = result, result + temp

 ...: return result

 ...:

 ...:

In [4]: %timeit fibonacci(32)

960 ms ± 14.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [5]: %timeit iterative_fibonacci(32)

1.72 μs ± 80.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [6]: %timeit fibonacci(33)

1.54 s ± 12.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [7]: %timeit iterative_fibonacci(33)

1.71 μs ± 20.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [8]: %timeit fibonacci(34)

2.81 s ± 212 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [9]: %timeit iterative_fibonacci(34)

2.05 μs ± 165 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

11.5 Recursion vs. Iteration

We’ve studied functions factorial and fibonacci, which can be implemented either recursively or iteratively. In this section, we compare the two approaches and discuss why you might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control statement: Iteration uses an iteration statement (e.g., for or while), whereas recursion uses a selection statement (e.g., if or if…else or if…elif…else):

	Both iteration and recursion involve iteration: Iteration explicitly uses an iteration statement, whereas recursion achieves iteration through repeated function calls.

	Iteration and recursion each involve a termination test: Iteration terminates when the loop-continuation condition fails, whereas recursion terminates when a base case is reached.

	Iteration with counter-controlled iteration and recursion both gradually approach termination: Iteration keeps modifying a counter until the counter assumes a value that makes the loop-continuation condition fail, whereas recursion keeps producing smaller versions of the original problem until the base case is reached.

	Both iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-continuation test never becomes false, whereas infinite recursion occurs if the recursion step does not reduce the problem each time in a manner that converges on the base case, or if the base case is mistakenly not tested.

Negatives of Recursion

Recursion has many negatives. It repeatedly invokes the mechanism, and consequently the overhead, of function calls. This overhead can be expensive in terms of both processor time and memory space. Each recursive call causes another copy of the function (actually, only the function’s variables, stored in the stack frame) to be created—this set of copies can consume considerable memory space. Iteration avoids these repeated function calls and extra memory assignments. However, for some algorithms that are easily expressed and understood with recursion, iterative solutions are not readily apparent.

[image: tick mark]11.6 Self Check

	(Fill-In) Recursion terminates when _______.

Answer: a base case is reached.

	(True/False) Iteration and recursion can occur infinitely.

Answer: True.

11.6 Searching and Sorting

Searching data involves determining whether a value (referred to as the search key) is present in the data and, if so, finding its location. Two popular search algorithms are the simple linear search and the faster but more complex binary search. Sorting places data in ascending or descending order, based on one or more sort keys. Your cell phone contacts list is sorted alphabetically, bank accounts are sorted by account number, employee payroll records are sorted by Social Security number, and so on. This chapter introduces two simple sorting algorithms, the selection sort and the insertion sort, along with the more efficient but more complex merge sort. The table below summarizes the searching and sorting algorithms, functions and methods discussed in the examples and exercises of this book.

[image: A table summarizes the chapter, algorithm and location for searching algorithms, functions and methods and sorting algorithms, functions and methods.]

11.7-3 Full Alternative Text

The techniques in this chapter are provided to introduce students to the concepts behind searching and sorting algorithms—upper-level computer science courses typically discuss additional algorithms.

11.7 Linear Search

Looking up a phone number, finding a website via a search engine and checking the definition of a word in a dictionary all involve searching large amounts of data. This section and Section 11.9 discuss two common search algorithms—one that’s easy to program yet relatively inefficient (linear search) and one that’s extremely efficient but more complex to program (binary search).

Linear Search Algorithm

The linear search algorithm searches each element in an array sequentially. If the search key does not match an element in the array, the algorithm informs the user that the search key is not present. If the search key is in the array, the algorithm tests each element until it finds one that matches the search key and returns the index of that element.

As an example, consider an array containing the following values:

35 73 90 65 23 86 43 81 34 58

and a program that’s searching for 86. The linear search algorithm first checks whether 35 matches the search key. It does not, so the algorithm checks whether 73 matches the search key. The program continues moving through the array sequentially, testing 90, then 65, then 23. When the program tests 86, which matches the search key, the program returns the index 5, which is the location of 86 in the array. If, after checking every array element, the program determines that the search key does not match any element in the array, it returns a sentinel value (e.g., -1).

Linear Search Implementation

Let’s define a function linear_search for performing linear searches of an array of integers. The function receives as parameters the array to search (data) and the search_key. The for loop iterates through data’s elements and compares each with search_key. If the values are equal, linear_search returns the index of the matching element. If there are duplicate values in the array, the linear search returns the index of the first element that matches the search key. If the loop ends without finding the value, the function returns -1.

In [1]: def linear_search(data, search_key):

 ...: for index, value in enumerate(data)::

 ...: if value == search_key:

 ...: return index

 ...: return -1

 ...:

 ...:

To test the function, let’s create an array of 10 random integers in the range 10–90:

In [2]: import numpy as np

In [3]: np.random.seed(11)

In [4]: values = np.random.randint(10, 91, 10)

In [5]: values

Out[5]: array([35, 73, 90, 65, 23, 86, 43, 81, 34, 58])

The following snippets call linear_search with the values 23 (found at index 4), 61 (not found) and 34 (found at index 8):

In [6]: linear_search(values, 23)

Out[6]: 4

In [7]: linear_search(values, 61)

Out[7]: -1

In [8]: linear_search(values, 34)

Out[8]: 8

[image: tick mark] Self Check

	(Fill-In) The _______ algorithm searches each element in an array sequentially.

Answer: linear search.

	(True/False) If an array contains duplicate values, the linear search finds the last matching value.

Answer: False. If there are duplicate values, linear search finds the first matching value.

11.8 Efficiency of Algorithms: Big O

Searching algorithms all accomplish the same goal—finding an element (or elements) matching a given search key if such an element exists. There are, however, several things that differentiate search algorithms from one another. The major difference is the amount of effort they require to complete the search. One way to describe this effort is with Big O notation, which indicates how hard an algorithm may have to work to solve a problem. For searching and sorting algorithms, this depends mainly on how many data elements there are. In this chapter, we use Big O to describe the worst-case run times for various searching and sorting algorithms.

O(1) Algorithms

Suppose an algorithm is designed to test whether the first element of an array is equal to the second. If the array has 10 elements, this algorithm requires one comparison. If the array has 1000 elements, it still requires one comparison. The algorithm is completely independent of the number of elements in the array. This algorithm is said to have a constant run time, which is represented in Big O notation as O(1) and pronounced as “order one.” An algorithm that’s O(1) does not necessarily require only one comparison. O(1) means that the number of comparisons is constant—it does not grow as the size of the array increases. An algorithm that tests whether the first element of an array is equal to any of the next three elements is still O(1) even though it requires three comparisons.

O(n) Algorithms

An algorithm that tests whether the first array element is equal to any of the other array elements requires at most n – 1 comparisons, where n is the number of array elements. If the array has 10 elements, this algorithm requires up to nine comparisons. If the array has 1000 elements, it requires up to 999 comparisons. As n grows larger, the n part of the expression n – 1 “dominates,” and subtracting 1 becomes inconsequential. Big O is designed to highlight these dominant terms and ignore terms that become unimportant as n grows. So, an algorithm that requires a total of n – 1 comparisons (such as the one we described earlier) is said to be O(n). An O(n) algorithm is said to have a linear run time. O(n) is often pronounced “on the order of n” or simply “order n.”

O(n2) Algorithms

Now suppose you have an algorithm that tests whether any element of an array is duplicated elsewhere in the array. The first element must be compared with every other element in the array. The second element must be compared with every other element except the first (it was already compared to the first). The third element must be compared with every other element except the first two. In the end, this algorithm makes (n – 1) + (n – 2) + … + 2 + 1 or n2/2 – n/2 comparisons. As n increases, the n2 term dominates, and the n term becomes inconsequential. Again, Big O notation highlights the n2 term, ignoring n/2.

Big O is concerned with how an algorithm’s run time grows in relation to the number of items processed. Suppose an algorithm requires n2 comparisons. With four elements, the algorithm requires 16 comparisons; with eight elements, 64 comparisons. With this algorithm, doubling the number of elements quadruples the number of comparisons. Consider a similar algorithm requiring n2/2 comparisons. With four elements, the algorithm requires eight comparisons; with eight elements, 32 comparisons. Again, doubling the number of elements quadruples the number of comparisons. Both of these algorithms grow as the square of n, so Big O ignores the constant, and both algorithms are considered to be O(n2), which is referred to as quadratic run time and pronounced “on the order of n-squared” or more simply “order n-squared.”

When n is small, O(n2) algorithms (on today’s computers) will not noticeably affect performance, but as n grows, you’ll start to notice performance degradation. An O(n2) algorithm running on a million-element array would require a trillion “operations” (where each could execute several machine instructions). We tested one of this chapter’s O(n2) algorithms on a 100,000-element array using a current desktop computer, and it ran for many minutes. A billion-element array (not unusual in today’s big-data applications) would require a quintillion operations, which on that same desktop computer would take approximately 13.3 years to complete! As you’ll see, O(n2) algorithms, unfortunately, are easy to write. You’ll also see algorithms with more favorable Big O measures. These more efficient algorithms often take a bit more cleverness and work to create, but their superior performance can be well worth the extra effort, especially as n gets large and as the algorithms are integrated into larger programs.

Big O of the Linear Search

The linear search algorithm runs in O(n) time. The worst case in this algorithm is that every element must be checked to determine whether the search item exists in the array. If the size of the array is doubled, the number of comparisons that the algorithm must perform is also doubled. Linear search can provide outstanding performance if the element matching the search key happens to be at or near the front of the array. However, we seek algorithms that perform well, on average, across all searches, including those where the element matching the search key is near the end of the array.

 Linear search is easy to program, but it can be slow compared to other search algorithms. If a program needs to perform many searches on large arrays, it’s better to implement a more efficient algorithm, such as the binary search, which we present next.

[image: tick mark] Self Check

	(Fill-In) _______ notation indicates how hard an algorithm may have to work to solve a problem.

Answer: Big O.

	(True/False) An O(n) algorithm is referred to as having a quadratic run time.

Answer: False. An O(n) algorithm is referred to as having a linear run time. O(n2) algorithms have quadratic run time.

	(Discussion) When might you choose to write an O(n2) algorithm?

Answer: When n is small and you do not have the time (or need) to invest in developing a better-performing algorithm.

11.9 Binary Search

The binary search algorithm is more efficient than linear search, but it requires a sorted array. The first iteration of this algorithm tests the middle element in the array. If this matches the search key, the algorithm ends. Assuming the array is sorted in ascending order, then if the search key is less than the middle element, it cannot match any element in the second half of the array and the algorithm continues with only the first half of the array (i.e., the first element up to, but not including, the middle element). If the search key is greater than the middle element, it cannot match any element in the first half of the array and the algorithm continues with only the second half (i.e., the element after the middle element through the last element). Each iteration tests the middle value of the remaining portion of the array. If the search key does not match the element, the algorithm eliminates half of the remaining elements. The algorithm ends by either finding an element that matches the search key or reducing the subarray to zero size.

Example

As an example consider the sorted 15-element array

2 3 5 10 27 30 34 51 56 65 77 81 82 93 99

and a search key of 65. A program implementing the binary search algorithm would first check whether 51 is the search key (because 51 is the middle element of the array). The search key (65) is larger than 51, so 51 is ignored along with the first half of the array (all elements smaller than 51), leaving

56 65 77 81 82 93 99

Next, the algorithm checks whether 81 (the middle element of the remainder of the array) matches the search key. The search key (65) is smaller than 81, so 81 is discarded along with the elements larger than 81. After just two tests, the algorithm has narrowed the number of values to check to only three (56, 65 and 77). It then checks 65 (which indeed matches the search key) and returns the index of the array element containing 65. This algorithm required just three comparisons to determine whether the search key matched an element of the array. Using a linear search algorithm would have required 10 comparisons. [Note: In this example, we used an array with 15 elements so that there’s an obvious middle element. With an even number of elements, the middle of the array lies between two elements. We implement the algorithm to choose the higher of those two elements.]

[image: tick mark] Self Check

	(True/False) The linear search and binary search algorithms require arrays to be sorted.

Answer: False. Only the binary search requires a sorted array.

	(Fill-In) With binary search, the smallest number of comparisons that would be needed to find a matching element in a 1,000,001-element array is _______

Answer: One. This happens if on the first comparison the key matches the middle array element.

11.9.1 Binary Search Implementation

The file binarysearch.py contains the following definitions:

	Function binary_search searches an array for a specified key.

	Function remaining_elements displays the remaining elements in the array being searched, to visualize how the algorithm works.

	Function main tests function binary_search.

Each is discussed below.

Function binary_search

Lines 5–30 define function binary_search, which receives as parameters the array to search (data) and the search key (key).

 1 # binarysearch.py

 2 """Use binary search to locate an item in an array."""

 3 import numpy as np

 4

 5 def binary_search(data, key):

 6 """Perform binary search of data looking for key."""

 7 low = 0 # low end of search area

 8 high = len(data) - 1 # high end of search area

 9 middle = (low + high + 1) // 2 # middle element index

10 location = -1 # return value -1 if not found

11

12 # loop to search for element

13 while low <= high and location == -1:

14 # print remaining elements of array

15 print(remaining_elements(data, low, high))

16

17 print(' ' * middle, end='') # output spaces for alignment

18 print(' * ') # indicate current middle

19

20 # if the element is found at the middle

21 if key == data[middle]:

22 location = middle # location is the current middle

23 elif key < data[middle]: # middle element is too high

24 high = middle - 1 # eliminate the higher half

25 else: # middle element is too low

26 low = middle + 1 # eliminate the lower half

27

28 middle = (low + high + 1) // 2 # recalculate the middle

29

30 return location # return location of search key

31

Lines 7–9 calculate the low end index, high end index and middle index of the portion of the array that the program is currently searching. Initially, the low end is 0, the high end is the length of the array minus 1 and the middle is the average of these two values. Line 10 initializes the location of the element to -1. This is the value that binary_search returns if it does not find the key. Lines 13–28 loop as long as low is less than or equal to high (the search is not complete) and location is equal to -1 (the key has not yet been found). Line 21 tests whether the value in the middle element is equal to the key. If so, line 22 assigns middle to location, the loop terminates and the function returns location to the caller. Each iteration of the loop tests a single value (line 21) and eliminates half of the remaining values in the array (lines 23–24 or 25–26) if the value is not the key.

Function remaining_elements

During each loop iteration in binary_search, we call function remaining_elements (line 15) to show the portion of the array being searched, then binary_search displays an asterisk under the middle element (lines 17–18). Line 34 in remaining_elements first repeats a three-space string low times for alignment purposes. The remainder of the line appends to that a string representation of the array values from the index low up to high + 1. The built-in function str converts its argument (an integer element of the array) to a string

32 def remaining_elements(data, low, high):

33 """Display remaining elements of the binary search."""

34 return ' ' * low + ' '.join(str(s) for s in data[low:high + 1])

35

Function main

The main function (lines 36–53) is called if you run the file binarysearch.py as a script. Line 38 creates a 15-element array of random values in the range 10–90, and line 39 sorts the values into ascending order. Recall that the binary search algorithm works only on a sorted array. The output shows that when the user instructs the program to search for 23, the program first tests the middle element, which is 52 (as indicated by *) in our sample execution. The search key is less than 52, so the program eliminates the second half of the array and tests the middle element from the first half. The search key is smaller than 35, so the program eliminates the second half of the array, leaving only three elements. Finally, the program checks 23 (which matches the search key) and returns the index 1.

36 def main():

37 # create and display array of random values

38 data = np.random.randint(10, 91, 15)

39 data.sort()

40 print(data, '\n')

41

42 search_key = int(input('Enter an integer value (-1 to quit): '))

43

44 # repeatedly input an integer; -1 terminates the program

45 while search_key != -1:

46 location = binary_search(data, search_key) # perform search

47

48 if location == -1: # not found

49 print(f'{search_key} was not found\n')

50 else:

51 print(f'{search_key} found in position {location}\n')

52

53 search_key = int(input('Enter an integer value (-1 to quit): '))

54

55 # call main if this file is executed as a script

56 if __name__ == '__main__':

57 main()

[16 23 31 35 36 46 48 52 54 57 63 76 83 89 90]

Enter an integer value (-1 to quit): 23

16 23 31 35 36 46 48 52 54 57 63 76 83 89 90

 *

16 23 31 35 36 46 48

 *

16 23 31

 *

23 found in position 1

Enter an integer value (-1 to quit): 83

16 23 31 35 36 46 48 52 54 57 63 76 83 89 90

 *

 54 57 63 76 83 89 90

 *

 83 89 90

 *

 83

 *

83 found in position 12

Enter an integer value (-1 to quit): 60

16 23 31 35 36 46 48 52 54 57 63 76 83 89 90

 *

 54 57 63 76 83 89 90

 *

 54 57 63

 *

 63

 *

60 was not found

Enter an integer value (-1 to quit): -1

11.9.2 Big O of the Binary Search

In the worst-case scenario, searching a sorted array of 1023 elements takes only 10 comparisons when using a binary search. Repeatedly dividing 1023 by 2 (because after each comparison we can eliminate half the array) and rounding down (because we also remove the middle element) yields the values 511, 255, 127, 63, 31, 15, 7, 3, 1 and 0. The number 1023 (which is 210 – 1) is divided by 2 only 10 times to get the value 0, which indicates that there are no more elements to test.

Dividing by 2 is equivalent to one comparison in the binary search algorithm. Thus, an array of 1,048,575 (220 – 1) elements takes a maximum of 20 comparisons to find the key, and an array of about one billion elements takes a maximum of 30 comparisons to find the key. This is a tremendous performance improvement over the linear search. For a one-billion-element array, this is a difference between an average of 500 million comparisons for the linear search and a maximum of only 30 comparisons for the binary search!

The maximum number of comparisons needed for the binary search of any sorted array is the exponent of the first power of 2 greater than the number of elements in the array, which is represented as log2 n. From a Big O perspective, all logarithms grow at roughly the same rate, so in big O notation the base can be omitted. This results in a big O of O(log n) for a binary search, which is also known as logarithmic run time and pronounced as “order log n.” This assumes the array is sorted, which could take time. We’ll discuss sorting next.

11.10 Sorting Algorithms

Sorting data (i.e., placing the data in a particular order, such as ascending or descending) is one of the most important computing applications. Virtually every organization must sort some data, and often massive amounts of it. Sorting data is an intriguing, computer-intensive problem that has attracted intense research efforts.

An important item to understand about sorting is that the end result—the sorted array—will be the same no matter which algorithm you use to sort the array. The choice of algorithm affects only the run time and memory use of the program. The rest of this chapter introduces three common sorting algorithms. The first two—selection sort and insertion sort—are relatively simple to program but inefficient. The last algorithm—merge sort—is much faster than selection sort and insertion sort but harder to program. We focus on sorting arrays of primitive-type data, namely ints.

11.11 Selection Sort

Selection sort is a simple, but inefficient, sorting algorithm. If you’re sorting in increasing order, its first iteration selects the smallest element in the array and swaps it with the first element. The second iteration selects the second-smallest item (which is the smallest item of the remaining elements) and swaps it with the second element. The algorithm continues until the last iteration selects the second-largest element and swaps it with the second-to-last index, leaving the largest element in the last index. After the ith iteration, the smallest i items of the array will be sorted into increasing order in the first i elements of the array.

As an example, consider the array

34 56 14 20 77 51 93 30 15 52

A program that implements selection sort first determines the smallest element (14) of this array, which is contained in index 2. The program swaps 14 with 34, resulting in

14 56 34 20 77 51 93 30 15 52

The program then determines the smallest value of the remaining elements (all elements except 14), which is 15, contained in index 8. The program swaps 15 with 56, resulting in

14 15 34 20 77 51 93 30 56 52

On the third iteration, the program determines the next smallest value (20) and swaps it with 34.

14 15 20 34 77 51 93 30 56 52

The process continues until the array is fully sorted.

14 15 20 30 34 51 52 56 77 93

11.11.1 Selection Sort Implementation

The file selectionsort.py defines:

	Function selection_sort, which implements the selection sort algorithm, and

	Function main to test the selection_sort function.

The following shows a sample output of the program. The -- notation below a given number indicates that after the algorithm’s specified pass, the number above the -- is in its final sorted position in the array, and the * indicates which value was swapped out of the right-most --’s position.

Unsorted array: [34 56 14 20 77 51 93 30 15 52]

after pass 1: 14 56 34* 20 77 51 93 30 15 52

 --

after pass 2: 14 15 34 20 77 51 93 30 56* 52

 -- --

after pass 3: 14 15 20 34* 77 51 93 30 56 52

 -- -- --

after pass 4: 14 15 20 30 77 51 93 34* 56 52

 -- -- -- --

after pass 5: 14 15 20 30 34 51 93 77* 56 52

 -- -- -- -- --

after pass 6: 14 15 20 30 34 51* 93 77 56 52

 -- -- -- -- -- --

after pass 7: 14 15 20 30 34 51 52 77 56 93*

 -- -- -- -- -- -- --

after pass 8: 14 15 20 30 34 51 52 56 77* 93

 -- -- -- -- -- -- -- --

after pass 9: 14 15 20 30 34 51 52 56 77* 93

 -- -- -- -- -- -- -- -- --

Sorted array: [14 15 20 30 34 51 52 56 77 93]

Function selection_sort

Lines 6–19 define the selection_sort function that implements the algorithm. Lines 9–19 loop len(data) - 1 times. The variable smallest stores the index of the smallest element in the remaining array. Line 10 initializes smallest to the current index index1. Lines 13–15 loop over the remaining elements in the array. For each, line 14 compares its value to the value of the smallest element. If the current element is smaller than the smallest element, line 15 assigns the current element’s index to smallest. When this loop finishes, smallest will contain the index of the smallest element in the remaining array. Line 18 uses tuple packing and unpacking to swap the smallest remaining element into the next ordered spot in the array.

 1 # selectionsort.py

 2 """Sorting an array with selection sort."""

 3 import numpy as np

 4 from ch11utilities import print_pass

 5

 6 def selection_sort(data):

 7 """Sort array using selection sort."""

 8 # loop over len(data) - 1 elements

 9 for index1 in range(len(data) - 1):

10 smallest = index1 # first index of remaining array

11

12 # loop to find index of smallest element

13 for index2 in range(index1 + 1, len(data)):

14 if data[index2] < data[smallest]:

15 smallest = index2

16

17 # swap smallest element into position

18 data[smallest], data[index1] = data[index1], data[smallest]

19 print_pass(data, index1 + 1, smallest)

20

Function main

In the main function, line 22 creates an array of ten integers. Line 24 calls selection_sort to sort the array’s elements into ascending order.

21 def main():

22 data = np.array([35, 73, 90, 65, 23, 86, 43, 81, 34, 58])

23 print(f'Unsorted array: {data}\n')

24 selection_sort(data)

25 print(f'\nSorted array: {data}\n')

26

27 # call main if this file is executed as a script

28 if __name__ == '__main__':

29 main()

30

11.11.2 Utility Function print_pass

Line 19 in the selection_sort function displays the array at the end of the current pass by calling function print_pass from the file ch11utilities.py. Function print_pass performs the following tasks:

	Lines 7–8 create and display a label containing the pass number for the beginning of each pass’s output.

	Lines 11–12 create and display a string containing the elements from the beginning of the array up to position index, separated by two spaces each. The built-in function str converts its argument (an integer element of the array) to a string.

	Line 14 indicates the swap element position by displaying the element at that index followed by an asterisk (*).

	Line 17 creates and displays a string containing the rest of the array’s elements.

	Line 20 displays dashes under the sorted portion of the array to help visualize the sort.

On each pass, the element next to the asterisk and the element above the rightmost set of dashes were swapped. We’ll use this function again when we implement the insertion sort algorithm in the next section.

 1 # ch11utilities.py

 2 """Utility function for printing a pass of the

 3 insertion_sort and selection_sort algorithms"""

 4

 5 def print_pass(data, pass_number, index):

 6 """Print a pass of the algorithm."""

 7 label = f'after pass {pass_number}: '

 8 print(label, end='')

 9

10 # output elements up to selected item

11 print(' '.join(str(d) for d in data[:index]),

12 end=' ' if index != 0 else '')

13

14 print(f'{data[index]}* ', end='') # indicate swap with *

15

16 # output rest of elements

17 print(' '.join(str(d) for d in data[index + 1:len(data)]))

18

19 # underline elements that are sorted after this pass_number

20 print(f'{" " * len(label)}{"-- " * pass_number}')

11.11.3 Big O of the Selection Sort

The selection sort algorithm runs in O(n2) time. Function selection_sort uses nested for loops. The outer one (lines 9–19) iterates over the first n – 1 elements in the array, swapping the smallest remaining item into its sorted position. The inner loop (lines 13–15) iterates over each item in the remaining array, searching for the smallest element. This loop executes n – 1 times during the first iteration of the outer loop, n – 2 times during the second iteration, then n – 3, …, 3, 2, 1. This inner loop will iterate a total of n(n – 1)/2 or (n2 – n)/2. In Big O notation, smaller terms drop out, and constants are ignored, leaving a Big O of O(n2). Note that the algorithm iterates the same number of times regardless of whether the array’s elements are randomly ordered, partially ordered or already sorted.

[image: tick mark] Self Check

	(Fill-In) A selection sort application would take approximately _______ times as long to run on a 128-million-element array as on a 32-million-element array.

Answer: 16, because an O(n2) algorithm takes 16 times as long to sort four times as much information.

11.12 Insertion Sort

Insertion sort is another simple, but inefficient, sorting algorithm. The first iteration of this algorithm takes the second element in the array and, if it’s less than the first element, swaps it with the first element. The second iteration looks at the third element and inserts it into the correct position with respect to the first two, so all three elements are in order. At the ith iteration of this algorithm, the first i elements in the original array will be sorted.

Consider as an example the following array, which is identical to the one used in the discussion of selection sort.

34 56 14 20 77 51 93 30 15 52

A program that implements the insertion sort algorithm will first look at the first two elements of the array, 34 and 56. These are already in order, so the program continues. If they were out of order, the program would swap them.

In the next iteration, the program looks at the third value, 14. This value is less than 56, so the program stores 14 in a temporary variable and moves 56 one element to the right. The program then checks and determines that 14 is less than 34, so it moves 34 one element to the right. The program has now reached the beginning of the array, so it places 14 in element 0. The array now is

14 34 56 20 77 51 93 30 15 52

In the next iteration, the program stores 20 in a temporary variable. Then it compares 20 to 56 and moves 56 one element to the right because it’s larger than 20. The program then compares 20 to 34, moving 34 right one element. When the program compares 20 to 14, it observes that 20 is larger than 14 and places 20 in element 1. The array now is

14 20 34 56 77 51 93 30 15 52

Using this algorithm, at the ith iteration, the first i elements of the original array are sorted, but they may not be in their final locations—smaller values may be located later in the array.

11.12.1 Insertion Sort Implementation

The file insertionsort.py defines:

	Function insertion_sort, which implements the insertion sort algorithm, and

	Function main to test the insertion_sort function.

Function main (lines 22–27) is identical to main in Section 11.11.1 except that line 26 calls function insertion_sort to sort the array’s elements into ascending order.

The following is a sample output of the program. The -- notation below a given number indicates the values that have been sorted so far after the algorithm’s specified pass.

Unsorted array: [34 56 14 20 77 51 93 30 15 52]

after pass 1: 34 56* 14 20 77 51 93 30 15 52

 --

after pass 2: 14* 34 56 20 77 51 93 30 15 52

 -- --

after pass 3: 14 20* 34 56 77 51 93 30 15 52

 -- -- --

after pass 4: 14 20 34 56 77* 51 93 30 15 52

 -- -- -- --

after pass 5: 14 20 34 51* 56 77 93 30 15 52

 -- -- -- -- --

after pass 6: 14 20 34 51 56 77 93* 30 15 52

 -- -- -- -- -- --

after pass 7: 14 20 30* 34 51 56 77 93 15 52

 -- -- -- -- -- -- --

after pass 8: 14 15* 20 30 34 51 56 77 93 52

 -- -- -- -- -- -- -- --

after pass 9: 14 15 20 30 34 51 52* 56 77 93

 -- -- -- -- -- -- -- -- --

Sorted array: [14 15 20 30 34 51 52 56 77 93]

Function insertion_sort

Lines 6–20 declare the insertion_sort function. Lines 9–20 loop over the elements at indices 1 up to len(data) items in the array. In each iteration, line 10 declares and initializes variable insert, which holds the value of the element that will be inserted into the sorted portion of the array. Line 11 declares and initializes the variable move_item, which keeps track of where to insert the element. Lines 14–17 loop to locate the correct position where the element should be inserted. The loop will terminate either when the program reaches the front of the array or when it reaches an element that’s less than the value to be inserted. Line 19 moves an element to the right in the array, and line 17 decrements the position at which to insert the next element. After the loop ends, line 19 inserts the element into place.

 1 # insertionsort.py

 2 """Sorting an array with insertion sort."""

 3 import numpy as np

 4 from ch11utilities import print_pass

 5

 6 def insertion_sort(data):

 7 """Sort an array using insertion sort."""

 8 # loop over len(data) - 1 elements

 9 for next in range(1, len(data)):

10 insert = data[next] # value to insert

11 move_item = next # location to place element

12

13 # search for place to put current element

14 while move_item > 0 and data[move_item - 1] > insert:

15 # shift element right one slot

16 data[move_item] = data[move_item - 1]

17 move_item -= 1

18

19 data[move_item] = insert # place inserted element

20 print_pass(data, next, move_item) # output pass of algorithm

21

22 def main():

23 data = np.array([35, 73, 90, 65, 23, 86, 43, 81, 34, 58])

24 print(f'Unsorted array: {data}\n')

25 insertion_sort(data)

26 print(f'\nSorted array: {data}\n')

27

28 # call main if this file is executed as a script

29 if __name__ == '__main__':

30 main()

11.12.2 Big O of the Insertion Sort

The insertion sort algorithm also runs in O(n2) time. Like selection sort, the implementation of insertion sort contains two loops. The for loop iterates len(data) - 1 times, inserting an element into the appropriate position among the elements sorted so far. For the purposes of this application, len(data) - 1 is equivalent to n – 1 (as len(data) is the size of the array). The while loop (lines 14–17) iterates over the preceding elements in the array. In the worst case, this while loop will require n – 1 comparisons. Each individual loop runs in O(n) time. In Big O notation, nested loops mean that you must multiply the number of comparisons. For each iteration of an outer loop, there will be a certain number of iterations of the inner loop. In this algorithm, for each O(n) iterations of the outer loop, there will be O(n) iterations of the inner loop. Multiplying these values results in a Big O of O(n2).

[image: tick mark] Self Check

	(True/False) Like the selection sort algorithm, the insertion sort algorithm has linear run time.

Answer: False. Both algorithms have quadratic run time.

	(True/False) Each iteration of the selection sort algorithm inserts one value into sorted order among the values that have been sorted so far.

Answer: True.

11.13 Merge Sort

Merge sort is an efficient sorting algorithm but is conceptually more complex than selection sort and insertion sort. The merge sort algorithm sorts an array by splitting it into two equal-sized subarrays, sorting each subarray, then merging them into one larger array. With an odd number of elements, the algorithm creates the two subarrays such that one has one more element than the other.

The implementation of merge sort in this example is recursive. The base case is an array with one element, which is, of course, sorted, so the merge sort immediately returns in this case. The recursion step splits the array into two approximately equal pieces, recursively sorts them, then merges the two sorted arrays into one larger, sorted array.

Suppose the algorithm has already merged smaller arrays to create sorted arrays array1:

14 20 34 56 77

and array2:

15 30 51 52 93

Merge sort combines these two arrays into one larger, sorted array. The smallest element in array1 is 14 (located in index 0 of array1). The smallest element in array2 is 15 (located in index 0 of array2). To determine the smallest element in the larger array, the algorithm compares 14 and 15. The value from array1 is smaller, so 14 becomes the first element in the merged array. The algorithm continues by comparing 20 (the second element in array1) to 15 (the first element in array2). The value from array2 is smaller, so 15 becomes the second element in the larger array. The algorithm continues by comparing 20 to 30, with 20 becoming the third element in the array, and so on.

11.13.1 Merge Sort Implementation

The file mergesort.py defines:

	Function merge_sort to initiate the sorting.

	Function sort_array implements the recursive merge sort algorithm—this is called by function mergeSort.

	Function merge merges two sorted subarrays into a single sorted subarray.

	Function subarray_string gets a subarray’s string representation for output purposes to help visualize the sort.

	Function main tests function merge_sort.

Function main (lines 69–73) is identical to main in the previous sorting examples, except that line 72 calls function merge_sort to sort the array elements.

The following sample output visualizes the splits and merges performed by merge sort, showing the progress of the sort at each step of the algorithm. It’s well worth your time to step through these outputs to fully understand this elegant and fast sorting algorithm.

Unsorted array: [34 56 14 20 77 51 93 30 15 52]

split: 34 56 14 20 77 51 93 30 15 52

 34 56 14 20 77

 51 93 30 15 52

split: 34 56 14 20 77

 34 56 14

 20 77

split: 34 56 14

 34 56

 14

split: 34 56

 34

 56

merge: 34

 56

 34 56

merge: 34 56

 14

 14 34 56

split: 20 77

 20

 77

merge: 20

 77

 20 77

merge: 14 34 56

 20 77

 14 20 34 56 77

split: 51 93 30 15 52

 51 93 30

 15 52

split: 51 93 30

 51 93

 30

split: 51 93

 51

 93

merge: 51

 93

 51 93

merge: 51 93

 30

 30 51 93

split: 15 52

 15

 52

merge: 15

 52

 15 52

merge: 30 51 93

 15 52

 15 30 51 52 93

merge: 14 20 34 56 77

 15 30 51 52 93

 14 15 20 30 34 51 52 56 77 93

Sorted array: [14 15 20 30 34 51 52 56 77 93]

Function merge_sort

Lines 6–7 define the merge_sort function. Line 7 calls function sort_array to initiate the recursive algorithm, passing 0 and len(data) - 1 as the low and high indices of the array to be sorted. These values tell function sort_array to operate on the entire array.

1 # mergesort.py

2 """Sorting an array with merge sort."""

3 import numpy as np

4

5 # calls recursive sort_array method to begin merge sorting

6 def merge_sort(data):

7 sort_array(data, 0, len(data) - 1)

8

Recursive Function sort_array

Function sort_array (lines 9–26) performs the recursive merge sort algorithm. Line 12 tests the base case. If the size of the array is 1, the array is already sorted, so the function returns immediately. If the size of the array is greater than 1, the function splits the array in two, recursively calls function sort_array to sort the two subarrays, then merges them. Line 22 recursively calls function sort_array on the first half of the array, and line 23 recursively calls function sort_array on the second half. When these two function calls return, each half of the array has been sorted. Line 26 calls function merge (lines 29–61) with the indices for the two halves of the array to combine the two sorted arrays into one larger sorted array.

 9 def sort_array(data, low, high):

10 """Split data, sort subarrays and merge them into sorted array."""

11 # test base case size of array equals 1

12 if (high - low) >= 1: # if not base case

13 middle1 = (low + high) // 2 # calculate middle of array

14 middle2 = middle1 + 1 # calculate next element over

15

16 # output split step

17 print(f'split: {subarray_string(data, low, high)}')

18 print(f' {subarray_string(data, low, middle1)}')

19 print(f' {subarray_string(data, middle2, high)}\n')

20

21 # split array in half then sort each half (recursive calls)

22 sort_array(data, low, middle1) # first half of array

23 sort_array(data, middle2, high) # second half of array

24

25 # merge two sorted arrays after split calls return

26 merge(data, low, middle1, middle2, high)

27

Function merge

Lines 29–61 define function merge. Lines 40–50 in merge loop until the end of either subarray is reached. Line 43 tests which element at the beginning of the arrays is smaller. If the element in the left array is smaller or equal, line 44 places it in position in the combined array. If the element in the right array is smaller, line 48 places it in position in the combined array. When the while loop completes, one entire subarray has been placed in the combined array, but the other subarray still contains data. Line 53 tests whether the left array has reached the end. If so, line 54 uses slices to fill the appropriate elements of the combined array with the elements of data that represent the right array. If the left array has not reached the end, then the right array must have reached the end, and line 56 uses slices to fill the appropriate elements of the combined array with the elements of data that represent the left array. Finally, line 58 copies the combined array into the original array that data references.

28 # merge two sorted subarrays into one sorted subarray

29 def merge(data, left, middle1, middle2, right):

30 left_index = left # index into left subarray

31 right_index = middle2 # index into right subarray

32 combined_index = left # index into temporary working array

33 merged = [0] * len(data) # working array

34

35 # output two subarrays before merging

36 print(f'merge: {subarray_string(data, left, middle1)}')

37 print(f' {subarray_string(data, middle2, right)}')

38

39 # merge arrays until reaching end of either

40 while left_index <= middle1 and right_index <= right:

41 # place smaller of two current elements into result

42 # and move to next space in arrays

43 if data[left_index] <= data[right_index]:

44 merged[combined_index] = data[left_index]

45 combined_index += 1

46 left_index += 1

47 else:

48 merged[combined_index] = data[right_index]

49 combined_index += 1

50 right_index += 1

51

52 # if left array is empty

53 if left_index == middle2: # if True, copy in rest of right array

54 merged[combined_index:right + 1] = data[right_index:right + 1]

55 else: # right array is empty, copy in rest of left array

56 merged[combined_index:right + 1] = data[left_index:middle1 + 1]

57

58 data[left:right + 1] = merged[left:right + 1] # copy back to data

59

60 # output merged array

61 print(f' {subarray_string(data, left, right)}\n')

62

Function subarray_string

Throughout the algorithm, we display portions of the array to show the split and merge operations. Each time we call function subarray_string to create and display a string containing the appropriate subarray’s items. Line 65 creates a string of spaces that ensures the first subarray element aligns properly. Line 66 joins the appropriate elements of data separated by a space and appends that string to the one created in line 65. Line 67 returns the result.

63 # method to output certain values in array

64 def subarray_string(data, low, high):

65 temp = ' ' * low # spaces for alignment

66 temp += ' '.join(str(item) for item in data[low:high + 1])

67 return temp

68

Function main

The main function creates the array to sort and calls merge_sort to sort the data:

69 def main():

70 data = np.array([35, 73, 90, 65, 23, 86, 43, 81, 34, 58])

71 print(f'Unsorted array: {data}\n')

72 merge_sort(data)

73 print(f'\nSorted array: {data}\n')

74

75 # call main if this file is executed as a script

76 if __name__ == '__main__':

77 main()

11.13.2 Big O of the Merge Sort

Merge sort is far more efficient than insertion or selection sort. Consider the first (nonrecursive) call to sort_array. This results in two recursive calls to sort_array with subarrays each approximately half the original array’s size, and a single call to merge, which requires, at worst, n – 1 comparisons to fill the original array, which is O(n). (Recall that each array element can be chosen by comparing one element from each subarray.) The two calls to sort_array result in four more recursive sort_array calls, each with a subarray approximately a quarter of the original array’s size, along with two calls to merge that each require, at worst, n/2 – 1 comparisons, for a total number of comparisons of O(n). This process continues, each sort_array call generating two additional sort_array calls and a merge call until the algorithm has split the array into one-element subarrays. At each level, O(n) comparisons are required to merge the subarrays. Each level splits the arrays in half, so doubling the array size requires one more level. Quadrupling the array size requires two more levels. This pattern is logarithmic and results in log2 n levels. This results in a total efficiency of O(n log n) which, of course, is much faster than the O(n2) sorts we studied.

[image: tick mark] Self Check

	(Fill-In) The efficiency of merge sort is _______.

Answer: O(n log n).

11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms

The following table summarizes the searching and sorting algorithms covered in this chapter with the Big O for each.

[image: A table lists algorithms, their locations, and corresponding big O.]

11.15-4 Full Alternative Text

 The following table lists the Big O values we’ve covered in this chapter along with a number of values for n to highlight the differences in the growth rates.

[image: A table of the selection sort algorithm.]

11.15-5 Full Alternative Text

11.15 Visualizing Algorithms

Animated visualizations can help you understand how algorithms work. In this section, you’ll animate the selection sort algorithm using:

	the Seaborn bar plot capabilities from the “Sequences: Lists and Tuples” chapter’s Intro to Data Science section,

	the Matplotlib animation techniques from the “Dictionaries and Sets” chapter’s Intro to Data Science section where we introduced FuncAnimations, and

	the yield and yield from statements, which we’ll introduce here.

We’ve already presented the selection sort algorithm and the technologies above. Here, we’ll focus on how we modified this chapter’s earlier selection sort example to implement the animation.

Pysine: Playing Musical Notes

To enhance the animation, we’ll use the Pysine module to play musical notes representing the bar’s magnitudes. Pysine uses MIDI (Musical Instrument Digital Interface) to generate musical notes based on sound frequencies specified in hertz.

To install Pysine, open your Anaconda Prompt (Windows2), Terminal (macOS/Linux) or shell (Linux), then execute the following command:
2. Windows users might need to run the Anaconda Prompt as an administrator for proper software installation privileges. To do so, right-click Anaconda Prompt in the start menu and select More > Run as administrator.

pip install pysine

Executing the Animation

You can execute the animation as follows:

ipython selectionsortanimation.py 10

to sort the values in the range 1–10. Consider the following sample screen captures:

 	After 1-4 sorted, 8 (purple) is the current smallest element.

[image: A bar graph depicts the purple colored bar, representing 8 on the horizontal axis, with a value of 8 on the vertical axis.]

 	7 (red) is being compared with 8 (purple).

[image: A bar graph depicts the purple colored bar, representing 8 on the horizontal, with a value of 8 on the vertical axis, and the red bar representing 7 on the horizontal axis with a value of 7 on the vertical axis.]

 	5 and 8 before the swap.

[image: A bar graph depicts the purple bar, representing 8 on the horizontal axis, with a value of 8 on the vertical axis, and the purple bar representing 5 on the horizontal axis with a value of 5 on the vertical axis.]

 	5 and 8 after the swap.

[image: A bar graph depicts the purple bar representing 5 on the horizontal axis with a value of 5 on the vertical axis, and the purple bar representing 8 on the horizontal axis with a value of 8 on the vertical axis.]

 	Emphasizing the final sorted elements in dark green.

[image: A bar graph depicts the green bars representing 1, 2, 3, 4, and 5 on the horizontal axis with values of 1, 2, 3, 4, and 5 on the vertical axis, respectively.]

 	Final result.

[image: A bar graph depicts the green bars representing 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 on the horizontal axis with values of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 on the vertical axis, respectively.]

The colored bars in each have the following meanings:

	Gray bars, as in Parts (a)–(d), are not yet sorted and are not currently being compared.

	When locating the smallest element to swap into position, the animation displays one purple and one red bar, as in Part (b). During a pass of the unsorted elements to find the smallest remaining value, the purple bar represents the value at index smallest. The red bar is the other remaining element currently being compared. The red bar moves once for each comparison. The purple bar moves only if a smaller element is found during the current pass.

	The animation displays in purple both bars participating in a swap, as in Parts (c) and (d). Part (c) shows the bars before the swap and Part (d) shows them after.

	A light green bar indicates an element that has been placed into its final position by the sort.

	The dark green bars, as in Parts (e) and (f), are displayed one at a time when the sort completes to emphasize the final sorted order.

11.15.1 Generator Functions

In the “Sequences: Lists and Tuples” chapter, we introduced generator expressions. You saw that they’re similar to list comprehensions, but create generator objects that produce values on demand using lazy evaluation.

The selection_sort function that we’ll present in the next subsection implements the selection sort algorithm but, as you’ll see, is now interspersed with:

	statements that keep track of the information we display in the animation,

	yield and yield from statements that provide values for the FuncAnimation to pass to the update function, and

	play_sound calls to play musical notes.

The yield and yield from statements, make selection_sort a generator function. Like generator expressions, generators functions are lazy and return values on demand. The FuncAnimation we’ll implement obtains values on demand from the generator and passes them to update to animate the algorithm.

yield Statements

A generator function uses the yield keyword to return the next generated item, then its execution suspends until the program requests another item. When the Python interpreter encounters a generator function call, it creates an iterable generator object that keeps track of the next value to generate. We’ll use generator functions in the next chapter to help create an animated visualization of an algorithm that sorts array values into ascending order.

Let’s create a generator function that iterates through a sequence of values and returns the square of each value:

In [1]: def square_generator(values):

 ...: for value in values:

 ...: yield value ** 2

 ...:

Snippet [2] calls square_generator to create the generator object, which will not return any values until you access its values:

In [2]: squares = square_generator(numbers)

One way to access the values it to iterate over the generator object:

In [3]: for number in squares:

 ...: print(number, end=' ')

 ...:

100 400 900

You must create a new generator object each time you wish to iterate through the generator’s values again. Let’s recreate the generator and access its values one at a time with built in function next, which receives an iterable argument and returns its next item:

In [4]: squares = square_generator(numbers)

In [5]: next(squares)

Out[5]: 100

In [6]: next(squares)

Out[6]: 400

In [7]: next(squares)

Out[7]: 900

In [8]: next(squares)

StopIteration Traceback (most recent call last)

<ipython-input-8-e7cf8d24b3b2> in <module>()

----> 1 next(squares)

StopIteration:

When there are no more items to process, the generator raises a StopIteration exception, which is how a for statement knows when to stop iterating through any iterable object. We’ll discuss yield from when we encounter it in the selection sort animation’s code.

11.15.2 Implementing the Selection Sort Animation

Now, let’s implement the animation.

import Statements

Lines 3–8 import the modules we use. The file ch11soundutilities.py from which we import play_sound (line 8) is discussed after the example.

1 # selectionsortanimation.py

2 """Animated selection sort visualization."""

3 from matplotlib import animation

4 import matplotlib.pyplot as plt

5 import numpy as np

6 import seaborn as sns

7 import sys

8 from ch11soundutilities import play_sound

9

update Function That Displays Each Animation Frame

As in the “Dictionaries and Sets” chapter’s Intro to Data Science section, we define an update function that the Matplotlib FuncAnimation calls once per animation frame to redraw the animation’s graphical elements.

10 def update(frame_data):

11 """Display bars representing the current state."""

12 # unpack info for graph update

13 data, colors, swaps, comparisons = frame_data

14 plt.cla() # clear old contents of current Figure

15

16 # create barplot and set its xlabel

17 bar_positions = np.arange(len(data))

18 axes = sns.barplot(bar_positions, data, palette=colors) # new bars

19 axes.set(xlabel=f'Comparisons: {comparisons}; Swaps: {swaps}',

20 xticklabels=data)

21

The update method’s frame_data parameter receives a tuple containing information for updating the bar plot. Line 13 unpacks frame_data into:

	data—the array being sorted,

	colors—an array of color names containing the specific color for each bar,

	swaps—an integer representing the number of swaps performed so far, and

	comparisons—an integer representing the number of comparisons performed so far.

We show the comparisons and swaps values below the x-axis so you can see them update as the sort executes.

Rather than letting Seaborn choose colors for the bars, line 18 specifies the colors array as the barplot’s palette. When barplot creates each bar for the values in data, it uses the color at the corresponding index in colors. This enables us to emphasize with color the values sorted so far, the values the algorithm currently is comparing and the values the algorithm is swapping. Lines 19–20 display the comparisons and swaps performed so far as the x-axis label and set the data array’s values as the x-axis tick labels below the bars. As the sort animation proceeds, you’ll see both the bars and their corresponding tick labels change positions.

flash_bars Function That Flashes the Bars About to Be Swapped

We emphasize when the algorithm swaps two element values by calling flash_bars before and after a swap to flash the corresponding bars. The function receives the indices of the values about to be swapped, as well as the data array, colors array and the swaps and comparisons values. The last two parameters are used only in the yield statements. Each such statement throughout this example returns a tuple of the values the FuncAnimation passes to the update function’s frame_data parameter.

22 def flash_bars(index1, index2, data, colors, swaps, comparisons):

23 """Flash the bars about to be swapped and play their notes."""

24 for x in range(0, 2):

25 colors[index1], colors[index2] = 'white', 'white'

26 yield (data, colors, swaps, comparisons)

27 colors[index1], colors[index2] = 'purple', 'purple'

28 yield (data, colors, swaps, comparisons)

29 play_sound(data[index1], seconds=0.05)

30 play_sound(data[index2], seconds=0.05)

31

The loop (lines 24–30) iterates twice and performs the following tasks:

	To create the flashing effect, we first “erase” the bars by drawing them in white. So line 25 sets the colors array’s elements at index1 and index2 to 'white'.

	Line 26 yields data, colors, swaps and comparisons so that the FuncAnimation can pass them to function update for use in drawing the next animation frame.

	Lines 27 and 28 repeat the two previous steps but redisplay the bars in purple to complete the flash effect.

	Lines 29 and 30 call play_sound with the data value at each index to play for 0.05 seconds a note corresponding to the bar’s magnitude.

When the play_sound calls occur before the swap, the notes play in decreasing pitch to indicate that the values are out of order. The larger the bar, the higher its pitch and vice versa. When the calls occur after the swap, the notes play in increasing pitch to indicate that the values are now in order.

selection_sort Generator Function

Before the algorithm begins, lines 35–36 initialize the swaps and comparisons counters. Line 37 creates the colors array specifying that all the bars should be 'lightgray' initially. We’ll modify this array’s elements throughout the algorithm to emphasize bars in different ways. Line 40 yields data, colors, swaps and comparisons to the FuncAnimation. Each time values are yielded, the FuncAnimation passes them to the update function. This first yield causes the animation to display the bars in their initial unsorted order.

32 def selection_sort(data):

33 """Sort data using the selection sort algorithm and

34 yields values that update uses to visualize the algorithm."""

35 swaps = 0

36 comparisons = 0

37 colors = ['lightgray'] * len(data) # list of bar colors

38

39 # display initial bars representing shuffled values

40 yield (data, colors, swaps, comparisons)

41

42 # loop over len(data) - 1 elements

43 for index1 in range(0, len(data) - 1):

44 smallest = index1

45

46 # loop to find index of smallest element's index

47 for index2 in range(index1 + 1, len(data)):

48 comparisons += 1

49 colors[smallest] = 'purple'

50 colors[index2] = 'red'

51 yield (data, colors, swaps, comparisons)

52 play_sound(data[index2], seconds=0.05)

53

54 # compare elements at positions index and smallest

55 if data[index2] < data[smallest]:

56 colors[smallest] = 'lightgray'

57 smallest = index2

58 colors[smallest] = 'purple'

59 yield (data, colors, swaps, comparisons)

60 else:

61 colors[index2] = 'lightgray'

62 yield (data, colors, swaps, comparisons)

63

64 # ensure that last bar is not purple

65 colors[-1] = 'lightgray'

66

67 # flash the bars about to be swapped

68 yield from flash_bars(index1, smallest, data, colors,

69 swaps, comparisons)

70

71 # swap the elements at positions index1 and smallest

72 swaps += 1

73 data[smallest], data[index1] = data[index1], data[smallest]

74

75 # flash the bars that were just swapped

76 yield from flash_bars(index1, smallest, data, colors,

77 swaps, comparisons)

78

79 # indicate that bar index1 is now in its final spot

80 colors[index1] = 'lightgreen'

81 yield (data, colors, swaps, comparisons)

82

83 # indicate that last bar is now in its final spot

84 colors[-1] = 'lightgreen'

85 yield (data, colors, swaps, comparisons)

86 play_sound(data[-1], seconds=0.05)

87

88 # play each bar's note once and color it darker green

89 for index in range(len(data)):

90 colors[index] = 'green'

91 yield (data, colors, swaps, comparisons)

92 play_sound(data[index], seconds=0.05)

93

The nested loops in lines 43–81 implement the selection sort algorithm. Here, we focus on the animation enhancements:

	Every iteration of the nested loop adds one to comparisons (line 48) to keep track of the total number of comparisons performed.

	The bar at the index smallest is always colored purple (line 49) during a pass of the algorithm. This bar’s position frequently changes as the nested loop executes.

	The bar at the index index2 is always colored red (line 50) during a pass of the algorithm’s nested loop. The red bar represents the value currently being compared with the smallest value during the current pass.

	Line 51 yields data, colors, swaps and comparisons during each iteration of the nested loop, so we can see the purple and red bars indicating the values that are being compared.

	Line 52 plays a musical note corresponding to the red bar’s magnitude. We’ll soon overview how we choose the note frequencies.

	If lines 55–62 find a smaller value, we color the original smallest bar light gray and the new smallest bar purple. Otherwise, we color the bar at index2 light gray. These steps ensure that only one bar is red and one is purple during the comparisons. In either case, we yield the values for the next animation frame.

	Line 65 ensures that the last bar does not remain purple at the end of a pass.

	Each iteration of the outer loop ends with a swap. Lines 68–77 flash the corresponding bars before the swap, increment the swaps counter, perform the swap and flash the corresponding bars again. When one generator function (in this case selection_sort) needs to yield the results of another, chained generator functions are required. In this case, you must call the latter function (flash_bars), in a yield from statement (lines 68–69 and 76–77). This ensures that the values yielded by flash_bars “pass through” to the FuncAnimation for the next update call.

	Line 80 colors the element at index1 light green to indicate that it is now in its final sorted position, and line 81 yields to draw the next animation frame.

When the algorithm’s outer loop completes, the last element of data is in its final position, so lines 84–86 color it light green, yield to draw the next animation frame and play that bar’s note. To complete the animation, lines 89–92 convert each bar one at a time to a darker green, yield to draw the next animation frame and play that bar’s musical note. The FuncAnimation terminates when the source of its animation-frame data has no more values. In this example, that occurs when the selection_sort function terminates.

main Function That Launches the Animation

The main function configures and starts the animation. If you specify the number of values to sort as a command-line argument, line 95 uses that value; otherwise, it uses 10 as the default. Lines 98–99 create and shuffle the array.

94 def main():

95 number_of_values = int(sys.argv[1]) if len(sys.argv) == 2 else 10

96

97 figure = plt.figure('Selection Sort') # Figure to display barplot

98 numbers = np.arange(1, number_of_values + 1) # create array

99 np.random.shuffle(numbers) # shuffle the array

100

101 # start the animation

102 anim = animation.FuncAnimation(figure, update, repeat=False,

103 frames=selection_sort(numbers), interval=50)

104

105 plt.show() # display the Figure

106

107 # call main if this file is executed as a script

108 if __name__ == '__main__':

109 main()

Lines 102–103 create the FuncAnimation. Recall that the frames keyword argument receives a value that specifies how many animation frames to execute. In this example, the frames keyword argument receives a call to the generator function selection_sort. So the number of animation frames depends on when the generator “runs out” of values. The values yielded by selection_sort are the source of the update function’s frame_data. When selection_sort yields a new tuple of values, selection_sort pauses execution (keeping track of where it left off) and the FuncAnimation passes the tuple to update, which displays the next animation frame. When update finishes executing, selection_sort continues executing the algorithm from the point at which it paused.

Sound Utility Functions

The file ch11soundutilities.py contains two constants that we use to calculate musical note frequencies programmatically and three functions that play MIDI notes:

	TWELFTH_ROOT_2 represents the 12th root of 2, and A3 represents the frequency of the note A in the third octave on a piano. Positive values of i in line 11’s calculation produce notes with higher frequencies than A3 and negative values produce notes with lower frequencies. Each consecutive value of i represents the next key on the piano, so if i is 12, the note would be A4—that is, A in the next higher octave. Similarly, if i is -12, the note would be A2.

	Function play_sound (lines 8–11) receives two arguments specifying the number of steps (that is, keys on the piano) above A3 for which to produce a note and the length of time in seconds to play that note. Line 11 calls the pysine module’s sine function to play a note for the specified frequency and duration.

	The functions play_found_sound and play_not_found_sound are not used in this example. We provided them for you to use in your solution to Exercise 11.23, in which you’ll create an animated binary search visualization. Each function plays specific notes to indicate whether a search key is found or not found.

 1 # ch11soundutilities.py

 2 """Functions to play sounds."""

 3 from pysine import sine

 4

 5 TWELFTH_ROOT_2 = 1.059463094359 # 12th root of 2

 6 A3 = 220 # hertz frequency for musical note A from third octave

 7

 8 def play_sound(i, seconds=0.1):

 9 """Play a note representing a bar's magnitude. Calculation

10 based on https://pages.mtu.edu/~suits/NoteFreqCalcs.html."""

11 sine(frequency=(A3 * TWELFTH_ROOT_2 ** i), duration=seconds)

12

13 def play_found_sound(seconds=0.1):

14 """Play sequence of notes indicating a found item."""

15 sine(frequency=523.25, duration=seconds) # C5

16 sine(frequency=698.46, duration=seconds) # F5

17 sine(frequency=783.99, duration=seconds) # G5

18

19 def play_not_found_sound(seconds=0.3):

20 """Play a note indicating an item was not found."""

21 sine(frequency=220, duration=seconds) # A3

11.16 Wrap-Up

In this chapter, which concludes our introduction to Python programming, you immersed yourself in some computer science thinking that goes beyond programming fundamentals. You created recursive functions—i.e., functions that call themselves. These functions (or methods) typically divide a problem into two conceptual pieces—the base case and the recursion step. The latter is a slightly smaller version of the original problem and is performed by a recursive function call. You saw some popular recursion examples, including calculating factorials and Fibonacci numbers. We compared recursive and iterative problem-solving approaches.

We also introduced searching and sorting. We discussed two searching algorithms—linear search and binary search—and three sorting algorithms—selection sort, insertion sort and recursive merge sort. We introduced Big O notation, which helps you express the efficiency of algorithms, making it easy to compare different algorithms for solving the same problem.

We presented an animated visualization of the selection sort using Seaborn and Matplotlib. We used the Matplotlib FuncAnimation class to drive the animation. We recast our selection_sort function as a generator function to provide values for display in the animation.

In the next part of the book, we present a series of implementation case studies that use a mix of AI and big-data technologies. We explore natural language processing, data mining Twitter, IBM Watson and cognitive computing, supervised and unsupervised machine learning, and deep learning with convolutional neural networks and recurrent neural networks. We discuss big-data software and hardware infrastructure, including NoSQL databases, Hadoop and Spark with a major emphasis on performance. You’re about to learn some really cool stuff!

Exercises

	11.1 What does the following code do?

In [1]: def mystery(a, b):

 ...: if b == 1:

 ...: return a

 ...: else:

 ...: return a + mystery(a, b - 1)

 ...:

In [2]: mystery(2, 10)

Out[2]: ?????

	11.2 Find the logic error(s) in the following recursive function, and explain how to correct it (them). This function should find the sum of the values from 0 to n.

In [3]: def sum(n):

 ...: if n == 0:

 ...: return 0

 ...: else:

 ...: return n + sum(n)

 ...:

	11.3 What does the following code do?

In [4]: def mystery(a_array, size):

 ...: if size == 1:

 ...: return a_array[0]

 ...: else:

 ...: return a_array[size - 1] + mystery(a_array, size - 1)

 ...:

In [5]: import numpy as np

In [6]: numbers = np.arange(1, 11)

In [7]: mystery(numbers, len(numbers))

Out[7]: ?????

	11.4 In Section 11.3, we presented a recursive factorial function. What happens if you remove the if statement from the factorial function, then call the function?

	11.5 (Recursive power Function) Write a recursive function power(base, exponent) that, when called, returns

base exponent

For example, power(3,4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal to 1. Hint: The recursion step should use the relationship

base exponent = base · base exponent – 1

and the terminating condition occurs when exponent is equal to 1, because

base1 = base

Incorporate this function into a program that enables the user to enter the base and exponent.

	11.6 (Recursive Fibonacci Modification) Modify Section 11.4’s recursive fibonacci function to keep track of the total number of function calls. Display the number of calls for fibonacci(10), fibonacci(20) and fibonacci(30).

	11.7 (Improving Recursive Fibonacci Performance: Memoization) Research the performance enhancement technique called memoization. Modify Section 11.4’s recursive fibonacci function to incorporate memoization. Compare the performance of both versions for fibonacci(10), fibonacci(20) and fibonacci(30).

	11.8 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify the recursive factorial function presented in this chapter to print its local variable and recursive-call parameter. For each recursive call, display the outputs on a separate line and add a level of indentation. Make the outputs clear, interesting and meaningful. Your goal here is to design and implement an output format that makes it easier to understand recursion.

	11.9 (Greatest Common Divisor) The greatest common divisor of integers x and y is the largest integer that evenly divides into both x and y. Write and test a recursive function gcd that returns the greatest common divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal to 0, then gcd(x, y) is x; otherwise, gcd(x, y) is gcd(y, x % y), where % is the remainder operator.

	11.10 (Palindromes) A palindrome is a string that is spelled the same way forward and backward. Some examples of palindromes are “radar,” “able was i ere i saw elba” and (if spaces are ignored) “a man a plan a canal panama.” Write a recursive test_palindrome function that returns True if the string stored in an array is a palindrome and False otherwise. The function should ignore spaces and punctuation in the string.

	11.11 (Eight Queens) A puzzler for chess buffs is the Eight Queens problem, which asks: Is it possible to place eight queens on an empty chessboard so that no queen is “attacking” any other (i.e., no two queens are in the same row, in the same column or along the same diagonal)? For example, if a queen is placed in the upper-left corner of the board, no other queens could be placed in any of the marked squares shown in the following figure. Solve the problem recursively. [Hint: Your solution should begin with the first column and look for a location in that column where a queen can be placed—initially, place the queen in the first row. The solution should then recursively search the remaining columns. In the first few columns, there will be several locations where a queen may be placed. Take the first available location. If a column is reached with no possible location for a queen, the program should return to the previous column, and move the queen in that column to a new row. This continuous backing up and trying new alternatives is an example of recursive backtracking.]

[image: A chess board has asterisks in the spaces of the top row and left most column. A diagonal line of spaces marked with asterisks extends from the top left space across the board to the bottom right square of the board.]

	11.12 (Towers of Hanoi) In this chapter, you studied functions that can be easily implemented both recursively and iteratively. In this exercise, we present a problem whose recursive solution demonstrates the elegance of recursion, and whose iterative solution may not be as apparent.

The Towers of Hanoi is one of the most famous classic problems every budding computer scientist must grapple with. Legend has it that in a temple in the Far East, priests are attempting to move a stack of golden disks from one diamond peg to another. The following diagram shows the pegs with four disks on peg 1.

[image: 3 pegs, numbered 1 through 3 from left to right extend vertically from a horizontal board. Peg 1 has four disks stacked, in graduated sizes, from largest to smallest from bottom to top. Pegs 2 and 3 are empty.]

The initial stack has 64 disks threaded onto one peg and arranged from bottom to top by decreasing size. The priests are attempting to move the stack from one peg to another under the constraints that exactly one disk is moved at a time and at no time may a larger disk be placed above a smaller disk. Three pegs are provided, one being used for temporarily holding disks. Supposedly, the world will end when the priests complete their task, so there is little incentive for us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to develop an algorithm that prints the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional functions, we would rapidly find ourselves hopelessly knotted up in managing the disks. Instead, attacking this problem with recursion in mind allows the steps to be simple. Moving n disks can be viewed in terms of moving only n – 1 disks (hence, the recursion), as follows:

	Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.

	Move the last disk (the largest) from peg 1 to peg 3.

	Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This task is accomplished by simply moving the disk, without the need for a temporary holding area. Write a program to solve the Towers of Hanoi problem. Use a recursive function with four parameters:

	The number of disks to be moved.

	The peg on which these disks are initially threaded.

	The peg to which this stack of disks is to be moved.

	The peg to be used as a temporary holding area.

Display the precise instructions for moving the disks from the starting peg to the destination peg. To move a stack of three disks from peg 1 to peg 3, the program displays the following moves:

1 → 3 (This means move one disk from peg 1 to peg 3.)

1 → 2

3 → 2

1 → 3

2 → 1

2 → 3

1 → 3

	11.13 (Logarithmic Portion of Big O) What key aspect of both the binary search and the merge sort accounts for the logarithmic portion of their respective Big Os?

	11.14 (Comparing Insertion Sort to Merge Sort) In what sense is the insertion sort superior to the merge sort? In what sense is the merge sort superior to the insertion sort?

	11.15 (Merge Sort: Sorting Subarrays) In the text, we say that after the merge sort splits the array into two subarrays, it then sorts these two subarrays and merges them. Why might someone be puzzled by our statement that “it then sorts these two subarrays”?

	11.16 (Timing Sorting Algorithms) Remove the output statements from the functions selection_sort, insertion_sort and merge_sort defined in this chapter, then import each example’s source-code file into IPython. Create a 100,000-element array of random integers named data1 and make two additional copies of the array (data2 and data3) by calling method copy on the original array. Next, use %timeit as follows to compare the performance of each sorting algorithm:

%timeit -n 1 -r 1 selectionsort.selection_sort(data1)

%timeit -n 1 -r 1 insertionsort.insertion_sort(data2)

%timeit -n 1 -r 1 mergesort.merge_sort(data3)

Do the selection_sort and insertion_sort take approximately the same amount of time? Is merge_sort much faster?

	11.17 (Bucket Sort) A bucket sort begins with a one-dimensional array of positive integers to be sorted and a two-dimensional array of integers with rows indexed from 0 to 9 and columns indexed from 0 to n – 1, where n is the number of values to be sorted. Each row of the two-dimensional array is referred to as a bucket. Write a class named BucketSort containing a function called sort that operates as follows:

	Place each value of the one-dimensional array into a row of the bucket array, based on the value’s “ones” (rightmost) digit. For example, 97 is placed in row 7, 3 is placed in row 3, and 100 is placed in row 0. This procedure is called a distribution pass.

	Loop through the bucket array row by row, and copy the values back to the original array. This procedure is called a gathering pass. The new order of the preceding values in the one-dimensional array is 100, 3 and 97.

	Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.). On the second (tens digit) pass, 100 is placed in row 0, 3 is placed in row 0 (because 3 has no tens digit), and 97 is placed in row 9. After the gathering pass, the order of the values in the one-dimensional array is 100, 3 and 97. On the third (hundreds digit) pass, 100 is placed in row 1, 3 is placed in row 0, and 97 is placed in row 0 (after the 3). After this last gathering pass, the original array is in sorted order.

The two-dimensional array of buckets is 10 times the length of the integer array being sorted. This sorting technique provides better performance than a selection and insertion sorts but requires much more memory—the selection and insertion sorts require space for only one additional element of data. This comparison is an example of a space/time trade-off: The bucket sort uses more memory than the selection and insertion sorts, but performs better. This version of the bucket sort requires copying all the data back to the original array on each pass. Another possibility is to create a second two-dimensional bucket array and repeatedly swap the data between the two bucket arrays.

	11.18 (Recursive Binary Search) Modify this chapter’s binary_search function to perform a recursive binary search of the array. The function should receive the search key, starting index and ending index as arguments. If the search key is found, return its index in the array. If the search key is not found, return –1.

	11.19 (Quicksort) The recursive sorting technique called quicksort uses the following basic algorithm for a one-dimensional array of values:

	Partitioning Step: Take the first element of the unsorted array and determine its final location in the sorted array (i.e., all values to the left of the element in the array are less than the element, and all values to the right of the element in the array are greater than the element—we show how to do this below). We now have one element in its proper location and two unsorted subarrays.

	Recursive Step: Perform Step 1 on each unsorted subarray. Each time Step 1 is performed on a subarray, another element is placed in its final location of the sorted array, and two unsorted subarrays are created. When a subarray consists of one element, that element is in its final location (because a one-element array is already sorted).

The basic algorithm seems simple enough, but how do we determine the final position of the first element of each subarray? As an example, consider the following set of values (the element in bold is the partitioning element—it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

Starting from the rightmost element of the array, compare each element with 37 until an element less than 37 is found; then swap 37 and that element. The first element less than 37 is 12, so 37 and 12 are swapped. The new array is

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with 37.

Starting from the left of the array, but beginning with the element after 12, compare each element with 37 until an element greater than 37 is found—then swap 37 and that element. The first element greater than 37 is 89, so 37 and 89 are swapped. The new array is

12 2 6 4 37 8 10 89 68 45

Starting from the right, but beginning with the element before 89, compare each element with 37 until an element less than 37 is found—then swap 37 and that element. The first element less than 37 is 10, so 37 and 10 are swapped. The new array is

12 2 6 4 10 8 37 89 68 45

Starting from the left, but beginning with the element after 10, compare each element with 37 until an element greater than 37 is found—then swap 37 and that element. There are no more elements greater than 37, so when we compare 37 with itself, we know that 37 has been placed in its final location in the sorted array. Every value to the left of 37 is smaller than it, and every value to the right of 37 is larger than it.

Once the partition has been applied on the previous array, there are two unsorted subarrays. The subarray with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37 contains 89, 68 and 45. The sort continues recursively, with both subarrays being partitioned in the same manner as the original array.

Based on the preceding discussion, write recursive function quick_sort_helper to sort a one-dimensional integer array. The function should receive as arguments a starting index and an ending index on the original array being sorted. Call this function from a quick_sort function that receives just the original array to sort.

	11.20 (Determining Big O of Various Algorithms) Determine the Big O for each of the following. You may need to research some of these items online:

	Get or set an item by index in a Python list.

	Insert a new value in order in a Python sorted list.

	Shell short an array.

	Bubble sort an array.

	Towers of Hanoi for n disks. [Hint: For n=1, 2, 3, 4, 5 or 6, the number of operations is 1, 3, 7, 15, 31 or 63, respectively.] You’ll see that the Big O for the Towers of Hanoi—O(2n)—is far worse than that of the O(n2) sorts in this chapter. By the way, for 64 disks, the number of operations is 18,446,744,073,709,551,615. If the priests could move one disk per second, it would take 584,942,417,355 years to move the stack of 64 disks!

	Find all the permutations (unique arrangements) of n unique items. [Hint: For the digits 1, 2 and 3 there are six permutations—123, 132, 213, 231, 312 and 321.] For the digits 1, 2, 3 and 4 there are 24 permutations. For the digits 1, 2, 3, 4 and 5 there are 120 permutations. You’ll see that this Big O is far worse even than that of the Towers of Hanoi.

	11.21 (Project: Quicksort Animation) Look at the QuickSort.mp4 video file provided with this chapter’s examples. Using the techniques you learned in the selection sort animation, modify your solution to Exercise 11.19 to display an animation of the quicksort algorithm in action.

	11.22 (Project: Merge Sort Animation) Using the techniques you learned in the selection sort animation, modify the merge sort presented in this chapter to display an animation of the algorithm in action.

	11.23 (Project: Binary Search Animation) Using the techniques you learned in the selection sort animation, modify the binary search presented in this chapter to display an animation of the algorithm in action. The ch11soundutilities.py files includes functions play_found_sound and play_not_found_sound for use in this exercise.

	11.24 (Challenge Project: Animated Towers of Hanoi) The following website

https://svn.python.org/projects/stackless/trunk/Demo/tkinter/guido/hanoi.py

has an animated implementation of the Towers of Hanoi using the tkinter module. Study the code, then modify it to run faster. [Note: The code has a typo—the import statement for tkinter has a capital T, which should be lowercase.]

	11.25 (Project: Recursive Directory Searching) To better understand the concept of recursion, let’s look at an example that’s quite familiar to computer users—the recursive definition of a file-system directory on a computer. A computer normally stores related files in a directory (also called a folder). A directory can be empty, can contain files and/or can contain other directories, usually referred to as subdirectories. Each of these subdirectories, in turn, may also contain both files and directories. If we want to list each file in a directory (including all the files in the directory’s subdirectories), we need to create a function that first lists the initial directory’s files, then makes recursive calls to list the files in each of that directory’s subdirectories. The base case occurs when a directory is reached that does not contain any subdirectories. At this point, all the files in the original directory have been listed, and no further recursion is necessary. Write a print_directory function that recursively walks through the files and subdirectories of a directory specified as an argument. The output from each recursive call should indent the names of the files and directories it prints one additional “level” so you can see the file and directory structure. Precede each file or directory name with F (for file) or D (for directory).

12 Natural Language Processing (NLP)

Objectives

In this chapter you’ll:

	Perform natural language processing (NLP) tasks, which are fundamental to many of the forthcoming data science case study chapters.

	Run lots of NLP demos.

	Use the TextBlob, NLTK, Textatistic and spaCy NLP libraries and their pretrained models to perform various NLP tasks.

	Tokenize text into words and sentences.

	Use parts-of-speech tagging.

	Use sentiment analysis to determine whether text is positive, negative or neutral.

	Detect the language of text and translate between languages using TextBlob’s Google Translate support.

	Get word roots via stemming and lemmatization.

	Use TextBlob’s spell checking and correction capabilities.

	Get word definitions, synonyms and antonyms.

	Remove stop words from text.

	Create word clouds.

	Determine text readability with Textatistic.

	Use the spaCy library for named entity recognition and similarity detection.

Outline

	12.1 Introduction

	12.2 TextBlob

	12.2.1 Create a TextBlob

	12.2.2 Tokenizing Text into Sentences and Words

	12.2.3 Parts-of-Speech Tagging

	12.2.4 Extracting Noun Phrases

	12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer

	12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer

	12.2.7 Language Detection and Translation

	12.2.8 Inflection: Pluralization and Singularization

	12.2.9 Spell Checking and Correction

	12.2.10 Normalization: Stemming and Lemmatization

	12.2.11 Word Frequencies

	12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet

	12.2.13 Deleting Stop Words

	12.2.14 n-grams

	12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds

	12.3.1 Visualizing Word Frequencies with Pandas

	12.3.2 Visualizing Word Frequencies with Word Clouds

	12.4 Readability Assessment with Textatistic

	12.5 Named Entity Recognition with spaCy

	12.6 Similarity Detection with spaCy

	12.7 Other NLP Libraries and Tools

	12.8 Machine Learning and Deep Learning Natural Language Applications

	12.9 Natural Language Datasets

	12.10 Wrap-Up

	Exercises

12.1 Introduction

Your alarm wakes you, and you hit the “Alarm Off” button. You reach for your smartphone and read your text messages and check the latest news clips. You listen to TV hosts interviewing celebrities. You speak to family, friends and colleagues and listen to their responses. You have a hearing-impaired friend with whom you communicate via sign language and who enjoys close-captioned video programs. You have a blind colleague who reads braille, listens to books being read by a computerized book reader and listens to a screen reader speak about what’s on his computer screen. You read emails, distinguishing junk from important communications and send email. You read novels or works of non-fiction. You drive, observing road signs like “Stop,” “Speed Limit 35” and “Road Under Construction.” You give your car verbal commands, like “call home,” “play classical music” or ask questions like, “Where’s the nearest gas station?” You teach a child how to speak and read. You send a sympathy card to a friend. You study from textbooks. You read newspapers and magazines. You take notes during a class or meeting. You learn a foreign language to prepare for a semester abroad. You receive a client email in Spanish and run it through a free translation program. You respond in English knowing that your client can easily translate your email back to Spanish. You are uncertain about the language of an email, but language detection software instantly figures that out for you and translates the email to English.

These are examples of natural language communications in text, voice, video, sign language, braille and other forms with languages like English, Spanish, French, Russian, Chinese, Japanese and hundreds more. In this chapter, you’ll master many natural language processing (NLP) capabilities through a series of hands-on demos, IPython sessions, Self-Check exercises and a broad range of end-of-chapter exercises and projects. You’ll use many of these NLP capabilities in the upcoming data science case study chapters.

Natural language processing is performed on text collections, composed of Tweets, Facebook posts, conversations, movie reviews, Shakespeare’s plays, historic documents, news items, meeting logs, and so much more. A text collection is known as a corpus, the plural of which is corpora.

Natural language lacks mathematical precision. Nuances of meaning make natural language understanding difficult. A text’s meaning can be influenced by its context and the reader’s “world view.” Search engines, for example, can get to “know you” through your prior searches. The upside is better search results. The downside could be invasion of privacy.

12.2 TextBlob1
1. https://textblob.readthedocs.io/en/latest/.

TextBlob is an object-oriented NLP text-processing library that is built on the NLTK and pattern NLP libraries and simplifies many of their capabilities. Some of the NLP tasks TextBlob can perform include:

	Tokenization—splitting text into pieces called tokens, which are meaningful units, such as words and numbers.

	Parts-of-speech (POS) tagging—identifying each word’s part of speech, such as noun, verb, adjective, etc.

	Noun phrase extraction—locating groups of words that represent nouns, such as “red brick factory.”2
2. The phrase “red brick factory” illustrates why natural language is such a difficult subject. Is a “red brick factory” a factory that makes red bricks? Is it a red factory that makes bricks of any color? Is it a factory built of red bricks that makes products of any type? In today’s music world, it could even be the name of a rock band or the name of a game on your smartphone.

	Sentiment analysis—determining whether text has positive, neutral or negative sentiment.

	Inter-language translation and language detection powered by Google Translate.

	Inflection3—pluralizing and singularizing words. There are other aspects of inflection that are not part of TextBlob.
3. https://en.wikipedia.org/wiki/Inflection.

	Spell checking and spelling correction.

	Stemming—reducing words to their stems by removing prefixes or suffixes. For example, the stem of “varieties” is “varieti.”

	Lemmatization—like stemming, but produces real words based on the original words’ context. For example, the lemmatized form of “varieties” is “variety.”

	Word frequencies—determining how often each word appears in a corpus.

	WordNet integration for finding word definitions, synonyms and antonyms.

	Stop word elimination—removing common words, such as a, an, the, I, we, you and more to analyze the important words in a corpus.

	n-grams—producing sets of consecutive words in a corpus for use in identifying words that frequently appear adjacent to one another.

Many of these capabilities are used as part of more complex NLP tasks. In this section, we’ll perform these NLP tasks using TextBlob and NLTK.

Installing the TextBlob Module

To install TextBlob, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then execute the following command:

conda install -c conda-forge textblob

Windows users might need to run the Anaconda Prompt as an Administrator for proper software installation privileges. To do so, right-click Anaconda Prompt in the start menu and select More > Run as administrator.

Once installation completes, execute the following command to download the NLTK corpora used by TextBlob:

ipython -m textblob.download_corpora

These include:

	The Brown Corpus (created at Brown University4) for parts-of-speech tagging.
4. https://en.wikipedia.org/wiki/Brown_Corpus.

	Punkt for English sentence tokenization.

	WordNet for word definitions, synonyms and antonyms.

	Averaged Perceptron Tagger for parts-of-speech tagging.

	conll2000 for breaking text into components, like nouns, verbs, noun phrases and more—known as chunking the text. The name conll2000 is from the conference that created the chunking data—Conference on Computational Natural Language Learning.

	Movie Reviews for sentiment analysis.

Project Gutenberg

A great source of text for analysis is the free e-books at Project Gutenberg:

https://www.gutenberg.org

The site contains over 57,000 e-books in various formats, including plain text files. These are out of copyright in the United States. For information about Project Gutenberg’s Terms of Use and copyright in other countries, see:

https://www.gutenberg.org/wiki/Gutenberg:Terms_of_Use

In some of this section’s examples, we use the plain-text e-book file for Shakespeare’s Romeo and Juliet, which you can find at:

https://www.gutenberg.org/ebooks/1513

Project Gutenberg does not allow programmatic access to its e-books. You’re required to copy the books for that purpose.5 To download Romeo and Juliet as a plain-text e-book, right click the Plain Text UTF-8 link on the book’s web page, then select Save Link As… (Chrome/FireFox), Download Linked File As… (Safari) or Save target as (Microsoft Edge) option to save the book to your system. Save it as RomeoAndJuliet.txt in the ch12 examples folder to ensure that our code examples will work correctly. For analysis purposes, we removed the Project Gutenberg text before "THE TRAGEDY OF ROMEO AND JULIET", as well as the Project Guttenberg information at the end of the file starting with:
5. https://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages.

End of the Project Gutenberg EBook of Romeo and Juliet,

by William Shakespeare

[image: tick mark] Self Check

	(Fill-In) TextBlob is an object-oriented NLP text-processing library built on the and NLP libraries, and simplifies accessing their capabilities.

Answer: NLTK, pattern.

12.2.1 Create a TextBlob

TextBlob6

 is the fundamental class for NLP with the textblob module. Let’s create a TextBlob containing two sentences:
6. http://textblob.readthedocs.io/en/latest/api_reference.html#textblob.blob.TextBlob.

In [1]: from textblob import TextBlob

In [2]: text = 'Today is a beautiful day. Tomorrow looks like bad weather.'

In [3]: blob = TextBlob(text)

In [4]: blob

Out[4]: TextBlob("Today is a beautiful day. Tomorrow looks like bad

weather.")

TextBlobs—and, as you’ll see shortly, Sentences and Words—support string methods and can be compared with strings. They also provide methods for various NLP tasks. Sentences, Words and TextBlobs inherit from BaseBlob, so they have many common methods and properties.

[Note: We use snippet [3]’s TextBlob in several of the following Self Checks and sub-sections, in which we continue the previous interactive session.]

[image: tick mark] Self Check

	(Fill-In) is the fundamental class for NLP with the textblob module.

Answer: TextBlob.

	(True/False) TextBlobs support string methods and can be compared with strings using the comparison operators.

Answer: True.

	(IPython Session) Create a TextBlob named exercise_blob containing 'This is a TextBlob'.

Answer:

In [5]: exercise_blob = TextBlob('This is a TextBlob')

In [6]: exercise_blob

Out[6]: TextBlob("This is a TextBlob")

12.2.2 Tokenizing Text into Sentences and Words

Natural language processing often requires tokenizing text before performing other NLP tasks. TextBlob provides convenient properties for accessing the sentences and words in TextBlobs. Let’s use the sentence property to get a list of Sentence objects:

In [7]: blob.sentences

Out[7]:

[Sentence("Today is a beautiful day."),

 Sentence("Tomorrow looks like bad weather.")]

The words property returns a WordList object containing a list of Word objects, representing each word in the TextBlob with the punctuation removed:

In [8]: blob.words

Out[8]: WordList(['Today', 'is', 'a', 'beautiful', 'day', 'Tomorrow',

'looks', 'like', 'bad', 'weather'])

[image: tick mark] Self Check

	(IPython Session) Create a TextBlob with two sentences, then tokenize it into Sentences and Words, displaying all the tokens.

Answer:

In [9]: ex = TextBlob('My old computer is slow. My new one is fast.')

In [10]: ex.sentences

Out[10]: [Sentence("My old computer is slow."), Sentence("My new one is

fast.")]

In [11]: ex.words

Out[11]: WordList(['My', 'old', 'computer', 'is', 'slow', 'My', 'new',

'one', 'is', 'fast'])

12.2.3 Parts-of-Speech Tagging

Parts-of-speech (POS) tagging is the process of evaluating words based on their context to determine each word’s part of speech. There are eight primary English parts of speech—nouns, pronouns, verbs, adjectives, adverbs, prepositions, conjunctions and interjections (words that express emotion and that are typically followed by punctuation, like “Yes!” or “Ha!”). Within each category there are many subcategories.

Some words have multiple meanings. For example, the words “set” and “run” have hundreds of meanings each! If you look at the dictionary.com definitions of the word “run,” you’ll see that it can be a verb, a noun, an adjective or a part of a verb phrase. An important use of POS tagging is determining a word’s meaning among its possibly many meanings. This is important for helping computers “understand” natural language.

The tags property returns a list of tuples, each containing a word and a string representing its part-of-speech tag:

In [12]: blob

Out[12]: TextBlob("Today is a beautiful day. Tomorrow looks like bad

weather.")

In [13]: blob.tags

Out[13]:

[('Today', 'NN'),

 ('is', 'VBZ'),

 ('a', 'DT'),

 ('beautiful', 'JJ'),

 ('day', 'NN'),

 ('Tomorrow', 'NNP'),

 ('looks', 'VBZ'),

 ('like', 'IN'),

 ('bad', 'JJ'),

 ('weather', 'NN')]

By default, TextBlob uses a PatternTagger to determine parts-of-speech. This class uses the parts-of-speech tagging capabilities of the pattern library:

https://www.clips.uantwerpen.be/pattern

You can view the library’s 63 parts-of-speech tags at

https://www.clips.uantwerpen.be/pages/MBSP-tags

In the preceding snippet’s output:

	Today, day and weather are tagged as NN—a singular noun or mass noun.

	is and looks are tagged as VBZ—a third person singular present verb.

	a is tagged as DT—a determiner.7
7. https://en.wikipedia.org/wiki/Determiner.

	beautiful and bad are tagged as JJ—an adjective.

	Tomorrow is tagged as NNP—a proper singular noun.

	like is tagged as IN—a subordinating conjunction or preposition.

[image: tick mark] Self Check

	(Fill-In) is the process of evaluating words based on their context to determine each word’s part of speech

Answer: Parts-of-speech (POS) tagging.

	(IPython Session) Display the parts-of-speech tags for the sentence, 'My dog is cute'.

Answer:

In [14]: TextBlob('My dog is cute').tags

Out[14]: [('My', 'PRP$'), ('dog', 'NN'), ('is', 'VBZ'), ('cute', 'JJ')]

In the preceding output, the POS tag PRP$ indicates a possessive pronoun.

12.2.4 Extracting Noun Phrases

Let’s say you’re preparing to purchase a water ski so you’re researching them online. You might search for “best water ski.” In this case, “water ski” is a noun phrase. If the search engine does not parse the noun phrase properly, you probably will not get the best search results. Go online and try searching for “best water,” “best ski” and “best water ski” and see what you get.

A TextBlob’s noun_phrases property returns a WordList object containing a list of Word objects—one for each noun phrase in the text:

In [15]: blob

Out[15]: TextBlob("Today is a beautiful day. Tomorrow looks like bad

weather.")

In [16]: blob.noun_phrases

Out[16]: WordList(['beautiful day', 'tomorrow', 'bad weather'])

Note that a Word representing a noun phrase can contain multiple words. A WordList is an extension of Python’s built-in list type. WordLists provide additional methods for stemming, lemmatizing, singularizing and pluralizing.

[image: tick mark] Self Check

	(IPython Session) Show the noun phrase(s) in the sentence, 'The red brick factory is for sale'.

Answer:

In [17]: TextBlob('The red brick factory is for sale').noun_phrases

Out[17]: WordList(['red brick factory'])

12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer

One of the most common and valuable NLP tasks is sentiment analysis, which determines whether text is positive, neutral or negative. For instance, companies might use this to determine whether people are speaking positively or negatively online about their products. Consider the positive word “good” and the negative word “bad.” Just because a sentence contains “good” or “bad” does not mean the sentence’s sentiment necessarily is positive or negative. For example, the sentence

The food is not good.

clearly has negative sentiment. Similarly, the sentence

The movie was not bad.

clearly has positive sentiment, though perhaps not as positive as something like

The movie was excellent!

Sentiment analysis is a complex machine-learning problem. However, libraries like TextBlob have pretrained machine learning models for performing sentiment analysis.

Getting the Sentiment of a TextBlob

A TextBlob’s sentiment property returns a Sentiment object indicating whether the text is positive or negative and whether it’s objective or subjective:

In [18]: blob

Out[18]: TextBlob("Today is a beautiful day. Tomorrow looks like bad

weather.")

In [19]: blob.sentiment

Out[19]: Sentiment(polarity=0.07500000000000007,

subjectivity=0.8333333333333333)

In the preceding output, the polarity indicates sentiment with a value from -1.0 (negative) to 1.0 (positive) with 0.0 being neutral. The subjectivity is a value from 0.0 (objective) to 1.0 (subjective). Based on the values for our TextBlob, the overall sentiment is close to neutral, and the text is mostly subjective.

Getting the polarity and subjectivity from the Sentiment Object

The values displayed above probably provide more precision that you need in most cases. This can detract from numeric output’s readability. The IPython magic %precision allows you to specify the default precision for standalone float objects and float objects in built-in types like lists, dictionaries and tuples. Let’s use the magic to round the polarity and subjectivity values to three digits to the right of the decimal point:

In [20]: %precision 3

Out[20]: '%.3f'

In [21]: blob.sentiment.polarity

Out[21]: 0.075

In [22]: blob.sentiment.subjectivity

Out[22]: 0.833

Getting the Sentiment of a Sentence

You also can get the sentiment at the individual sentence level. Let’s use the sentence property to get a list of Sentence8 objects, then iterate through them and display each Sentence’s sentiment property:
8. http://textblob.readthedocs.io/en/latest/api_reference.html#textblob.blob.Sentence.

In [23]: for sentence in blob.sentences:

 ...: print(sentence.sentiment)

 ...:

Sentiment(polarity=0.85, subjectivity=1.0)

Sentiment(polarity=-0.6999999999999998, subjectivity=0.6666666666666666)

This might explain why the entire TextBlob’s sentiment is close to 0.0 (neutral)—one sentence is positive (0.85) and the other negative (-0.6999999999999998).

[image: tick mark] Self Check

	(IPython Session) Import Sentence from the TextBlob module then make Sentence objects to check the sentiment of the three sentences used in this section’s introduction.

Answer: Snippet [25]’s output shows that the sentence’s sentiment is somewhat negative (due to “not good”). Snippet [26]’s output shows that the sentence’s sentiment is somewhat positive (due to “not bad”). Snippet [27]’s output shows that the sentence’s sentiment is totally positive (due to “excellent”). The outputs indicate that all three sentences are subjective, with the last being perfectly positive and subjective.

In [24]: from textblob import Sentence

In [25]: Sentence('The food is not good.').sentiment

Out[25]: Sentiment(polarity=-0.35, subjectivity=0.6000000000000001)

In [26]: Sentence('The movie was not bad.').sentiment

Out[26]: Sentiment(polarity=0.3499999999999999,

subjectivity=0.6666666666666666)

In [27]: Sentence('The movie was excellent!').sentiment

Out[27]: Sentiment(polarity=1.0, subjectivity=1.0)

12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer

By default, a TextBlob and the Sentences and Words you get from it determine sentiment using a PatternAnalyzer, which uses the same sentiment analysis techniques as in the Pattern library. The TextBlob library also comes with a NaiveBayesAnalyzer9 (module textblob.sentiments), which was trained on a database of movie reviews. Naive Bayes10 is a commonly used machine learning text-classification algorithm. The following uses the analyzer keyword argument to specify a TextBlob’s sentiment analyzer. Recall from earlier in this ongoing IPython session that text contains 'Today is a beautiful day. Tomorrow looks like bad weather.':
9. https://textblob.readthedocs.io/en/latest/api_reference.html#module-textblob.en.sentiments.
10. https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

In [28]: from textblob.sentiments import NaiveBayesAnalyzer

In [29]: blob = TextBlob(text, analyzer=NaiveBayesAnalyzer())

In [30]: blob

Out[30]: TextBlob("Today is a beautiful day. Tomorrow looks like bad

weather.")

Let’s use the TextBlob’s sentiment property to display the text’s sentiment using the NaiveBayesAnalyzer:

In [31]: blob.sentiment

Out[31]: Sentiment(classification='neg', p_pos=0.47662917962091056,

p_neg=0.5233708203790892)

In this case, the overall sentiment is classified as negative (classification='neg'). The Sentiment object’s p_pos indicates that the TextBlob is 47.66% positive, and its p_neg indicates that the TextBlob is 52.34% negative. Since the overall sentiment is just slightly more negative we’d probably view this TextBlob’s sentiment as neutral overall.

Now, let’s get the sentiment of each Sentence:

In [32]: for sentence in blob.sentences:

 ...: print(sentence.sentiment)

 ...:

Sentiment(classification='pos', p_pos=0.8117563121751951,

p_neg=0.18824368782480477)

Sentiment(classification='neg', p_pos=0.174363226578349,

p_neg=0.8256367734216521)

Notice that rather than polarity and subjectivity, the Sentiment objects we get from the NaiveBayesAnalyzer contain a classification—'pos' (positive) or 'neg' (negative)— and p_pos (percentage positive) and p_neg (percentage negative) values from 0.0 to 1.0. Once again, we see that the first sentence is positive and the second is negative.

[image: tick mark] Self Check

	(IPython Session) Check the sentiment of the sentence 'The movie was excellent!' using the NaiveBayesAnalyzer.

Answer:

In [33]: text = ('The movie was excellent!')

In [34]: exblob = TextBlob(text, analyzer=NaiveBayesAnalyzer())

In [35]: exblob.sentiment

Out[35]: Sentiment(classification='pos', p_pos=0.7318278242290406,

p_neg=0.26817217577095936)

12.2.7 Language Detection and Translation

Inter-language translation is a challenging problem in natural language processing and artificial intelligence. With advances in machine learning, artificial intelligence and natural language processing, services like Google Translate (100+ languages) and Microsoft Bing Translator (60+ languages) can translate between languages instantly.

Inter-language translation also is great for people traveling to foreign countries. They can use translation apps to translate menus, road signs and more. There are even efforts at live speech translation so that you’ll be able to converse in real time with people who do not know your natural language.11,12

 Some smartphones, can now work together with in-ear headphones to provide near-live translation of many languages.13,14

,15 In the “IBM Watson and Cognitive Computing” chapter, we develop a script that does near real-time inter-language translation among languages supported by Watson.
11. https://www.skype.com/en/features/skype-translator/.
12. https://www.microsoft.com/en-us/translator/business/live/.
13. https://www.telegraph.co.uk/technology/2017/10/04/googles-new-headphones-can-translate-foreign-languages-real/.
14. https://store.google.com/us/product/google_pixel_buds?hl=en-US.
15. http://www.chicagotribune.com/bluesky/originals/ct-bsi-google-pixel-buds-review-20171115-story.html.

The TextBlob library uses Google Translate to detect a text’s language and translate TextBlobs, Sentences and Words into other languages.16 Let’s use detect_language method to detect the language of the text we’re manipulating ('en' is English):
16. These features require an Internet connection.

In [36]: blob

Out[36]: TextBlob("Today is a beautiful day. Tomorrow looks like bad

weather.")

In [37]: blob.detect_language()

Out[37]: 'en'

Next, let’s use the translate method to translate the text to Spanish ('es') then detect the language on the result. The to keyword argument specifies the target language.

In [38]: spanish = blob.translate(to='es')

In [39]: spanish

Out[39]: TextBlob("Hoy es un hermoso dia. Mañana parece mal tiempo.")

In [40]: spanish.detect_language()

Out[40]: 'es'

Next, let’s translate our TextBlob to simplified Chinese (specified as 'zh' or 'zh-CN') then detect the language on the result:

In [41]: chinese = blob.translate(to='zh')

In [42]: chinese

Out[42]: TextBlob("[image: chinese letters]")

In [43]: chinese.detect_language()

Out[43]: 'zh-CN'

Method detect_language’s output always shows simplified Chinese as 'zh-CN', even though the translate function can receive simplified Chinese as 'zh' or 'zh-CN'.

In each of the preceding cases, Google Translate automatically detects the source language. You can specify a source language explicitly by passing the from_lang keyword argument to the translate method, as in

chinese = blob.translate(from_lang='en', to='zh')

Google Translate uses iso-639-117 language codes listed at
17. ISO is the International Organization for Standardization (https://www.iso.org/).

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

For the supported languages, you’d use these codes as the values of the from_lang and to keyword arguments. Google Translate’s list of supported languages is at:

https://cloud.google.com/translate/docs/languages

Calling translate without arguments translates from the detected source language to English:

In [44]: spanish.translate()

Out[44]: TextBlob("Today is a beautiful day. Tomorrow seems like bad

weather.")

In [45]: chinese.translate()

Out[45]: TextBlob("Today is a beautiful day. Tomorrow looks like bad

weather.")

Note the slight difference in the English results.

[image: tick mark] Self Check

	(IPython Session) Translate 'Today is a beautiful day.' into French, then detect the language.

Answer:

In [46]: blob = TextBlob('Today is a beautiful day.')

In [47]: french = blob.translate(to='fr')

In [48]: french

Out[48]: TextBlob("Aujourd'hui est un beau jour.")

In [49]: french.detect_language()

Out[49]: 'fr'

12.2.8 Inflection: Pluralization and Singularization

Inflections are different forms of the same words, such as singular and plural (like “person” and “people”) and different verb tenses (like “run” and “ran”). When you’re calculating word frequencies, you might first want to convert all inflected words to the same form for more accurate word frequencies. Words and WordLists each support converting words to their singular or plural forms. Let’s pluralize and singularize a couple of Word objects:

In [1]: from textblob import Word

In [2]: index = Word('index')

In [3]: index.pluralize()

Out[3]: 'indices'

In [4]: cacti = Word('cacti')

In [5]: cacti.singularize()

Out[5]: 'cactus'

Pluralizing and singularizing are sophisticated tasks which, as you can see above, are not as simple as adding or removing an “s” or “es” at the end of a word.

You can do the same with a WordList:

In [6]: from textblob import TextBlob

In [7]: animals = TextBlob('dog cat fish bird').words

In [8]: animals.pluralize()

Out[8]: WordList(['dogs', 'cats', 'fish', 'birds'])

Note that the word “fish” is the same in both its singular and plural forms.

[image: tick mark] Self Check

	(IPython Session) Singularize the word 'children' and pluralize 'focus'.

Answer:

In [1]: from textblob import Word

In [2]: Word('children').singularize()

Out[2]: 'child'

In [3]: Word('focus').pluralize()

Out[3]: 'foci'

12.2.9 Spell Checking and Correction

For natural language processing tasks, it’s important that the text be free of spelling errors. Software packages for writing and editing text, like Microsoft Word, Google Docs and others automatically check your spelling as you type and typically display a red line under misspelled words. Other tools enable you to manually invoke a spelling checker.

You can check a Word’s spelling with its spellcheck method, which returns a list of tuples containing possible correct spellings and a confidence value. Let’s assume we meant to type the word “they” but we misspelled it as “theyr.” The spell checking results show two possible corrections with the word 'they' having the highest confidence value:

In [1]: from textblob import Word

In [2]: word = Word('theyr')

In [3]: %precision 2

Out[3]: '%.2f'

In [4]: word.spellcheck()

Out[4]: [('they', 0.57), ('their', 0.43)]

Note that the word with the highest confidence value might not be the correct word for the given context.

TextBlobs, Sentences and Words all have a correct method that you can call to correct spelling. Calling correct on a Word returns the correctly spelled word that has the highest confidence value (as returned by spellcheck):

In [5]: word.correct() # chooses word with the highest confidence value

Out[5]: 'they'

Calling correct on a TextBlob or Sentence checks the spelling of each word. For each incorrect word, correct replaces it with the correctly spelled one that has the highest confidence value:

In [6]: from textblob import Word

In [7]: sentence = TextBlob('Ths sentense has missplled wrds.')

In [8]: sentence.correct()

Out[8]: TextBlob("The sentence has misspelled words.")

[image: tick mark] Self Check

	(True/False) You can check a Word’s spelling with its correct method, which returns a list of tuples containing possible correct spellings and a confidence value.

Answer: False. You can check a Word’s spelling with its spellcheck method, which returns a list of tuples containing potential correct spellings and a confidence value.

	(IPython Session) Correct the spelling in 'I canot beleive I misspeled thees werds'.

Answer:

In [1]: from textblob import TextBlob

In [2]: sentence = TextBlob('I canot beleive I misspeled thees werds')

In [3]: sentence.correct()

Out[3]: TextBlob("I cannot believe I misspelled these words")

12.2.10 Normalization: Stemming and Lemmatization

Stemming removes a prefix or suffix from a word leaving only a stem, which may or may not be a real word. Lemmatization is similar, but factors in the word’s part of speech and meaning and results in a real word.

Stemming and lemmatization are normalization operations, in which you prepare words for analysis. For example, before calculating statistics on words in a body of text, you might convert all words to lowercase so that capitalized and lowercase words are not treated differently. Sometimes, you might want to use a word’s root to represent the word’s many forms. For example, in a given application, you might want to treat all of the following words as “program”: program, programs, programmer, programming and programmed (and perhaps U.K. English spellings, like programmes as well).

Words and WordLists each support stemming and lemmatization via the methods stem and lemmatize. Let’s use both on a Word:

In [1]: from textblob import Word

In [2]: word = Word('varieties')

In [3]: word.stem()

Out[3]: 'varieti'

In [4]: word.lemmatize()

Out[4]: 'variety'

[image: tick mark] Self Check

	(True/False) Stemming is similar to lemmatization, but factors in the word’s part of speech and meaning and results in a real word.

Answer: False. Lemmatization is similar to stemming, but factors in the word’s part of speech and meaning and results in a real word.

	(IPython Session) Stem and lemmatize the word 'strawberries'.

Answer:

In [1]: from textblob import Word

In [2]: word = Word('strawberries')

In [3]: word.stem()

Out[3]: 'strawberri'

In [4]: word.lemmatize()

Out[4]: 'strawberry'

12.2.11 Word Frequencies

Various techniques for detecting similarity between documents rely on word frequencies. As you’ll see here, TextBlob automatically counts word frequencies. First, let’s load the e-book for Shakespeare’s Romeo and Juliet into a TextBlob. To do so, we’ll use the Path class from the Python Standard Library’s pathlib module:

In [1]: from pathlib import Path

In [2]: from textblob import TextBlob

In [3]: blob = TextBlob(Path('RomeoAndJuliet.txt').read_text())

Use the file RomeoAndJuliet.txt18

 that you downloaded earlier. We assume here that you started your IPython session from that folder. When you read a file with Path’s read_text method, it closes the file immediately after it finishes reading the file.
18. Each Project Gutenberg e-book includes additional text, such as their licensing information, that’s not part of the e-book itself. For this example, we used a text editor to remove that text from our copy of the e-book.

You can access the word frequencies through the TextBlob’s word_counts dictionary. Let’s get the counts of several words in the play:

In [4]: blob.word_counts['juliet']

Out[4]: 190

In [5]: blob.word_counts['romeo']

Out[5]: 315

In [6]: blob.word_counts['thou']

Out[6]: 278

If you already have tokenized a TextBlob into a WordList, you can count specific words in the list via the count method:

In [7]: blob.words.count('joy')

Out[7]: 14

In [8]: blob.noun_phrases.count('lady capulet')

Out[8]: 46

[image: tick mark] Self Check

	(True/False) You can access the word frequencies through the TextBlob’s counts dictionary.

Answer: False. You can access the word frequencies through the word_counts dictionary.

	(IPython Session) Using the TextBlob from this section’s IPython session, determine how many times the stop words “a,” “an” and “the” appear in Romeo and Juliet.

Answer:

In [9]: blob.word_counts['a']

Out[9]: 483

In [10]: blob.word_counts['an']

Out[10]: 71

In [11]: blob.word_counts['the']

Out[11]: 688

12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet

WordNet19 is a word database created by Princeton University. The TextBlob library uses the NLTK library’s WordNet interface, enabling you to look up word definitions, and get synonyms and antonyms. For more information, check out the NLTK WordNet interface documentation at:
19. https://wordnet.princeton.edu/.

https://www.nltk.org/api/nltk.corpus.reader.html#module-nltk.corpus.reader.wordnet

Getting Definitions

First, let’s create a Word:

In [1]: from textblob import Word

In [2]: happy = Word('happy')

The Word class’s definitions property returns a list of all the word’s definitions in the WordNet database:

In [3]: happy.definitions

Out[3]:

['enjoying or showing or marked by joy or pleasure',

 'marked by good fortune',

 'eagerly disposed to act or to be of service',

 'well expressed and to the point']

The database does not necessarily contain every dictionary definition of a given word. There’s also a define method that enables you to pass a part of speech as an argument so you can get definitions matching only that part of speech.

Getting Synonyms

You can get a Word’s synsets—that is, its sets of synonyms—via the synsets property. The result is a list of Synset objects:

In [4]: happy.synsets

Out[4]:

[Synset('happy.a.01'),

 Synset('felicitous.s.02'),

 Synset('glad.s.02'),

 Synset('happy.s.04')]

Each Synset represents a group of synonyms. In the notation happy.a.01:

	happy is the original Word’s lemmatized form (in this case, it’s the same).

	a is the part of speech, which can be a for adjective, n for noun, v for verb, r for adverb or s for adjective satellite. Many adjective synsets in WordNet have satellite synsets that represent similar adjectives.

	01 is a 0-based index number. Many words have multiple meanings, and this is the index number of the corresponding meaning in the WordNet database.

There’s also a get_synsets method that enables you to pass a part of speech as an argument so you can get Synsets matching only that part of speech.

You can iterate through the synsets list to find the original word’s synonyms. Each Synset has a lemmas method that returns a list of Lemma objects representing the synonyms. A Lemma’s name method returns the synonymous word as a string. In the following code, for each Synset in the synsets list, the nested for loop iterates through that Synset’s Lemmas (if any). Then we add the synonym to the set named synonyms. We used a set collection because it automatically eliminates any duplicates we add to it:

In [5]: synonyms = set()

In [6]: for synset in happy.synsets:

 ...: for lemma in synset.lemmas():

 ...: synonyms.add(lemma.name())

 ...:

In [7]: synonyms

Out[7]: {'felicitous', 'glad', 'happy', 'well-chosen'}

Getting Antonyms

If the word represented by a Lemma has antonyms in the WordNet database, invoking the Lemma’s antonyms method returns a list of Lemmas representing the antonyms (or an empty list if there are no antonyms in the database). In snippet [4] you saw there were four Synsets for 'happy'. First, let’s get the Lemmas for the Synset at index 0 of the synsets list:

In [8]: lemmas = happy.synsets[0].lemmas()

In [9]: lemmas

Out[9]: [Lemma('happy.a.01.happy')]

In this case, lemmas returned a list of one Lemma element. We can now check whether the database has any corresponding antonyms for that Lemma:

In [10]: lemmas[0].antonyms()

Out[10]: [Lemma('unhappy.a.01.unhappy')]

The result is list of Lemmas representing the antonym(s). Here, we see that the one antonym for 'happy' in the database is 'unhappy'.

[image: tick mark] Self Check

	(Fill-In) A(n) represents synonyms of a given word.

Answer: Synset.

	(IPython Session) Display the synsets and definitions for the word “boat.”

Answer:

In [1]: from textblob import Word

In [2]: word = Word('boat')

In [3]: word.synsets

Out[3]: [Synset('boat.n.01'), Synset('gravy_boat.n.01'),

Synset('boat.v.01')]

In [4]: word.definitions

Out[4]:

['a small vessel for travel on water',

'a dish (often boat-shaped) for serving gravy or sauce',

'ride in a boat on water']

In this case, there were three Synsets, and the definitions property displayed the corresponding definitions.

12.2.13 Deleting Stop Words

Stop words are common words in text that are often removed from text before analyzing it because they typically do not provide useful information. The following table shows NLTK’s list of English stop words, which is returned by the NLTK stopwords module’s words function20 (which we’ll use momentarily):
20. https://www.nltk.org/book/ch02.html.

[image: An example of the N L T K’s English stop words list is a group of words enclosed within brackets. Each word is enclosed in single quotation marks and separated by a comma. Words include in, doesn’t, themselves, and wouldn’t.]

The NLTK library has lists of stop words for several other natural languages as well. Before using NLTK’s stop-words lists, you must download them, which you do with the nltk module’s download function:

In [1]: import nltk

In [2]: nltk.download('stopwords')

[nltk_data] Downloading package stopwords to

[nltk_data] C:\Users\PaulDeitel\AppData\Roaming\nltk_data...

[nltk_data] Unzipping corpora\stopwords.zip.

Out[2]: True

For this example, we’ll load the 'english' stop words list. First import stopwords from the nltk.corpus module, then use stopwords method words to load the 'english' stop words list:

In [3]: from nltk.corpus import stopwords

In [4]: stops = stopwords.words('english')

Next, let’s create a TextBlob from which we’ll remove stop words:

In [5]: from textblob import TextBlob

In [6]: blob = TextBlob('Today is a beautiful day.')

Finally, to remove the stop words, let’s use the TextBlob’s words in a list comprehension that adds each word to the resulting list only if the word is not in stops:

In [7]: [word for word in blob.words if word not in stops]

Out[7]: ['Today', 'beautiful', 'day']

[image: tick mark] Self Check

	(Fill-In) are common words in text that are often removed from text before analyzing it.

Answer: Stop words.

	(IPython Session) Eliminate stop words from a TextBlob containing the sentence 'TextBlob is easy to use.'

Answer:

In [1]: from nltk.corpus import stopwords

In [2]: stops = stopwords.words('english')

In [3]: from textblob import TextBlob

In [4]: blob = TextBlob('TextBlob is easy to use.')

In [5]: [word for word in blob.words if word not in stops]

Out[5]: ['TextBlob', 'easy', 'use']

12.2.14 n-grams

An n-gram21

 is a sequence of n text items, such as letters in words or words in a sentence. In natural language processing, n-grams can be used to identify letters or words that frequently appear adjacent to one another. For text-based user input, this can help predict the next letter or word a user will type—such as when completing items in IPython with tab-completion or when entering a message to a friend in your favorite smartphone messaging app. For speech-to-text, n-grams might be used to improve the quality of the transcription. N-grams are a form of co-occurrence in which words or letters appear near each other in a body of text.
21. https://en.wikipedia.org/wiki/N-gram.

TextBlob’s ngrams method produces a list of WordList n-grams of length three by default—known as trigrams. You can pass the keyword argument n to produce n-grams of any desired length. The output shows that the first trigram contains the first three words in the sentence ('Today', 'is' and 'a'). Then, ngrams creates a trigram starting with the second word ('is', 'a' and 'beautiful') and so on until it creates a trigram containing the last three words in the TextBlob:

In [1]: from textblob import TextBlob

In [2]: text = 'Today is a beautiful day. Tomorrow looks like bad weather.'

In [3]: blob = TextBlob(text)

In [4]: blob.ngrams()

Out[4]:

[WordList(['Today', 'is', 'a']),

 WordList(['is', 'a', 'beautiful']),

 WordList(['a', 'beautiful', 'day']),

 WordList(['beautiful', 'day', 'Tomorrow']),

 WordList(['day', 'Tomorrow', 'looks']),

 WordList(['Tomorrow', 'looks', 'like']),

 WordList(['looks', 'like', 'bad']),

 WordList(['like', 'bad', 'weather'])]

The following produces n-grams consisting of five words:

In [5]: blob.ngrams(n=5)

Out[5]:

[WordList(['Today', 'is', 'a', 'beautiful', 'day']),

 WordList(['is', 'a', 'beautiful', 'day', 'Tomorrow']),

 WordList(['a', 'beautiful', 'day', 'Tomorrow', 'looks']),

 WordList(['beautiful', 'day', 'Tomorrow', 'looks', 'like']),

 WordList(['day', 'Tomorrow', 'looks', 'like', 'bad']),

 WordList(['Tomorrow', 'looks', 'like', 'bad', 'weather'])]

[image: tick mark] Self Check

	(Fill-In) N-grams are a form of in which words appear near each other in a body of text.

Answer: co-occurrence.

	(IPython Session) Produce n-grams consisting of three words each for 'TextBlob is easy to use.'

Answer:

In [1]: from textblob import TextBlob

In [2]: blob = TextBlob('TextBlob is easy to use.')

In [3]: blob.ngrams()

Out[3]:

[WordList(['TextBlob', 'is', 'easy']),

 WordList(['is', 'easy', 'to']),

 WordList(['easy', 'to', 'use'])]

12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds

Earlier, we obtained frequencies for a few words in Romeo and Juliet. Sometimes frequency visualizations enhance your corpus analyses. There’s often more than one way to visualize data, and sometimes one is superior to others. For example, you might be interested in word frequencies relative to one another, or you may just be interested in relative uses of words in a corpus. In this section, we’ll look at two ways to visualize word frequencies:

	A bar chart that quantitatively visualizes the top 20 words in Romeo and Juliet as bars representing each word and its frequency.

	A word cloud that qualitatively visualizes more frequently occurring words in bigger fonts and less frequently occurring words in smaller fonts.

12.3.1 Visualizing Word Frequencies with Pandas

Let’s visualize Romeo and Juliet’s top 20 words that are not stop words. To do this, we’ll use features from TextBlob, NLTK and pandas. Pandas visualization capabilities are based on Matplotlib, so launch IPython with the following command for this session:

ipython --matplotlib

Loading the Data

First, let’s load Romeo and Juliet. Launch IPython from the ch12 examples folder before executing the following code so you can access the e-book file RomeoAndJuliet.txt that you downloaded earlier in the chapter:

In [1]: from pathlib import Path

In [2]: from textblob import TextBlob

In [3]: blob = TextBlob(Path('RomeoAndJuliet.txt').read_text())

Next, load the NLTK stopwords:

In [4]: from nltk.corpus import stopwords

In [5]: stop_words = stopwords.words('english')

Getting the Word Frequencies

To visualize the top 20 words, we need each word and its frequency. Let’s call the blob.word_counts dictionary’s items method to get a list of word-frequency tuples:

In [6]: items = blob.word_counts.items()

Eliminating the Stop Words

Next, let’s use a list comprehension to eliminate any tuples containing stop words:

In [7]: items = [item for item in items if item[0] not in stop_words]

The expression item[0] gets the word from each tuple so we can check whether it’s in stop_words.

Sorting the Words by Frequency

To determine the top 20 words, let’s sort the tuples in items in descending order by frequency. We can use built-in function sorted with a key argument to sort the tuples by the frequency element in each tuple. To specify the tuple element to sort by, use the itemgetter function from the Python Standard Library’s operator module:

In [8]: from operator import itemgetter

In [9]: sorted_items = sorted(items, key=itemgetter(1), reverse=True)

As sorted orders items’ elements, it accesses the element at index 1 in each tuple via the expression itemgetter(1). The reverse=True keyword argument indicates that the tuples should be sorted in descending order.

Getting the Top 20 Words

Next, we use a slice to get the top 20 words from sorted_items. When TextBlob tokenizes a corpus, it splits all contractions at their apostrophes and counts the total number of apostrophes as one of the “words.” Romeo and Juliet has many contractions. If you display sorted_items[0], you’ll see that they are the most frequently occurring “word” with 867 of them.22 We want to display only words, so we ignore element 0 and get a slice containing elements 1 through 20 of sorted_items:
22. In some locales this does not happen and element 0 is indeed 'romeo'.

In [10]: top20 = sorted_items[1:21]

Convert top20 to a DataFrame

Next, let’s convert the top20 list of tuples to a pandas DataFrame so we can visualize it conveniently:

In [11]: import pandas as pd

In [12]: df = pd.DataFrame(top20, columns=['word', 'count'])

In [13]: df

Out[13]:

 word count

0 romeo 315

1 thou 278

2 juliet 190

3 thy 170

4 capulet 163

5 nurse 149

6 love 148

7 thee 138

8 lady 117

9 shall 110

10 friar 105

11 come 94

12 mercutio 88

13 lawrence 82

14 good 80

15 benvolio 79

16 tybalt 79

17 enter 75

18 go 75

19 night 73

Visualizing the DataFrame

To visualize the data, we’ll use the bar method of the DataFrame’s plot property. The arguments indicate which column’s data should be displayed along the x- and y-axes, and that we do not want to display a legend on the graph:

In [14]: axes = df.plot.bar(x='word', y='count', legend=False)

The bar method creates and displays a Matplotlib bar chart.

When you look at the initial bar chart that appears, you’ll notice that some of the words are truncated. To fix that, use Matplotlib’s gcf (get current figure) function to get the Matplotlib figure that pandas displayed, then call the figure’s tight_layout method. This compresses the bar chart to ensure all its components fit:

In [15]: import matplotlib.pyplot as plt

In [16]: plt.gcf().tight_layout()

The final graph is shown below:

[image: A bar graph depicts the occurrences of specific words.]

12.3-2 Full Alternative Text

12.3.2 Visualizing Word Frequencies with Word Clouds

Next, we’ll build a word cloud that visualizes the top 200 words in Romeo and Juliet. You can use the open source wordcloud module’s23 WordCloud class to generate word clouds with just a few lines of code. By default, wordcloud creates rectangular word clouds, but as you’ll see the library can create word clouds with arbitrary shapes.
23. https://github.com/amueller/word_cloud.

Installing the wordcloud Module

To install wordcloud, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or shell (Linux) and enter the command:

conda install -c conda-forge wordcloud

Windows users might need to run the Anaconda Prompt as an Administrator for proper software installation privileges. To do so, right-click Anaconda Prompt in the start menu and select More > Run as administrator.

Loading the Text

First, let’s load Romeo and Juliet. Launch IPython from the ch12 examples folder before executing the following code so you can access the e-book file RomeoAndJuliet.txt you downloaded earlier:

In [1]: from pathlib import Path

In [2]: text = Path('RomeoAndJuliet.txt').read_text()

Loading the Mask Image that Specifies the Word Cloud’s Shape

To create a word cloud of a given shape, you can initialize a WordCloud object with an image known as a mask. The WordCloud fills non-white areas of the mask image with text. We’ll use a heart shape in this example, provided as mask_heart.png in the ch12 examples folder. More complex masks require more time to create the word cloud.

Let’s load the mask image by using the imread function from the imageio module that comes with Anaconda:

In [3]: import imageio

In [4]: mask_image = imageio.imread('mask_heart.png')

This function returns the image as a NumPy array, which is required by WordCloud.

Configuring the WordCloud Object

Next, let’s create and configure the WordCloud object:

In [5]: from wordcloud import WordCloud

In [6]: wordcloud = WordCloud(colormap='prism', mask=mask_image,

 ...: background_color='white')

 ...:

The default WordCloud width and height in pixels is 400x200, unless you specify width and height keyword arguments or a mask image. For a mask image, the WordCloud size is the image’s size. WordCloud uses Matplotlib under the hood. WordCloud assigns random colors from a color map. You can supply the colormap keyword argument and use one of Matplotlib’s named color maps. For a list of color map names and their colors, see:

https://matplotlib.org/examples/color/colormaps_reference.html

The mask keyword argument specifies the mask_image we loaded previously. By default, the word is drawn on a black background, but we customized this with the background_color keyword argument by specifying a 'white' background. For a complete list of WordCloud’s keyword arguments, see

http://amueller.github.io/word_cloud/generated/wordcloud.WordCloud.html

Generating the Word Cloud

WordCloud’s generate method receives the text to use in the word cloud as an argument and creates the word cloud, which it returns as a WordCloud object:

In [7]: wordcloud = wordcloud.generate(text)

Before creating the word cloud, generate first removes stop words from the text argument using the wordcloud module’s built-in stop-words list. Then generate calculates the word frequencies for the remaining words. The method uses a maximum of 200 words in the word cloud by default, but you can customize this with the max_words keyword argument.

Saving the Word Cloud as an Image File

Finally, we use WordCloud’s to_file method to save the word cloud image into the specified file:

In [8]: wordcloud = wordcloud.to_file('RomeoAndJulietHeart.png')

You can now go to the ch12 examples folder and double-click the RomeoAndJuliet.png image file on your system to view it—your version might have the words in different positions and different colors:

[image: A heart-shaped word cloud for Romeo and Juliet includes Romeo in the largest type, Juliet, will, thy, and love in large type, nurse, thou, and thee in smaller type, and bed, old, and mother in the smallest type.]

Generating a Word Cloud from a Dictionary

If you already have a dictionary of key–value pairs representing word counts, you can pass it to WordCloud’s fit_words method. This method assumes you’ve already removed the stop words.

Displaying the Image with Matplotlib

If you’d like to display the image on the screen, you can use the IPython magic

%matplotlib

to enable interactive Matplotlib support in IPython, then execute the following statements:

import matplotlib.pyplot as plt

plt.imshow(wordcloud)

[image: tick mark] Self Check

	(Fill-In) A(n) is a graphic that shows more frequently occurring words in bigger fonts and less frequently occurring words in smaller fonts.

Answer: word cloud.

	(IPython Session) We provided oval, circle and star masks for you to try when creating your own word clouds. Continue this section’s IPython session and generate another Romeo and Juliet word cloud using the mask_star.png image.

Answer:

In [9]: mask_image2 = imageio.imread('mask_star.png')

In [10]: wordcloud2 = WordCloud(width=1000, height=1000,

 ...: colormap='prism', mask=mask_image2, background_color='white')

 ...:

In [11]: wordcloud2 = wordcloud2.generate(text)

In [12]: wordcloud2 = wordcloud2.to_file('RomeoAndJulietStar.png')

[image: A star shaped word cloud for Romeo and Juliet includes Romeo in the largest type, Juliet, love and will in large type, thou, thee and come in smaller type, and new, father and part in the smallest type.]

12.4 Readability Assessment with Textatistic

An interesting use of natural language processing is assessing text readability, which is affected by the vocabulary used, sentence structure, sentence length, topic and more. While writing this book, we used the paid tool Grammarly to help tune the writing and ensure the text’s readability for a wide audience.

In this section, we’ll use the Textatistic library24 to assess readability.25 There are many formulas used in natural language processing to calculate readability. Textatistic uses five popular readability formulas—Flesch Reading Ease, Flesch-Kincaid, Gunning Fog, Simple Measure of Gobbledygook (SMOG) and Dale-Chall.
24. https://github.com/erinhengel/Textatistic.
25. Some other Python readability assessment libraries include readability-score, textstat, readability and pylinguistics.

Install Textatistic

To install Textatistic, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then execute the following command:

pip install textatistic

Windows users might need to run the Anaconda Prompt as an Administrator for proper software installation privileges. To do so, right-click Anaconda Prompt in the start menu and select More > Run as administrator.

Calculating Statistics and Readability Scores

First, let’s load Romeo and Juliet into the text variable:

In [1]: from pathlib import Path

In [2]: text = Path('RomeoAndJuliet.txt').read_text()

Calculating statistics and readability scores requires a Textatistic object that’s initialized with the text you want to assess:

In [3]: from textatistic import Textatistic

In [4]: readability = Textatistic(text)

Textatistic method dict returns a dictionary containing various statistics and the readability scores26:
26. Each Project Gutenberg e-book includes additional text, such as their licensing information, that’s not part of the e-book itself. For this example, we used a text editor to remove that text from our copy of the e-book.

In [5]: %precision 3

Out[5]: '%.3f'

In [6]: readability.dict()

Out[6]:

{'char_count': 115141,

 'word_count': 26120,

 'sent_count': 3218,

 'sybl_count': 30166,

 'notdalechall_count': 5823,

 'polysyblword_count': 549,

 'flesch_score': 100.892,

 'fleschkincaid_score': 1.203,

 'gunningfog_score': 4.087,

 'smog_score': 5.489,

 'dalechall_score': 7.559}

Each of the values in the dictionary is also accessible via a Textatistic property of the same name as the keys shown in the preceding output. The statistics produced include:

	char_count—The number of characters in the text.

	word_count—The number of words in the text.

	sent_count—The number of sentences in the text.

	sybl_count—The number of syllables in the text.

	notdalechall_count—A count of the words that are not on the Dale-Chall list, which is a list of words understood by 80% of 5th graders.27 The higher this number is compared to the total word count, the less readable the text is considered to be.
27. http://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php.

	polysyblword_count—The number of words with three or more syllables.

	flesch_score—The Flesch Reading Ease score, which can be mapped to a grade level. Scores over 90 are considered readable by 5th graders. Scores under 30 require a college degree. Ranges in between correspond to the other grade levels.

	fleschkincaid_score—The Flesch-Kincaid score, which corresponds to a specific grade level.

	gunningfog_score—The Gunning Fog index value, which corresponds to a specific grade level.

	smog_score—The Simple Measure of Gobbledygook (SMOG), which corresponds to the years of education required to understand text. This measure is considered particularly effective for healthcare materials.28
28. https://en.wikipedia.org/wiki/SMOG.

	dalechall_score—The Dale-Chall score, which can be mapped to grade levels from 4 and below to college graduate (grade 16) and above. This score considered to be most reliable for a broad range of text types.29

,30
29. https://en.wikipedia.org/wiki/Readability#The_Dale%E2%80%93Chall_formula.
30. http://www.readabilityformulas.com/articles/how-do-i-decide-which-readability-formula-to-use.php.

You can learn about each of these readability scores produced here and several others at

https://en.wikipedia.org/wiki/Readability

The Textatistic documentation also shows the readability formulas used:

http://www.erinhengel.com/software/textatistic/

[image: tick mark] Self Check

	(Fill-In) indicates how easy is it for readers to understand text.

Answer: Readability.

	(IPython Session) Using the results in this section’s IPython session, calculate the average numbers of words per sentence, characters per word and syllables per word.

Answer:

In [7]: readability.word_count / readability.sent_count # sentence length

Out[7]: 8.117

In [8]: readability.char_count / readability.word_count # word length

Out[8]: 4.408

In [9]: readability.sybl_count / readability.word_count # syllables

Out[9]: 1.155

12.5 Named Entity Recognition with spaCy

NLP can determine what a text is about. A key aspect of this is named entity recognition, which attempts to locate and categorize items like dates, times, quantities, places, people, things, organizations and more. In this section, we’ll use the named entity recognition capabilities in the spaCy NLP library31,32 to analyze text.
31. https://spacy.io/.
32. You may also want to check out Textacy (https://github.com/chartbeat-labs/textacy)—an NLP library built on spaCy that supports additional NLP tasks.

Install spaCy

To install spaCy, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then execute the following command:

conda install -c conda-forge spacy

Windows users might need to run the Anaconda Prompt as an Administrator for proper software installation privileges. To do so, right-click Anaconda Prompt in the start menu and select More > Run as administrator.

Once the install completes, you also need to execute the following command, so spaCy can download additional components it needs for processing English (en) text:

python -m spacy download en

Loading the Language Model

The first step in using spaCy is to load the language model representing the natural language of the text you’re analyzing. To do this, you’ll call the spacy module’s load function. Let’s load the English model that we downloaded above:

In [1]: import spacy

In [2]: nlp = spacy.load('en')

The spaCy documentation recommends the variable name nlp.

Creating a spaCy Doc

Next, you use the nlp object to create a spaCy Doc object33 representing the document to process. Here we used a sentence from the introduction to the World Wide Web in many of our books:
33. https://spacy.io/api/doc.

In [3]: document = nlp('In 1994, Tim Berners-Lee founded the ' +

 ...: 'World Wide Web Consortium (W3C), devoted to ' +

 ...: 'developing web technologies')

 ...:

Getting the Named Entities

The Doc object’s ents property returns a tuple of Span objects representing the named entities found in the Doc. Each Span has many properties.34 Let’s iterate through the Spans and display the text and label_ properties:
34. https://spacy.io/api/span.

In [4]: for entity in document.ents:

 ...: print(f'{entity.text}: {entity.label_}')

 ...:

1994: DATE

Tim Berners-Lee: PERSON

the World Wide Web Consortium: ORG

Each Span’s text property returns the entity as a string, and the label_property returns a string indicating the entity’s kind. Here, spaCy found three entities representing a DATE (1994), a PERSON (Tim Berners-Lee) and an ORG (organization; the World Wide Web Consortium). To learn more about spaCy, take a look at its Quickstart guide at

https://spacy.io/usage/models#section-quickstart

[image: tick mark] Self Check

	(True/False) Named entity recognition attempts to locate only people’s names in text.

Answer: False. Named entity recognition attempts to locate and categorize items like dates, times, quantities, places, people, things, organizations and more.

	(IPython Session) Display the named entities in 'Paul J. Deitel is CEO of Deitel & Associates, Inc.'

'Paul J. Deitel is CEO of Deitel & Associates, Inc.'

Answer:

In [1]: import spacy

In [2]: nlp = spacy.load('en')

In [3]: document = nlp('Paul J. Deitel is CEO of ' +

 ...: 'Deitel & Associates, Inc.')

 ...:

In [4]: for entity in document.ents:

 ...: print(f'{entity.text}: {entity.label_}')

 ...:

Paul J. Deitel: PERSON

Deitel & Associates, Inc.: ORG

12.6 Similarity Detection with spaCy

Similarity detection is the process of analyzing documents to determine how alike they are. One possible similarity detection technique is word frequency counting. For example, some people believe that the works of William Shakespeare actually might have been written by Sir Francis Bacon, Christopher Marlowe or others.35 Comparing the word frequencies of their works with those of Shakespeare can reveal writing-style similarities.
35. https://en.wikipedia.org/wiki/Shakespeare_authorship_question.

Various machine-learning techniques we’ll discuss in later chapters can be used to study document similarity. However, as is often the case in Python, there are libraries such as spaCy and Gensim that can do this for you. Here, we’ll use spaCy’s similarity detection features to compare Doc objects representing Shakespeare’s Romeo and Juliet with Christopher Marlowe’s Edward the Second. You can download Edward the Second from Project Gutenberg as we did for Romeo and Juliet earlier in the chapter.36

36. Each Project Gutenberg e-book includes additional text, such as their licensing information, that’s not part of the e-book itself. For this example, we used a text editor to remove that text from our copies of the e-books.

Loading the Language Model and Creating a spaCy Doc

As in the preceding section, we first load the English model:

In [1]: import spacy

In [2]: nlp = spacy.load('en')

Creating the spaCy Docs

Next, we create two Doc objects—one for Romeo and Juliet and one for Edward the Second:

In [3]: from pathlib import Path

In [4]: document1 = nlp(Path('RomeoAndJuliet.txt').read_text())

In [5]: document2 = nlp(Path('EdwardTheSecond.txt').read_text())

Comparing the Books’ Similarity

Finally, we use the Doc class’s similarity method to get a value from 0.0 (not similar) to 1.0 (identical) indicating how similar the documents are:

In [6]: document1.similarity(document2)

Out[6]: 0.9349950179100041

As you can see, spaCy believes these two documents have significant similarities. For comparison purposes, we also created a Doc representing a current news story and compared it with Romeo and Juliet. As expected, spaCy returned a low value indicating little similarity between those documents. Try copying a current news article into a text file, then performing the similarity comparison yourself.

[image: tick mark] Self Check

	(Fill-In) is the process of analyzing documents to determine how similar they are.

Answer: Similarity detection.

	(IPython Session) You’d expect that if you compare Shakespeare’s works to one another that you’d get a high similarity value, especially among plays of the same genre. Romeo and Juliet is one of Shakespeare’s tragedies. Three other Shakespearian tragedies are Hamlet, Macbeth and King Lear. Download these three plays from Project Gutenberg, then compare each one for similarity with Romeo and Juliet using the spaCy code presented in this section.

Answer:

In [1]: import spacy

In [2]: nlp = spacy.load('en')

In [3]: from pathlib import Path

In [4]: document1 = nlp(Path('RomeoAndJuliet.txt').read_text())

In [5]: document2 = nlp(Path('Hamlet.txt').read_text())

In [6]: document1.similarity(document2)

Out[6]: 0.9653729533870296

In [7]: document3 = nlp(Path('Macbeth.txt').read_text())

In [8]: document1.similarity(document3)

Out[8]: 0.9601267484020871

In [9]: document4 = nlp(Path('KingLear.txt').read_text())

In [10]: document1.similarity(document4)

Out[10]: 0.9966456936385792

12.7 Other NLP Libraries and Tools

We’ve shown you various NLP libraries, but it’s always a good idea to investigate the range of options available to you so you can leverage the best tools for your tasks. Below are some additional mostly free and open source NLP libraries and APIs:

	Gensim—Similarity detection and topic modeling.

	Google Cloud Natural Language API—Cloud-based API for NLP tasks such as named entity recognition, sentiment analysis, parts-of-speech analysis and visualization, determining content categories and more.

	Microsoft Linguistic Analysis API.

	Bing sentiment analysis—Microsoft’s Bing search engine now uses sentiment in its search results. At the time of this writing, sentiment analysis in search results is available only in the United States.

	PyTorch NLP—Deep learning library for NLP.

	Stanford CoreNLP—Extensive NLP library written in Java, which also provides a Python wrapper. Includes corefererence resolution, which finds all references to the same thing.

	Apache OpenNLP—Another Java-based NLP library for common tasks, including coreference resolution. Python wrappers are available.

	PyNLPl (pineapple)—Python NLP library, includes basic and more sophisticated NLP capabilities.

	SnowNLP—Python library that simplifies Chinese text processing.

	

KoNLPy—Korean language NLP.

	stop-words—Python library with stop words for many languages. We used NLTK’s stop words lists in this chapter.

	TextRazor—A paid cloud-based NLP API that provides a free tier.

12.8 Machine Learning and Deep Learning Natural Language Applications

There are many natural language applications that require machine learning and deep learning techniques. We’ll discuss some of the following in our machine learning and deep learning chapters:

	Answering natural language questions—For example, our publisher Pearson Education, has a partnership with IBM Watson that uses Watson as a virtual tutor. Students ask Watson natural language questions and get answers.

	Summarizing documents—analyzing documents and producing short summaries (also called abstracts) that can, for example, be included with search results and can help you decide what to read.

	Speech synthesis (speech-to-text) and speech recognition (text-to-speech)—We use these in our “IBM Watson” chapter, along with inter-language text-to-text translation, to develop a near real-time inter-language voice-to-voice translator.

	Collaborative filtering—used to implement recommender systems (“if you liked this movie, you might also like…”).

	Text classification—for example, classifying news articles by categories, such as world news, national news, local news, sports, business, entertainment, etc.

	Topic modeling—finding the topics discussed in documents.

	Sarcasm detection—often used with sentiment analysis.

	Text simplification—making text more concise and easier to read.

	Speech to sign language and vice versa—to enable a conversation with a hearing-impaired person.

	Lip reader technology—for people who can’t speak, convert lip movement to text or speech to enable conversation.

	Closed captioning—adding text captions to video.

12.9 Natural Language Datasets

There’s a tremendous number of text data sources available to you for working with Natural language processing:

	Wikipedia—some or all of Wikipedia (https://meta.wikimedia.org/wiki/Datasets).

	IMDB (Internet Movie Database)—various movie and TV datasets are available.

	UCIs text datasets—many datasets, including the Spambase dataset.

	Project Gutenberg—50,000+ free e-books that are out-of-copyright in the U.S.

	Jeopardy! dataset—200,000+ questions from the Jeopardy! TV show. A milestone in AI occurred in 2011 when IBM Watson famously beat two of the world’s best Jeopardy! players.

	Natural language processing datasets: https://machinelearningmastery.com/datasets-natural-language-processing/.

	NLTK data: https://www.nltk.org/data.html.

	Sentiment labeled sentences data set (from sources including IMDB.com, amazon.com, yelp.com.)

	Registry of Open Data on AWS—a searchable directory of datasets hosted on Amazon Web Services (https://registry.opendata.aws).

	Amazon Customer Reviews Dataset—130+ million product reviews (https://registry.opendata.aws/amazon-reviews/).

	Pitt.edu corpora (http://mpqa.cs.pitt.edu/corpora/).

12.10 Wrap-Up

In this chapter, you performed a broad range of natural language processing (NLP) tasks using several NLP libraries. You learned that NLP is performed on text collections known as corpora. We discussed nuances of meaning that make natural language understanding difficult.

We focused on the TextBlob NLP library, which is built on the NLTK and pattern libraries, but easier to use. You created TextBlobs and tokenized them into Sentences and Words. You determined the part of speech for each word in a TextBlob, and you extracted noun phrases.

We demonstrated how to evaluate the positive or negative sentiment of TextBlobs and Sentences with the TextBlob library’s default sentiment analyzer and with the NaiveBayesAnalyzer. You learned how to use the TextBlob library’s integration with Google Translate to detect the language of text and perform inter-language translation.

We showed various other NLP tasks, including singularization and pluralization, spell checking and correction, normalization with stemming and lemmatization, and getting word frequencies. You obtained word definitions, synonyms and antonyms from WordNet. You also used NLTK’s stop words list to eliminate stop words from text, and you created n-grams containing groups of consecutive words.

We showed how to visualize word frequencies quantitatively as a bar chart using pandas’ built-in plotting capabilities. Then, we used the wordcloud library to visualize word frequencies qualitatively as word clouds. You performed readability assessments using the Textatistic library. Finally, you used spaCy to locate named entities and to perform similarity detection among documents. In the next chapter, you’ll continue using natural language processing as we introduce data mining tweets using the Twitter APIs.

Exercises

	12.1 (Web Scraping with the Requests and Beautiful Soup Libraries) Web pages are excellent sources of text to use in NLP tasks. In the following IPython session, you’ll use the requests library to download the www.python.org home page’s content. This is called web scraping. You’ll then use the Beautiful Soup library37 to extract only the text from the page. Eliminate the stop words in the resulting text, then use the wordcloud module to create a word cloud based on the text.
37. Its module name is bs4 for Beautiful Soup 4.

In [1]: import requests

In [2]: response = requests.get('https://www.python.org')

In [3]: response.content # gives back the page's HTML

In [4]: from bs4 import BeautifulSoup

In [5]: soup = BeautifulSoup(response.content, 'html5lib')

In [6]: text = soup.get_text(strip=True) # text without tags

In the preceding code, snippets [1]–[3] get a web page. The get function receives a URL as an argument and returns the corresponding web page as a Response object. The Response’s content property contains the web page’s content. Snippets [4]–[6] get only the web page’s text. Snippet [5] creates a BeautifulSoup object to process the text in response.content. BeautifulSoup method get_text with the keyword argument strip=True returns just the text of the web page without its structural information that your web browser uses to display the web page.

	12.2 (Tokenizing Text and Noun Phrases) Using the text from Exercise 12.1, create a TextBlob, then tokenize it into Sentences and Words, and extract its noun phrases.

	12.3 (Sentiment of a News Article) Using the techniques in Exercise 12.1, download a web page for a current news article and create a TextBlob. Display the sentiment for the entire TextBlob and for each Sentence.

	12.4 (Sentiment of a News Article with the NaiveBayesAnalyzer) Repeat the previous exercise but use the NaiveBayesAnalyzer for sentiment analysis.

	12.5 (Spell Check a Project Gutenberg Book) Download a Project Gutenberg book and create a TextBlob. Tokenize the TextBlob into Words and determine whether any are misspelled. If so, display the possible corrections.

	12.6 (Word Frequency Bar Chart and Word Cloud from Shakespeare’s Hamlet) Using the techniques you learned in this chapter, create a top-20 word frequency bar chart and a word cloud, based on Shakespeare’s Hamlet. Use the mask_oval.png file provided in the ch12 examples folder as the mask.

	12.7 (Textatistic: Readability of News Articles) Using the techniques in the first exercise, download from several news sites current news articles on the same topic. Perform readability assessments on them to determine which sites are the most readable. For each article, calculate the average number of words per sentence, the average number of characters per word and the average number of syllables per word.

	12.8 (spaCy: Named Entity Recognition) Using the techniques in the first exercise, download a current news article then use the spaCy library’s named entity recognition capabilities to display the named entities (people, places, organizations, etc.) in the article.

	12.9 (spaCy: Similarity Detection) Using the techniques in the first exercise, download several news articles on the same topic and compare them for similarity.

	12.10 (spaCy: Shakespeare Similarity Detection) Using the spaCy techniques you learned in this chapter, download a Shakespeare comedy from Project Gutenberg and compare it for similarity with Romeo and Juliet.

	12.11 (textblob.utils Utility Functions) TextBlob’s textblob.utils module offers several utility functions for cleaning up text, including strip_punc and lowerstrip. You call strip_punc with a string and the keyword argument all=True to remove punctuation from the string. You call lowerstrip with a string and the keyword argument all=True to get a string in all lowercase letters with whitespace and punctuation removed. Experiment with each function on Romeo and Juliet.

	12.12 (Research: Funny Newspaper Headlines) To understand how tricky it is to work with natural language and its inherent ambiguity issues, research “funny newspaper headlines.” List the challenges you find.

	12.13 (Try the Demos: Named Entity Recognition) Search online for the Stanford Named Entity Tagger and the Cognitive Computation Group’s Named Entity Recognition Demo. Run each with a corpus of your choice. Compare the results of both demos.

	12.14 (Try the Demo: TextRazor) TextRazor is one of many paid commercial NLP products that offer a free tier. Search online for TextRazor Live Demo. Paste in a corpus of your choice and click Analyze to analyze the corpus for categories and topics, highlighting key sentences and words within them. Click the links below each piece of analyzed text for more detailed analyses. Click the Advanced Options link to the right of Analyze and Clear for many additional features, including the ability to analyze text in different languages.

	12.15 (Project: Readability Scores with Textatistic) Try Textatistic with famous authors’ books from Project Gutenberg.

	12.16 (Project: Who Authored the Works of Shakespeare) Using the spaCy similarity detection code introduced in this chapter, compare Shakespeare’s Macbeth to one major work from each of several other authors who might have written Shakespeare’s works (see https://en.wikipedia.org/wiki/Shakespeare_authorship_question). Locate works on Project Gutenberg from a few authors listed at https://en.wikipedia.org/wiki/List_of_Shakespeare_authorship_candidates, then use spaCy to compare their works’ similarity to Macbeth. Which of the authors’ works are most similar to Macbeth?

	12.17 (Project: Similarity Detection) One way to measure similarity between two documents is to compare frequency counts of the parts of speech used in each. Build dictionaries of the parts of speech frequencies for two Project Gutenberg books from the same author and two from different authors and compare the results.

	12.18 (Project: Text Visualization Browser) Use http://textvis.lnu.se/ to view hundreds of text visualizations. You can filter the visualizations by categories like the analytic tasks they perform, the kinds of visualizations, the kinds of data sources they use and more. Each visualization’s summary provides a link to where you can learn more about it.

	12.19 (Project: Stanford CoreNLP) Search online for “Stanford CoreNLP Python” to find Stanford’s list of Python modules for using CoreNLP, then experiment with its features to perform tasks you learned in this chapter.

	12.20 (Project: spaCy and spacy-readability) We used Textatistic for readability assessment in this chapter. There are many other readability libraries, such as readability-score, textstat, readability, pylinguistics and spacy-readability, which works in conjunction with spaCy. Investigate the spacy-readability module, then use it to evaluate the readability of King Lear (from Project Gutenberg).

	12.21 (Project: Worldwide Peace) As you know, TextBlob language translation works by connecting to Google Translate. Determine the range of languages Google Translate recognizes. Write a script that translates the English word “Peace” into each of the supported languages. Display the translations in the same size text in a circular word cloud using the mask_circle.png file provided in the ch12 examples folder.

	12.22 (Project: Self Tutor for Learning a New Language) With today’s natural language tools, including inter-language translation, speech-to-text and text-to-speech in various languages, you can build a self-tutor that will help you learn new languages. Find Python speech-to-text and text-to-speech libraries that can handle various languages. Write a script that allows you to indicate the language you wish to learn (use only the languages supported by Google Translate through TextBlob). The script should then allow you to say something in English, transcribe your speech to text, translate it to the selected language and use text-to-speech to speak the translated text back to you so you can hear it. Try your script with words, colors, numbers, sentences, people, places and things.

	12.23 (Project: Accessing Wikipedia with Python) Search online for Python modules that enable you to access content from Wikipedia and similar sites. Write scripts to exercise the capabilities of those modules.

	12.24 (Project: Document Summarization with Gensim) Document summarization involves analyzing a document and extracting content to produce a summary. For example, with today’s massive flow of information, this could be useful to busy doctors studying the latest medical advances in order to provide the best care. A summary could help them decide whether a paper is worth reading. Investigate the summarize and keywords functions from the Gensim library’s gensim.summarization module, then use them to summarize text and extract the important words. You’ll need to install Gensim with

conda install -c conda-forge gensim

Assuming that text is a string representing a corpus, the following Gensim code summarizes the text and displays a list of keywords in the text:

from gensim.summarization import summarize, keywords

print(summarize(text))

print(keywords(text))

	12.25 (Challenge Project: Six Degrees of Separation with Wikipedia Corpus) You may have heard of “six degrees of separation” for finding connections between any two people on the planet. The idea is that as you look at a person’s connections to friends and family, then look at their friends’ and family’s connections, and so on, you’ll often find a connection between two people within the first six levels of connection.

Research “six degrees of separation Python” online. You’ll find many implementations. Execute some of them to see how they do. Next, investigate the Wikipedia APIs and Python modules for using them. Choose two famous people. Load the Wikipedia page for the first person, then use named entity recognition to locate any names in that person’s Wikipedia page. Then repeat this process for the Wikipedia pages of each name you find. Continue this process six levels deep to build a graph of people connected to the original person’s Wikipedia page. Along the way, check whether the other person’s name appears in the graph and print the chain of people. In the “Big Data: Hadoop, Spark, NoSQL and IoT” chapter, we’ll discuss the Neo4j graph database, which can be used to solve this problem.

	12.26 (Project: Synonym Chain Leading to an Antonym) As you follow synonym chains—that is, synonyms of synonyms of synonyms, etc.—to arbitrary levels, you’ll often encounter words that do not appear to be related to the original. Though rare, there actually are cases in which following a synonym chain eventually results in an antonym of the initial word. For several examples, see the paper “Websterian Synonym Chains”:

https://digitalcommons.butler.edu/cgi/viewcontent.cgi?article=3342&context=wordways

Choose a synonym chain in the paper above. Use the WordNet features introduced in this chapter to get the first word’s synonyms and antonyms. Next, for each of the words in the Synsets, get their synonyms, then the synonyms of those synonyms and so on. As you get the synonyms at each level, check whether any of them is one of the initial word’s antonyms. If so, display the synonym chain that led to the antonym.

	12.27 (Project: Steganography) Steganography hides information within other information. The term literally means “covered writing.” Research online “text steganography” and “natural language steganography.” Write scripts that use various steganography techniques to hide information in text and to extract that information.

13 Data Mining Twitter

Objectives

In this chapter you’ll:

	Understand Twitter’s impact on businesses, brands, reputation, sentiment analysis, predictions and more.

	Use Tweepy, one of the most popular Python Twitter API clients for data mining Twitter.

	Use the Twitter Search API to download past tweets that meet your criteria.

	Use the Twitter Streaming API to sample the stream of live tweets as they’re happening.

	See that the tweet objects returned by Twitter contain valuable information beyond the tweet text.

	Use the natural language processing techniques you learned in the last chapter to clean and preprocess tweets to prepare them for analysis.

	Perform sentiment analysis on tweets.

	Spot trends with Twitter’s Trends API.

	Map tweets using folium and OpenStreetMap.

	Understand various ways to store tweets using techniques discussed throughout this book.

Outline

	13.1 Introduction

	13.2 Overview of the Twitter APIs

	13.3 Creating a Twitter Account

	13.4 Getting Twitter Credentials—Creating an App

	13.5 What’s in a Tweet?

	13.6 Tweepy

	13.7 Authenticating with Twitter Via Tweepy

	13.8 Getting Information About a Twitter Account

	13.9 Introduction to Tweepy Cursors: Getting an Account’s Followers and Friends

	13.9.1 Determining an Account’s Followers

	13.9.2 Determining Whom an Account Follows

	13.9.3 Getting a User’s Recent Tweets

	13.10 Searching Recent Tweets

	13.11 Spotting Trends: Twitter Trends API

	13.11.1 Places with Trending Topics

	13.11.2 Getting a List of Trending Topics

	13.11.3 Create a Word Cloud from Trending Topics

	13.12 Cleaning/Preprocessing Tweets for Analysis

	13.13 Twitter Streaming API

	13.13.1 Creating a Subclass of StreamListener

	13.13.2 Initiating Stream Processing

	13.14 Tweet Sentiment Analysis

	13.15 Geocoding and Mapping

	13.15.1 Getting and Mapping the Tweets

	13.15.2 Utility Functions in tweetutilities.py

	13.15.3 Class LocationListener

	13.16 Ways to Store Tweets

	13.17 Twitter and Time Series

	13.18 Wrap-Up

	Exercises

13.1 Introduction

We’re always trying to predict the future. Will it rain on our upcoming picnic? Will the stock market or individual securities go up or down, and when and by how much? How will people vote in the next election? What’s the chance that a new oil exploration venture will strike oil and if so how much would it likely produce? Will a baseball team win more games if it changes its batting philosophy to “swing for the fences?” How much customer traffic does an airline anticipate over the next many months? And hence how should the company buy oil commodity futures to guarantee that it will have the supply it needs and hopefully at a minimal cost? What track is a hurricane likely to take and how powerful will it likely become (category 1, 2, 3, 4 or 5)? That kind of information is crucial to emergency preparedness efforts. Is a financial transaction likely to be fraudulent? Will a mortgage default? Is a disease likely to spread rapidly and, if so, to what geographic area?

Prediction is a challenging and often costly process, but the potential rewards are great. With the technologies we’ll study in this and the upcoming chapters, we’ll see how AI, often in concert with big data, is rapidly improving prediction capabilities.

In this chapter we concentrate on data mining Twitter, looking for the sentiment in tweets. Data mining is the process of searching through large collections of data, often big data, to find insights that can be valuable to individuals and organizations. The sentiment that you data mine from tweets could help predict the results of an election, the revenues a new movie is likely to generate and the success of a company’s marketing campaign. It could also help companies spot weaknesses in competitors’ product offerings.

You’ll connect to Twitter via web services. You’ll use Twitter’s Search API to tap into the enormous base of past tweets. You’ll use Twitter’s Streaming API to sample the flood of new tweets as they happen. With the Twitter Trends API, you’ll see what topics are trending. You’ll find that much of what you learned in the “Natural Language Processing (NLP)” chapter will be useful in building Twitter applications.

As you’ve seen throughout this book, because of powerful libraries, you’ll often perform significant tasks with just a few lines of code. This is why Python and its robust open-source community are appealing.

Twitter has displaced the major news organizations as the first source for newsworthy events. Most Twitter posts are public and happen in real-time as events unfold globally. People speak frankly about any subject and tweet about their personal and business lives. They comment on the social, entertainment and political scenes and whatever else comes to mind. With their mobile phones, they take and post photos and videos of events as they happen. You’ll commonly hear the terms Twitterverse and Twittersphere to mean the hundreds of millions of users who have anything to do with sending, receiving and analyzing tweets.

What Is Twitter?

Twitter was founded in 2006 as a microblogging company and today is one of the most popular sites on the Internet. Its concept is simple. People write short messages called tweets, initially limited to 140 characters but recently increased for most languages to 280 characters. Anyone can generally choose to follow anyone else. This is different from the closed, tight communities on other social media platforms such as Facebook, LinkedIn and many others, where the “following relationships” must be reciprocal.

Twitter Statistics

Twitter has hundreds of millions of users and hundreds of millions of tweets are sent every day with many thousands sent per second.1 Searching online for “Internet statistics” and “Twitter statistics” will help you put these numbers in perspective. Some “tweeters” have more than 100 million followers. Dedicated tweeters generally post several per day to keep their followers engaged. Tweeters with the largest followings are typically entertainers and politicians. Developers can tap into the live stream of tweets as they’re happening. This has been likened to “drinking from a fire hose,” because the tweets come at you so quickly.
1. http://www.internetlivestats.com/twitter-statistics/.

Twitter and Big Data

Twitter has become a favorite big data source for researchers and business people worldwide. Twitter allows regular users free access to a small portion of the more recent tweets. Through special arrangements with Twitter, some third-party businesses (and Twitter itself) offer paid access to much larger portions the all-time tweets database.

Cautions

You can’t always trust everything you read on the Internet, and tweets are no exception. For example, people might use false information to try to manipulate financial markets or influence political elections. Hedge funds often trade securities based in part on the tweet streams they follow, but they’re cautious. That’s one of the challenges of building business-critical or mission-critical systems based on social media content.

Going forward, we use web services extensively. Internet connections can be lost, services can change and some services are not available in all countries. This is the real world of cloud-based programming. We cannot program with the same reliability as desktop apps when using web services.

[image: tick mark] Self Check

	(Fill-In) You connect to Twitter’s APIs via .

Answer: web services.

	(True/False) In Twitter, “following relationships” must be reciprocal.

Answer: False. This is true in most other social networks. In Twitter, you can follow people without them following you.

13.2 Overview of the Twitter APIs

Twitter’s APIs are cloud-based web services, so an Internet connection is required to execute the code in this chapter. Web services are methods that you call in the cloud, as you’ll do with the Twitter APIs in this chapter, the IBM Watson APIs in the next chapter and other APIs you’ll use as computing becomes more cloud-based. Each API method has a web service endpoint, which is represented by a URL that’s used to invoke that method over the Internet.

Twitter’s APIs include many categories of functionality, some free and some paid. Most have rate limits that restrict the number of times you can use them in 15-minute intervals. In this chapter, you’ll use the Tweepy library to invoke methods from the following Twitter APIs:

	Authentication API—Pass your Twitter credentials (discussed shortly) to Twitter so you can use the other APIs.

	Accounts and Users API—Access information about an account.

	Tweets API—Search through past tweets, access tweet streams to tap into tweets happening now and more.

	Trends API—Find locations of trending topics and get lists of trending topics by location.

See the extensive list of Twitter API categories, subcategories and individual methods at:

https://developer.twitter.com/en/docs/api-reference-index.html

Rate Limits: A Word of Caution

Twitter expects developers to use its services responsibly. Each Twitter API method has a rate limit, which is the maximum number of requests (that is, calls) you can make during a 15-minute window. Twitter may block you from using its APIs if you continue to call a given API method after that method’s rate limit has been reached.

Before using any API method, read its documentation and understand its rate limits.2 We’ll configure Tweepy to wait when it encounters rate limits. This helps prevent you from exceeding the rate-limit restrictions. Some methods list both user rate limits and app rate limits. All of this chapter’s examples use app rate limits. User rate limits are for apps that enable individual users to log into Twitter, like third-party apps that interact with Twitter on your behalf, such as smartphone apps from other vendors.
2. Keep in mind that Twitter could change these limits in the future.

For details on rate limiting, see

https://developer.twitter.com/en/docs/basics/rate-limiting

For specific rate limits on individual API methods, see

https://developer.twitter.com/en/docs/basics/rate-limits

and each API method’s documentation.

Other Restrictions

Twitter is a goldmine for data mining and they allow you to do a lot with their free services. You’ll be amazed at the valuable applications you can build and how these will help you improve your personal and career endeavors. However, if you do not follow Twitter’s rules and regulations, your developer account could be terminated. You should carefully read the following and the documents they link to:

	Terms of Service: https://twitter.com/tos

	Developer Agreement: https://developer.twitter.com/en/developer-terms/agreement-and-policy.html

	Developer Policy: https://developer.twitter.com/en/developer-terms/policy.html

	Other restrictions: https://developer.twitter.com/en/developer-terms/more-on-restricted-use-cases

You’ll see later in this chapter that you can search tweets only for the last seven days and get only a limited number of tweets using the free Twitter APIs. Some books and articles say you can get around those limits by scraping tweets directly from twitter.com. However, the Terms of Service explicitly say that “scraping the Services without the prior consent of Twitter is expressly prohibited.”

[image: tick mark] Self Check

	(Fill-In) With the API, you pass your credentials to Twitter so you can use the other APIs.

Answer: Authentication

	(True/False) Twitter allows you to make as many calls as you like and as often as you like to its API methods.

Answer: False. Twitter API methods have rate limits. Twitter may block you from using its APIs if you exceed the rate limits.

13.3 Creating a Twitter Account

Twitter requires you to apply for a developer account to be able to use their APIs. Go to

https://developer.twitter.com/en/apply-for-access

and submit your application. You’ll have to register for one as part of this process if you do not already have one. You’ll be asked questions about the purpose of your account (such as academic research, student, etc.). You must carefully read and agree to Twitter’s terms to complete the application, then confirm your email address.

Twitter reviews every application. Approval is not guaranteed. At the time of this writing, personal-use accounts were approved immediately. For company accounts, the process was taking from a few days to several weeks, according to the Twitter developer forums.

13.4 Getting Twitter Credentials—Creating an App

Once you have a Twitter developer account, you must obtain credentials for interacting with the Twitter APIs. To do so, you’ll create an app. Each app has separate credentials. To create an app, log into

https://developer.twitter.com

and perform the following steps:

	At the top-right of the page, click the drop-down menu for your account and select Apps.

	Click Create an app.

	In the App name field, specify your app’s name. If you send tweets via the API, this app name will be the tweets’ sender. It also will be shown to users if you create applications that require a user to log in via Twitter. We will not do either in this chapter, so a name like "YourName Test App" is fine for use with this chapter.

	In the Application description field, enter a description for your app. When creating Twitter-based apps that will be used by other people, this would describe what your app does. For this chapter, you can use "Learning to use the Twitter API."

	In the Website URL field, enter your website. When creating Twitter-based apps, this is supposed to be the website where you host your app. For learning purposes, you can use your Twitter URL: https://twitter.com/YourUserName, where YourUserName is your Twitter account screen name. For example, the URL https://twitter.com/nasa corresponds to the NASA screen name @nasa.

	The Tell us how this app will be used field is a description of at least 100 characters that helps Twitter employees understand what your app does. For learning purposes, we entered "I am new to Twitter app development and am simply learning how to use the Twitter APIs for educational purposes."

	Leave the remaining fields empty and click Create, then carefully review the (lengthy) developer terms and click Create again.

Getting Your Credentials

After you complete Step 7 above, Twitter displays a web page for managing your app. At the top of the page are App details, Keys and tokens and Permissions tabs. Click the Keys and tokens tab to view your app’s credentials. Initially, the page shows the Consumer API keys—the API key and the API secret key. Click Create to get an access token and access token secret. All four of these will be used to authenticate with Twitter so that you may invoke its APIs.

Storing Your Credentials

As a good practice, do not include your API keys and access tokens (or any other credentials, like usernames and passwords) directly in your source code, as that would expose them to anyone reading the code. You should store your keys in a separate file and never share that file with anyone.3
3. Good practice would be to use an encryption library such as bcrypt (https://github.com/pyca/bcrypt/) to encrypt your keys, access tokens or any other credentials you use in your code, then read them in and decrypt them only as you pass them to Twitter.

The code you’ll execute in subsequent sections assumes that you place your consumer key, consumer secret, access token and access token secret values into the file keys.py shown below. You can find this file in the ch13 examples folder:

consumer_key='YourConsumerKey'

consumer_secret='YourConsumerSecret'

access_token='YourAccessToken'

access_token_secret='YourAccessTokenSecret'

Edit this file, replacing YourConsumerKey, YourConsumerSecret, YourAccessToken and YourAccessTokenSecret with your consumer key, consumer secret, access token and access token secret values. Then, save the file.

OAuth 2.0

The consumer key, consumer secret, access token and access token secret are each part of the OAuth 2.0 authentication process4,5—sometimes called the OAuth dance—that Twitter uses to enable access to its APIs. The Tweepy library enables you to provide the consumer key, consumer secret, access token and access token secret and handles the OAuth 2.0 authentication details for you.
4. https://developer.twitter.com/en/docs/basics/authentication/overview.
5. https://oauth.net/.

[image: tick mark] Self Check

	(Fill-In) The consumer key, consumer secret, access token and access token secret are each part of the authentication process that Twitter uses to enable access to its APIs.

Answer: OAuth 2.0.

	(True/False) Once you have a Twitter developer account, you must obtain credentials to interact with APIs. To do so, you’ll create an app. Each app has separate credentials.

Answer: True.

13.5 What’s in a Tweet?

The Twitter API methods return JSON objects. JSON (JavaScript Object Notation) is a text-based data-interchange format used to represent objects as collections of name–value pairs. It’s commonly used when invoking web services. JSON is both a human-readable and computer-readable format that makes data easy to send and receive across the Internet.

JSON objects are similar to Python dictionaries. Each JSON object contains a list of property names and values, in the following curly braced format:

{propertyName1: value1, propertyName2: value2}

As in Python, JSON lists are comma-separated values in square brackets:

[value1, value2, value3]

For your convenience, Tweepy handles the JSON for you behind the scenes, converting JSON to Python objects using classes defined in the Tweepy library.

Key Properties of a Tweet Object

A tweet (also called a status update) may contain a maximum of 280 characters, but the tweet objects returned by the Twitter APIs contain many metadata attributes that describe aspects of the tweet, such as:

	when it was created,

	who created it,

	lists of the hashtags, urls, @-mentions and media (such as images and videos, which are specified via their URLs) included in the tweet,

	and more.

The following table lists a few key attributes of a tweet object:

[image: A table lists a few key attributes of a tweet object and provides a description of each.]

13.5-1 Full Alternative Text

Sample Tweet JSON

Let’s look at sample JSON for the following tweet from the @nasa account:

@NoFear1075 Great question, Anthony! Throughout its seven-year mission,

our Parker #SolarProbe spacecraft... https://t.co/xKd6ym8waT'

 We added line numbers and reformatted some of the JSON due to wrapping. Note that some fields in Tweet JSON are not supported in every Twitter API method; such differences are explained in the online documentation for each method.

 1 {'created_at': 'Wed Sep 05 18:19:34 +0000 2018',

 2 'id': 1037404890354606082,

 3 'id_str': '1037404890354606082',

 4 'text': '@NoFear1075 Great question, Anthony! Throughout its seven-year

 mission, our Parker #SolarProbe spacecraft… https://t.co/xKd6ym8waT',

 5 'truncated': True,

 6 'entities': {'hashtags': [{'text': 'SolarProbe', 'indices': [84, 95]}],

 7 'symbols': [],

 8 'user_mentions': [{'screen_name': 'NoFear1075',

 9 'name': 'Anthony Perrone',

10 'id': 284339791,

11 'id_str': '284339791',

12 'indices': [0, 11]}],

13 'urls': [{'url': 'https://t.co/xKd6ym8waT',

14 'expanded_url': 'https://twitter.com/i/web/status/

 1037404890354606082',

15 'display_url': 'twitter.com/i/web/status/1…',

16 'indices': [117, 140]}]},

17 'source': 'Twitter Web

 Client',

18 'in_reply_to_status_id': 1037390542424956928,

19 'in_reply_to_status_id_str': '1037390542424956928',

20 'in_reply_to_user_id': 284339791,

21 'in_reply_to_user_id_str': '284339791',

22 'in_reply_to_screen_name': 'NoFear1075',

23 'user': {'id': 11348282,

24 'id_str': '11348282',

25 'name': 'NASA',

26 'screen_name': 'NASA',

27 'location': '',

28 'description': 'Explore the universe and discover our home planet with

 @NASA. We usually post in EST (UTC-5)',

29 'url': 'https://t.co/TcEE6NS8nD',

30 'entities': {'url': {'urls': [{'url': 'https://t.co/TcEE6NS8nD',

31 'expanded_url': 'http://www.nasa.gov',

32 'display_url': 'nasa.gov',

33 'indices': [0, 23]}]},

34 'description': {'urls': []}},

35 'protected': False,

36 'followers_count': 29486081,

37 'friends_count': 287,

38 'listed_count': 91928,

39 'created_at': 'Wed Dec 19 20:20:32 +0000 2007',

40 'favourites_count': 3963,

41 'time_zone': None,

42 'geo_enabled': False,

43 'verified': True,

44 'statuses_count': 53147,

45 'lang': 'en',

46 'contributors_enabled': False,

47 'is_translator': False,

48 'is_translation_enabled': False,

49 'profile_background_color': '000000',

50 'profile_background_image_url': 'http://abs.twimg.com/images/themes/

 theme1/bg.png',

51 'profile_background_image_url_https': 'https://abs.twimg.com/images/

 themes/theme1/bg.png',

52 'profile_image_url': 'http://pbs.twimg.com/profile_images/188302352/

 nasalogo_twitter_normal.jpg',

53 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/

 188302352/nasalogo_twitter_normal.jpg',

54 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/11348282/

 1535145490',

55 'profile_link_color': '205BA7',

56 'profile_sidebar_border_color': '000000',

57 'profile_sidebar_fill_color': 'F3F2F2',

58 'profile_text_color': '000000',

59 'profile_use_background_image': True,

60 'has_extended_profile': True,

61 'default_profile': False,

62 'default_profile_image': False,

63 'following': True,

64 'follow_request_sent': False,

65 'notifications': False,

66 'translator_type': 'regular'},

67 'geo': None,

68 'coordinates': None,

69 'place': None,

70 'contributors': None,

71 'is_quote_status': False,

72 'retweet_count': 7,

73 'favorite_count': 19,

74 'favorited': False,

75 'retweeted': False,

76 'possibly_sensitive': False,

77 'lang': 'en'}

Twitter JSON Object Resources

For a complete, more readable list of the tweet object attributes, see:

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object.html

For additional details that were added when Twitter moved from a limit of 140 to 280 characters per tweet, see

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.html#extendedtweet

For a general overview of all the JSON objects that Twitter APIs return, and links to the specific object details, see

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json

[image: tick mark] Self Check

	(Fill-In) Tweet objects returned by the Twitter APIs contain many attributes that describe aspects of the tweet.

Answer: metadata.

	(True/False) JSON is both a human-readable and computer-readable format that makes objects easy to send and receive across the Internet.

Answer: True.

13.6 Tweepy

We’ll use the Tweepy library6 (http://www.tweepy.org/)—one of the most popular Python libraries for interacting with the Twitter APIs. Tweepy makes it easy to access Twitter’s capabilities and hides from you the details of processing the JSON objects returned by the Twitter APIs. You can view Tweepy’s documentation7 at
6. Other Python libraries recommended by Twitter include Birdy, python-twitter, Python Twitter Tools, TweetPony, TwitterAPI, twitter-gobject, TwitterSearch and twython. See https://developer.twitter.com/en/docs/developer-utilities/twitter-libraries.html for details.
7. The Tweepy documentation is a work in progress. At the time of this writing, Tweepy does not have documentation for their classes corresponding to the JSON objects the Twitter APIs return. Tweepy’s classes use the same attribute names and structure as the JSON objects. You can determine the correct attribute names to access by looking at Twitter’s JSON documentation. We’ll explain any attribute we use in our code and provide footnotes with links to the Twitter JSON descriptions.

http://docs.tweepy.org/en/latest/

For additional information and the Tweepy source code, visit

https://github.com/tweepy/tweepy

Installing Tweepy

To install Tweepy, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then execute the following command:

pip install tweepy==3.7

Windows users might need to run the Anaconda Prompt as an Administrator for proper software installation privileges. To do so, right-click Anaconda Prompt in the start menu and select More > Run as administrator.

Installing geopy

As you work with Tweepy, you’ll also use functions from our tweetutilities.py file (provided with this chapter’s example code). One of the utility functions in that file depends on the geopy library (https://github.com/geopy/geopy), which we’ll discuss in Section 13.15. To install geopy, execute:

conda install -c conda-forge geopy

13.7 Authenticating with Twitter Via Tweepy

In the next several sections, you’ll invoke various cloud-based Twitter APIs via Tweepy. Here you’ll begin by using Tweepy to authenticate with Twitter and create a Tweepy API object, which is your gateway to using the Twitter APIs over the Internet. In subsequent sections, you’ll work with various Twitter APIs by invoking methods on your API object.

Before you can invoke any Twitter API, you must use your API key, API secret key, access token and access token secret to authenticate with Twitter.8 Launch IPython from the ch13 examples folder, then import the tweepy module and the keys.py file that you modified earlier in this chapter. You can import any .py file as a module by using the file’s name without the .py extension in an import statement:
8. You may wish to create apps that enable users to log into their Twitter accounts, manage them, post tweets, read tweets from other users, search for tweets, etc. For details on user authentication see the Tweepy Authentication tutorial at http://docs.tweepy.org/en/latest/auth_tutorial.html.

In [1]: import tweepy

In [2]: import keys

When you import keys.py as a module, you can individually access each of the four variables defined in that file as keys.variable_name.

Creating and Configuring an OAuthHandler to Authenticate with Twitter

Authenticating with Twitter via Tweepy involves two steps. First, create an object of the tweepy module’s OAuthHandler class, passing your API key and API secret key to its constructor. A constructor is a function that has the same name as the class (in this case, OAuthHandler) and receives the arguments used to configure the new object:

In [3]: auth = tweepy.OAuthHandler(keys.consumer_key,

 ...: keys.consumer_secret)

 ...:

Specify your access token and access token secret by calling the OAuthHandler object’s set_access_token method:

In [4]: auth.set_access_token(keys.access_token,

 ...: keys.access_token_secret)

 ...:

Creating an API Object

Now, create the API object that you’ll use to interact with Twitter:

In [5]: api = tweepy.API(auth, wait_on_rate_limit=True,

 ...: wait_on_rate_limit_notify=True)

 ...:

We specified three arguments in this call to the API constructor:

	auth is the OAuthHandler object containing your credentials.

	The keyword argument wait_on_rate_limit=True tells Tweepy to wait 15 minutes each time it reaches a given API method’s rate limit. This ensures that you do not violate Twitter’s rate-limit restrictions.

	The keyword argument wait_on_rate_limit_notify=True tells Tweepy that, if it needs to wait due to rate limits, it should notify you by displaying a message at the command line.

You’re now ready to interact with Twitter via Tweepy. Note that the code examples in the next several sections are presented as a continuing IPython session, so the authorization process you went through here need not be repeated.

[image: tick mark] Self Check

	(Fill-In) Authenticating with Twitter via Tweepy involves two steps. First, create an object of the Tweepy module’s class, passing your API key and API secret key to its constructor.

Answer: OAuthHandler.

	(True/False) The keyword argument wait_on_rate_limit_notify=True to the tweepy.API call tells Tweepy to terminate the user because of a rate-limit violation.

Answer: False. The call tells Tweepy that if it needs to wait to avoid rate-limit violations it should display a message at the command line indicating that it’s waiting for the rate limit to replenish.

13.8 Getting Information About a Twitter Account

After authenticating with Twitter, you can use the Tweepy API object’s get_user method to get a tweepy.models.User object containing information about a user’s Twitter account. Let’s get a User object for NASA’s @nasa Twitter account:

In [6]: nasa = api.get_user('nasa')

The get_user method calls the Twitter API’s users/show method.9 Each Twitter method you call through Tweepy has a rate limit. You can call Twitter’s users/show method up to 900 times every 15 minutes to get information on specific user accounts. As we mention other Twitter API methods, we’ll provide a footnote with a link to each method’s documentation in which you can view its rate limits.
9. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-show.

The tweepy.models classes each correspond to the JSON that Twitter returns. For example, the User class corresponds to a Twitter user object:

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object

Each tweepy.models class has a method that reads the JSON and turns it into an object of the corresponding Tweepy class.

Getting Basic Account Information

Let’s access some User object properties to display information about the @nasa account:

	The id property is the account ID number created by Twitter when the user joined Twitter.

	The name property is the name associated with the user’s account.

	The screen_name property is the user’s Twitter handle (@nasa). Both the name and screen_name could be created names to protect a user’s privacy.

	The description property is the description from the user’s profile.

 In [7]: nasa.id

 Out[7]: 11348282

 In [8]: nasa.name

 Out[8]: 'NASA'

 In [9]: nasa.screen_name

 Out[9]: 'NASA'

 In [10]: nasa.description

 Out[10]: 'Explore the universe and discover our home planet with @NASA.

 We usually post in EST (UTC-5)'

Getting the Most Recent Status Update

The User object’s status property returns a tweepy.models.Status object, which corresponds to a Twitter tweet object:

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object

The Status object’s text property contains the text of the account’s most recent tweet:

 In [11]: nasa.status.text

Out[11]: 'The interaction of a high-velocity young star with the cloud of

gas and dust may have created this unusually sharp-... https://t.co/J6uUf7MYMI'

The text property was originally for tweets up to 140 characters. The … above indicates that the tweet text was truncated. When Twitter increased the limit to 280 characters, they added an extended_tweet property (demonstrated later) for accessing the text and other information from tweets between 141 and 280 characters. In this case, Twitter sets text to a truncated version of the extended_tweet’s text. Also, retweeting often results in truncation because a retweet adds characters that could exceed the character limit.

Getting the Number of Followers

You can view an account’s number of followers with the followers_count property:

In [12]: nasa.followers_count

Out[12]: 29453541

Though this number is large, there are accounts with over 100 million followers.10
10. https://friendorfollow.com/twitter/most-followers/.

Getting the Number of Friends

Similarly, you can view an account’s number of friends (that is, the number of accounts an account follows) with the friends_count property:

In [13]: nasa.friends_count

Out[13]: 287

Getting Your Own Account’s Information

You can use the properties in this section on your own account as well. To do so, call the Tweepy API object’s me method, as in:

me = api.me()

This returns a User object for the account you used to authenticate with Twitter in the preceding section.

[image: tick mark] Self Check

	(Fill-In) After authenticating with Twitter, you can use the Tweepy API object’s method to get a tweepy.models.User object containing information about a user’s Twitter account.

Answer: get_user.

	(True/False) Retweeting often results in truncation because a retweet adds characters that could exceed the character limit.

Answer: True.

	(IPython Session) Use the api object to get a User object for the NASAKepler account, then display its number of followers and most recent tweet.

Answer:

In [14]: nasa_kepler = api.get_user('NASAKepler')

In [15]: nasa_kepler.followers_count

Out[15]: 611281

In [16]: nasa_kepler.status.text

Out[16]: 'RT @TheFantasyG: Learning that there are #MorePlanetsThanStars

means to me that there are near endless possibilities of unique

discoveries...'

13.9 Introduction to Tweepy Cursors: Getting an Account’s Followers and Friends

When invoking Twitter API methods, you often receive as results collections of objects, such as tweets in your Twitter timeline, tweets in another account’s timeline or lists of tweets that match specified search criteria. A timeline consists of tweets sent by that user and by that user’s friends—that is, other accounts that the user follows.

Each Twitter API method’s documentation discusses the maximum number of items the method can return in one call—this is known as a page of results. When you request more results than a given method can return, Twitter’s JSON responses indicate that there are more pages to get. Tweepy’s Cursor class handles these details for you. A Cursor invokes a specified method and checks whether Twitter indicated that there is another page of results. If so, the Cursor automatically calls the method again to get those results. This continues, subject to the method’s rate limits, until there are no more results to process. If you configure the API object to wait when rate limits are reached (as we did), the Cursor will adhere to the rate limits and wait as needed between calls. The following subsections discuss Cursor fundamentals. For more details, see the Cursor tutorial at:

http://docs.tweepy.org/en/latest/cursor_tutorial.html

13.9.1 Determining an Account’s Followers

Let’s use a Tweepy Cursor to invoke the API object’s followers method, which calls the Twitter API’s followers/list method11 to obtain an account’s followers. Twitter returns these in groups of 20 by default, but you can request up to 200 at a time. For demonstration purposes, we’ll grab 10 of NASA’s followers.
11. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-list.

Method followers returns tweepy.models.User objects containing information about each follower. Let’s begin by creating a list in which we’ll store the User objects:

In [17]: followers = []

Creating a Cursor

Next, let’s create a Cursor object that will call the followers method for NASA’s account, which is specified with the screen_name keyword argument:

In [18]: cursor = tweepy.Cursor(api.followers, screen_name='nasa')

The Cursor’s constructor receives as its argument the name of the method to call—api.followers indicates that the Cursor will call the api object’s followers method. If the Cursor constructor receives any additional keyword arguments, like screen_name, these will be passed to the method specified in the constructor’s first argument. So, this Cursor specifically gets followers for the @nasa Twitter account.

Getting Results

Now, we can use the Cursor to get some followers. The following for statement iterates through the results of the expression cursor.items(10). The Cursor’s items method initiates the call to api.followers and returns the followers method’s results. In this case, we pass 10 to the items method to request only 10 results:

In [19]: for account in cursor.items(10):

 ...: followers.append(account.screen_name)

 ...:

In [20]: print('Followers:',

 ...: ' '.join(sorted(followers, key=lambda s: s.lower())))

 ...:

Followers: abhinavborra BHood1976 Eshwar12341 Harish90469614 heshamkisha

Highyaan2407 JiraaJaarra KimYooJ91459029 Lindsey06771483 Wendy_UAE_NL

The preceding snippet displays the followers in ascending order by calling the built-in sorted function. The function’s second argument is the function used to determine how the elements of followers are sorted. In this case, we used a lambda that converts every follower name to lowercase letters so we can perform a case-insensitive sort.

Automatic Paging

If the number of results requested is more than can be returned by one call to followers, the items method automatically “pages” through the results by making multiple calls to api.followers. Recall that followers returns up to 20 followers at a time by default, so the preceding code needs to call followers only once. To get up to 200 followers at a time, we can create the Cursor with the count keyword argument, as in:

cursor = tweepy.Cursor(api.followers, screen_name='nasa', count=200)

If you do not specify an argument to the items method, The Cursor attempts to get all of the account’s followers. For large numbers of followers, this could take a significant amount of time due to Twitter’s rate limits. The Twitter API’s followers/list method can return a maximum of 200 followers at a time and Twitter allows a maximum of 15 calls every 15 minutes. Thus, you can only get 3000 followers every 15 minutes using Twitter’s free APIs. Recall that we configured the API object to automatically wait when it hits a rate limit, so if you try to get all followers and an account has more than 3000, Tweepy will automatically pause for 15 minutes after every 3000 followers and display a message. At the time of this writing, NASA has over 29.5 million followers. At 12,000 followers per hour, it would take over 100 days to get all of NASA’s followers.

Note that for this example, we could have called the followers method directly, rather than using a Cursor, since we’re getting only a small number of followers. We used a Cursor here to show how you’ll typically call followers. In some later examples, we’ll call API methods directly to get just a few results, rather than using Cursors.

Getting Follower IDs Rather Than Followers

Though you can get complete User objects for a maximum of 200 followers at a time, you can get many more Twitter ID numbers by calling the API object’s followers_ids method. This calls the Twitter API’s followers/ids method, which returns up to 5000 ID numbers at a time (again, these rate limits could change).12 You can invoke this method up to 15 times every 15 minutes, so you can get 75,000 account ID numbers per rate-limit interval. This is particularly useful when combined with the API object’s lookup_users method. This calls the Twitter API’s users/lookup method13 which can return up to 100 User objects at a time and can be called up to 300 times every 15 minutes. So using this combination, you could get up to 30,000 User objects per rate-limit interval.
12. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids.
13. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-lookup.

[image: tick mark] Self Check

	(Fill-In) Each Twitter API method’s documentation discusses the maximum number of items the method can return in one call—this is known as a of results.

Answer: page.

	(True/False) Though you can get complete User objects for a maximum of 200 followers at a time, you can get many more Twitter ID numbers by calling the API object’s followers_ids method.

Answer: True.

	(IPython Session) Use a Cursor to get and display 10 followers of the NASAKepler account.

In [21]: kepler_followers = []

In [22]: cursor = tweepy.Cursor(api.followers, screen_name='NASAKepler')

In [23]: for account in cursor.items(10):

 ...: kepler_followers.append(account.screen_name)

 ...:

In [24]: print(' '.join(kepler_followers))

cheleandre_ FranGlacierGirl Javedja88171520 Ameer90577310 c4rb0hydr8

rashadali77777 ICPN2019 us0OU5hSZ8BwnsA KHRSC1 xAquos

13.9.2 Determining Whom an Account Follows

The API object’s friends method calls the Twitter API’s friends/list method14 to get a list of User objects representing an account’s friends. Twitter returns these in groups of 20 by default, but you can request up to 200 at a time, just as we discussed for method followers. Twitter allows you to call the friends/list method up to 15 times every 15 minutes. Let’s get 10 of NASA’s friend accounts:
14. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list.

In [25]: friends = []

In [26]: cursor = tweepy.Cursor(api.friends, screen_name='nasa')

In [27]: for friend in cursor.items(10):

 ...: friends.append(friend.screen_name)

 ...:

In [28]: print('Friends:',

 ...: ' '.join(sorted(friends, key=lambda s: s.lower())))

 ...:

Friends: AFSpace Astro2fish Astro_Kimiya AstroAnnimal AstroDuke

NASA3DPrinter NASASMAP Outpost_42 POTUS44 VicGlover

[image: tick mark] Self Check

	(Fill-In) The API object’s friends method calls the Twitter API’s method to get a list of User objects representing an account’s friends.

Answer: friends/list.

13.9.3 Getting a User’s Recent Tweets

The API method user_timeline returns tweets from the timeline of a specific account. A timeline includes that account’s tweets and tweets from that account’s friends. The method calls the Twitter API’s statuses/user_timeline method15, which returns the most recent 20 tweets, but can return up to 200 at a time. This method can return only an account’s 3200 most recent tweets. Applications using this method may call it up to 1500 times every 15 minutes.
15. https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline.

Method user_timeline returns Status objects with each one representing a tweet. Each Status’s user property refers to a tweepy.models.User object containing information about the user who sent that tweet, such as that user’s screen_name. A Status’s text property contains the tweet’s text. Let’s display the screen_name and text for three tweets from @nasa:

In [29]: nasa_tweets = api.user_timeline(screen_name='nasa', count=3)

In [30]: for tweet in nasa_tweets:

 ...: print(f'{tweet.user.screen_name}: {tweet.text}\n')

 ...:

NASA: Your Gut in Space: Microorganisms in the intestinal tract play an especially important role in human health. But wh… https://t.co/uLOsUhwn5p

NASA: We need your help! Want to see panels at @SXSW related to space exploration? There are a number of exciting panels… https://t.co/ycqMMdGKUB

NASA: “You are as good as anyone in this town, but you are no better than any of them,” says retired @NASA_Langley mathem… https://t.co/nhMD4n84Nf

These tweets were truncated (as indicated by …), meaning that they probably use the newer 280-character tweet limit. We’ll use the extended_tweet property shortly to access full text for such tweets.

In the preceding snippets, we chose to call the user_timeline method directly and use the count keyword argument to specify the number of tweets to retrieve. If you wish to get more than the maximum number of tweets per call (200), then you should use a Cursor to call user_timeline as demonstrated previously. Recall that a Cursor automatically pages through the results by calling the method multiple times, if necessary.

Grabbing Recent Tweets from Your Own Timeline

You can call the API method home_timeline, as in:

api.home_timeline()

to get tweets from your home timeline16—that is, your tweets and tweets from the people you follow. This method calls Twitter’s statuses/home_timeline method.17 By default, home_timeline returns the most recent 20 tweets, but can get up to 200 at a time. Again, for more than 200 tweets from your home timeline, you should use a Tweepy Cursor to call home_timeline.
16. Specifically for the account you used to authenticate with Twitter.
17. https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline.

[image: tick mark] Self Check

	(Fill-In) You can call the API method home_timeline to get tweets from your home timeline, that is, your tweets and tweets from .

Answer: the people you follow.

	(IPython Session) Get and display two tweets from the NASAKepler account.

Answer:

In [31]: kepler_tweets = api.user_timeline(

 ...: screen_name='NASAKepler', count=2)

 ...:

In [32]: for tweet in kepler_tweets:

 ...: print(f'{tweet.user.screen_name}: {tweet.text}\n')

 ...:

NASAKepler: RT @TheFantasyG: Learning that there are

#MorePlanetsThanStars means to me that there are near endless

possibilities of unique discoveries…

NASAKepler: @KerryFoster2 @NASA Refueling Kepler is not practical since

it currently sits 94 million miles from Earth. And with… https://t.co/D2P145EL0N

13.10 Searching Recent Tweets

The Tweepy API method search returns tweets that match a query string. According to the method’s documentation, Twitter maintains its search index only for the previous seven days’ tweets, and a search is not guaranteed to return all matching tweets. Method search calls Twitter’s search/tweets method18, which returns 15 tweets at a time by default, but can return up to 100.
18. https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets.

Utility Function print_tweets from tweetutilities.py

For this section, we created a utility function print_tweets that receives the results of a call to API method search and for each tweet displays the user’s screen_name and the tweet’s text. If the tweet is not in English and the tweet.lang is not 'und' (undefined), we’ll also translate the tweet to English using TextBlob, as you did in the “Natural Language Processing (NLP)” chapter. To use this function, import it from tweetutilities.py:

In [33]: from tweetutilities import print_tweets

Just the print_tweets function’s definition from that file is shown below:

def print_tweets(tweets):

 """For each Tweepy Status object in tweets, display the

 user's screen_name and tweet text. If the language is not

 English, translate the text with TextBlob."""

 for tweet in tweets:

 print(f'{tweet.screen_name}:', end=' ')

 if 'en' in tweet.lang:

 print(f'{tweet.text}\n')

 elif 'und' not in tweet.lang: # translate to English first

 print(f'\n ORIGINAL: {tweet.text}')

 print(f'TRANSLATED: {TextBlob(tweet.text).translate()}\n')

Searching for Specific Words

Let’s search for three recent tweets about NASA’s Mars Opportunity Rover. The search method’s q keyword argument specifies the query string, which indicates what to search for and the count keyword argument specifies the number of tweets to return:

In [34]: tweets = api.search(q='Mars Opportunity Rover', count=3)

In [35]: print_tweets(tweets)

Jacker760: NASA set a deadline on the Mars Rover opportunity! As the dust

on Mars settles the Rover will start to regain power… https://t.co/KQ7xaFgrzr

Shivak32637174: RT @Gadgets360: NASA 'Cautiously Optimistic' of Hearing

Back From Opportunity Rover as Mars Dust Storm Settles

https://t.co/O1iTTwRvFq

ladyanakina: NASA’s Opportunity Rover Still Silent on #Mars. https://t.co/njcyP6zCm3

As with other methods, if you plan to request more results than can be returned by one call to search, you should use a Cursor object.

Searching with Twitter Search Operators

You can use various Twitter search operators in your query strings to refine your search results. The following table shows several Twitter search operators. Multiple operators can be combined to construct more complex queries. To see all the operators, visit

https://twitter.com/search-home

and click the operators link.

[image: A table lists examples of Twitter search operators and explains which tweets they find.]

13.10-2 Full Alternative Text

Let’s use the from and since operators to get three tweets from NASA since September 1, 2018—you should use a date within seven days before you execute this code:

In [36]: tweets = api.search(q='from:nasa since:2018-09-01', count=3)

In [37]: print_tweets(tweets)

NASA: @WYSIW Our missions detect active burning fires, track the

transport of fire smoke, provide info for fire managemen… https://t.co/jx2iUoMlIy

NASA: Scarring of the landscape is evident in the wake of the Mendocino

Complex fire, the largest #wildfire in California… https://t.co/Nboo5GD90m

NASA: RT @NASAglenn: To celebrate the #NASA60th anniversary, we're

exploring our history. In this image, Research Pilot Bill Swann prepares

for a…

Searching for a Hashtag

Tweets often contain hashtags that begin with # to indicate something of importance, like a trending topic. Let’s get two tweets containing the hashtag #collegefootball:

In [38]: tweets = api.search(q='#collegefootball', count=2)

In [39]: print_tweets(tweets)

dmcreek: So much for #FAU giving #OU a game. #Oklahoma #FloridaAtlantic

#CollegeFootball #LWOS

theangrychef: It’s game day folks! And our BBQ game is strong. #bbq

#atlanta #collegefootball #gameday @ Smoke Ring https://t.co/J4lkKhCQE7

[image: tick mark] Self Check

	(Fill-In) The Tweepy API method returns tweets that match a query string.

Answer: search.

	(True/False) If you plan to request more results than can be returned by one call to search, you should use an API object.

Answer: False. If you plan to request more results than can be returned by one call to search, you should use a Cursor object.

	(IPython Session) Search for one tweet from the nasa account containing 'astronaut'.

Answer:

In [40]: tweets = api.search(q='astronaut from:nasa', count=1)

In [41]: print_tweets(tweets)

NASA: Astronaut Guion "Guy" Bluford never aimed to become the first

African-American in space, but #OTD in 1983 he soared… https://t.co/bIjl88yJdR

13.11 Spotting Trends: Twitter Trends API

If a topic “goes viral,” you could have thousands or even millions of people tweeting about it at once. Twitter refers to these as trending topics and maintains lists of the trending topics worldwide. Via the Twitter Trends API, you can get lists of locations with trending topics and lists of the top 50 trending topics for each location.

13.11.1 Places with Trending Topics

The Tweepy API’s trends_available method calls the Twitter API’s trends/available19 method to get a list of all locations for which Twitter has trending topics. Method trends_available returns a list of dictionaries representing these locations. When we executed this code, there were 467 locations with trending topics:
19. https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-reference/get-trends-available.

In [42]: trends_available = api.trends_available()

In [43]: len(trends_available)

Out[43]: 467

The dictionary in each list element returned by trends_available has various information, including the location’s name and woeid (discussed below):

In [44]: trends_available[0]

Out[44]:

{'name': 'Worldwide',

 'placeType': {'code': 19, 'name': 'Supername'},

 'url': 'http://where.yahooapis.com/v1/place/1',

 'parentid': 0,

 'country': '',

 'woeid': 1,

 'countryCode': None}

In [45]: trends_available[1]

Out[45]:

{'name': 'Winnipeg',

 'placeType': {'code': 7, 'name': 'Town'},

 'url': 'http://where.yahooapis.com/v1/place/2972',

 'parentid': 23424775,

 'country': 'Canada',

 'woeid': 2972,

 'countryCode': 'CA'}

The Twitter Trends API’s trends/place method (discussed momentarily) uses Yahoo! Where on Earth IDs (WOEIDs) to look up trending topics. The WOEID 1 represents worldwide. Other locations have unique WOEID values greater than 1. We’ll use WOEID values in the next two subsections to get worldwide trending topics and trending topics for a specific city. The following table shows WOEID values for several landmarks, cities, states and continents. Note that although these are all valid WOEIDs, Twitter does not necessarily have trending topics for all these locations.

[image: A table lists places and the corresponding W O E I D for each.]

13.11-3 Full Alternative Text

You also can search for locations close to a location that you specify with latitude and longitude values. To do so, call the Tweepy API’s trends_closest method, which invokes the Twitter API’s trends/closest method.20
20. https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-reference/get-trends-closest.

[image: tick mark] Self Check

	(Fill-In) If a topic “goes viral,” you could have thousands or even millions of people tweeting about that topic at once. Twitter refers to these as topics.

Answer: trending.

	(True/False) The Twitter Trends API’s trends/place method uses Yahoo! Where on Earth IDs (WOEIDs) to look up trending topics. The WOEID 1 represents worldwide.

Answer: True.

13.11.2 Getting a List of Trending Topics

The Tweepy API’s trends_place method calls the Twitter Trends API’s trends/place method21 to get the top 50 trending topics for the location with the specified WOEID. You can get the WOEIDs from the woeid attribute in each dictionary returned by the trends_available or trends_closest methods discussed in the previous section, or you can find a location’s Yahoo! Where on Earth ID (WOEID) by searching for a city/town, state, country, address, zip code or landmark at
21. https://developer.twitter.com/en/docs/trends/trends-for-location/api-reference/get-trends-place.

http://www.woeidlookup.com

You also can look up WOEID’s programmatically using Yahoo!’s web services via Python libraries like woeid22:
22. You’ll need a Yahoo! API key as described in the woeid module’s documentation.

https://github.com/Ray-SunR/woeid

Worldwide Trending Topics

Let’s get today’s worldwide trending topics (your results will differ):

In [46]: world_trends = api.trends_place(id=1)

Method trends_place returns a one-element list containing a dictionary. The dictionary’s 'trends' key refers to a list of dictionaries representing each trend:

In [47]: trends_list = world_trends[0]['trends']

Each trend dictionary has name, url, promoted_content (indicating the tweet is an advertisement), query and tweet_volume keys (shown below). The following trend is in Spanish—#BienvenidoSeptiembre means “Welcome September”:

In [48]: trends_list[0]

Out[48]:

{'name': '#BienvenidoSeptiembre',

 'url': 'http://twitter.com/search?q=%23BienvenidoSeptiembre',

 'promoted_content': None,

 'query': '%23BienvenidoSeptiembre',

 'tweet_volume': 15186}

For trends with more than 10,000 tweets, the tweet_volume is the number of tweets; otherwise, it’s None. Let’s use a list comprehension to filter the list so that it contains only trends with more than 10,000 tweets:

In [49]: trends_list = [t for t in trends_list if t['tweet_volume']]

Next, let’s sort the trends in descending order by tweet_volume:

In [50]: from operator import itemgetter

In [51]: trends_list.sort(key=itemgetter('tweet_volume'), reverse=True)

Now, let’s display the names of the top five trending topics:

In [52]: for trend in trends_list[:5]:

 ...: print(trend['name'])

 ...:

#HBDJanaSenaniPawanKalyan

#BackToHogwarts

Khalil Mack

#ItalianGP

Alisson

New York City Trending Topics

Now, let’s get the top five trending topics for New York City (WOEID 2459115). The following code performs the same tasks as above, but for the different WOEID:

In [53]: nyc_trends = api.trends_place(id=2459115) # New York City WOEID

In [54]: nyc_list = nyc_trends[0]['trends']

In [55]: nyc_list = [t for t in nyc_list if t['tweet_volume']]

In [56]: nyc_list.sort(key=itemgetter('tweet_volume'), reverse=True)

In [57]: for trend in nyc_list[:5]:

 ...: print(trend['name'])

 ...:

#IDOL100M

#TuesdayThoughts

#HappyBirthdayLiam

NAFTA

#USOpen

[image: tick mark] Self Check

	(Fill-In) You also can look up WOEIDs programmatically using Yahoo!’s web services via Python libraries like .

Answer: woeid.

	(True/False) The statement todays_trends = api.trends_place(id=1) gets today’s U. S. trending topics.

Answer: False. Actually, it gets today’s worldwide trending topics.

	(IPython Session) Display the top 3 trending topics today in the United States.

Answer:

In [58]: us_trends = api.trends_place(id='23424977')

In [59]: us_list = us_trends[0]['trends']

In [60]: us_list = [t for t in us_list if t['tweet_volume']]

In [61]: us_list.sort(key=itemgetter('tweet_volume'), reverse=True)

In [62]: for trend in us_list[:3]:

 ...: print(trend['name'])

 ...:

Cory Booker

Burt Reynolds

#ThursdayThoughts

13.11.3 Create a Word Cloud from Trending Topics

In the Natural Language Processing chapter, we used the WordCloud library to create word clouds. Let’s use it again here, to visualize New York City’s trending topics that have more than 10,000 tweets each. First, let’s create a dictionary of key–value pairs consisting of the trending topic names and tweet_volumes:

In [63]: topics = {}

In [64]: for trend in nyc_list:

 ...: topics[trend['name']] = trend['tweet_volume']

 ...:

Next, let’s create a WordCloud from the topics dictionary’s key–value pairs, then output the word cloud to the image file TrendingTwitter.png (shown after the code). The argument prefer_horizontal=0.5 suggests that 50% of the words should be horizontal, though the software may ignore that to fit the content:

In [65]: from wordcloud import WordCloud

In [66]: wordcloud = WordCloud(width=1600, height=900,

 ...: prefer_horizontal=0.5, min_font_size=10, colormap='prism',

 ...: background_color='white')

 ...:

In [67]: wordcloud = wordcloud.fit_words(topics)

In [68]: wordcloud = wordcloud.to_file('TrendingTwitter.png')

The resulting word cloud is shown below—yours will differ based on the trending topics the day you run the code:

[image: A word cloud includes the term hash tag Idol 100 M in the largest type, hash tag Tuesday thoughts in large type, I have a dream in smaller type, and bachelor in paradise in the smallest type.]

[image: tick mark] Self Check

	(IPython Session) Create a word cloud using the us_list list from the previous section’s Self Check.

Answer:

In [69]: topics = {}

In [70]: for trend in us_list:

 ...: topics[trend['name']] = trend['tweet_volume']

 ...:

In [71]: wordcloud = wordcloud.fit_words(topics)

In [72]: wordcloud = wordcloud.to_file('USTrendingTwitter.png')

[image: A word cloud has the name Cory Booker in the largest type, Burt Reynolds in large type, Jair Bolsonaro in smaller type and Melania Trump in the smallest type.]

13.12 Cleaning/Preprocessing Tweets for Analysis

Data cleaning is one of the most common tasks that data scientists perform. Depending on how you intend to process tweets, you’ll need to use natural language processing to normalize them by performing some or all of the data cleaning tasks in the following table. Many of these can be performed using the libraries introduced in the “Natural Language Processing (NLP)” chapter:

Computerized devices

	Converting all text to the same case

Removing # symbol from hashtags

Removing @-mentions

Removing duplicates

Removing excess whitespace

Removing hashtags

Removing punctuation

	Removing stop words

Removing RT (retweet) and FAV (favorite)

Removing URLs

Stemming

Lemmatization

Tokenization

tweet-preprocessor Library and TextBlob Utility Functions

In this section, we’ll use the tweet-preprocessor library

https://github.com/s/preprocessor

to perform some basic tweet cleaning. It can automatically remove:

	URLs,

	@-mentions (like @nasa),

	hashtags (like #mars),

	Twitter reserved words (like, RT for retweet and FAV for favorite, which is similar to a “like” on other social networks),

	emojis (all or just smileys) and

	numbers

or any combination of these. The following table shows the module’s constants representing each option:

[image: A table lists options and the corresponding option constants.]

13.12-6 Full Alternative Text

Installing tweet-preprocessor

To install tweet-preprocessor, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then issue the following command:

pip install tweet-preprocessor

Windows users might need to run the Anaconda Prompt as an administrator for proper software installation privileges. To do so, right-click Anaconda Prompt in the start menu and select More > Run as administrator.

Cleaning a Tweet

Let’s do some basic tweet cleaning that we’ll use in a later example in this chapter. The tweet-preprocessor library’s module name is preprocessor. Its documentation recommends that you import the module as follows:

In [1]: import preprocessor as p

To set the cleaning options you’d like to use call the module’s set_options function. In this case, we’d like to remove URLs and Twitter reserved words:

In [2]: p.set_options(p.OPT.URL, p.OPT.RESERVED)

Now let’s clean a sample tweet containing a reserved word (RT) and a URL:

In [3]: tweet_text = 'RT A sample retweet with a URL https://nasa.gov'

In [4]: p.clean(tweet_text)

Out[4]: 'A sample retweet with a URL'

[image: tick mark] Self Check

	(True/False) The tweet-preprocessor library can automatically remove URLs, @-mentions (like @nasa), hashtags (like #mars), Twitter reserved words (like, RT for retweet and FAV for favorite, which is similar to a “like” on other social networks), emojis (all or just smileys) and numbers, or any combination of these.

Answer: True.

13.13 Twitter Streaming API

Twitter’s free Streaming API sends to your app randomly selected tweets dynamically as they occur—up to a maximum of one percent of the tweets per day. According to InternetLiveStats.com, there are approximately 6000 tweets per second, which is over 500 million tweets per day.23 So the Streaming API gives you access to approximately five million tweets per day. Twitter used to allow free access to 10% of streaming tweets, but this service—called the fire hose—is now available only as a paid service. In this section, we’ll use a class definition and an IPython session to walk through the steps for processing streaming tweets. Note that the code for receiving a tweet stream requires creating a custom class that inherits from another class. These topics are covered in Chapter 10.
23. http://www.internetlivestats.com/twitter-statistics/.

13.13.1 Creating a Subclass of StreamListener

The Streaming API returns tweets as they happen that match your search criteria. Rather than connecting to Twitter on each method call, a stream uses a persistent connection to push (that is, send) tweets to your app. The rate at which those tweets arrive varies tremendously, based on your search criteria. The more popular a topic is, the more likely it is that the tweets will arrive quickly.

You create a subclass of Tweepy’s StreamListener class to process the tweet stream. An object of this class is the listener that’s notified when each new tweet (or other message sent by Twitter24) arrives. Each message Twitter sends results in a call to a StreamListener method. The following table summarizes several such methods. StreamListener already defines each method, so you redefine only the methods you need—this is known as overriding. For additional StreamListener methods, see:
24. For details on the messages, see https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/streaming-message-types.html.

https://github.com/tweepy/tweepy/blob/master/tweepy/streaming.py

[image: A table lists methods of creating subclasses and corresponding descriptions.]

13.13-7 Full Alternative Text

Class TweetListener

Our StreamListener subclass TweetListener is defined in tweetlistener.py. We discuss the TweetListener’s components here. Line 6 indicates that class TweetListener is a subclass of tweepy.StreamListener. This ensures that our new class has class StreamListener’s default method implementations.

1 # tweetlistener.py

2 """tweepy.StreamListener subclass that processes tweets as they arrive."""

3 import tweepy

4 from textblob import TextBlob

5

6 class TweetListener(tweepy.StreamListener):

7 """Handles incoming Tweet stream."""

8

Class TweetListener: __init__ Method

The following lines define the TweetListener class’s __init__ method, which is called when you create a new TweetListener object. The api parameter is the Tweepy API object that TweetListener will use to interact with Twitter. The limit parameter is the total number of tweets to process—10 by default. We added this parameter to enable you to control the number of tweets to receive. As you’ll soon see, we terminate the stream when that limit is reached. If you set limit to None, the stream will not terminate automatically. Line 11 creates an instance variable to keep track of the number of tweets processed so far, and line 12 creates a constant to store the limit. If you’re not familiar with __init__ and super() from previous chapters, line 13 ensures that the api object is stored properly for use by your listener object.

 9 def __init__(self, api, limit=10):

10 """Create instance variables for tracking number of tweets."""

11 self.tweet_count = 0

12 self.TWEET_LIMIT = limit

13 super().__init__(api) # call superclass's init

14

Class TweetListener: on_connect Method

Method on_connect is called when your app successfully connects to the Twitter stream. We override the default implementation to display a “Connection successful” message.

15 def on_connect(self):

16 """Called when your connection attempt is successful, enabling

17 you to perform appropriate application tasks at that point."""

18 print('Connection successful\n')

19

Class TweetListener: on_status Method

Method on_status is called by Tweepy when each tweet arrives. This method’s second parameter receives a Tweepy Status object representing the tweet. Lines 23–26 get the tweet’s text. First, we assume the tweet uses the new 280-character limit, so we attempt to access the tweet’s extended_tweet property and get its full_text. An exception will occur if the tweet does not have an extended_tweet property. In this case, we get the text property instead. Lines 28–30 then display the screen_name of the user who sent the tweet, the lang (that is language) of the tweet and the tweet_text. If the language is not English ('en'), lines 32–33 use a TextBlob to translate the tweet and display it in English. We increment self.tweet_count (line 36), then compare it to self.TWEET_LIMIT in the return statement. If on_status returns True, the stream remains open. When on_status returns False, Tweepy disconnects from the stream.

20 def on_status(self, status):

21 """Called when Twitter pushes a new tweet to you."""

22 # get the tweet text

23 try:

24 tweet_text = status.extended_tweet.full_text

25 except:

26 tweet_text = status.text

27

28 print(f'Screen name: {status.user.screen_name}:')

29 print(f' Language: {status.lang}')

30 print(f' Status: {tweet_text}')

31

32 if status.lang != 'en':

33 print(f' Translated: {TextBlob(tweet_text).translate()}')

34

35 print()

36 self.tweet_count += 1 # track number of tweets processed

37

38 # if TWEET_LIMIT is reached, return False to terminate streaming

39 return self.tweet_count != self.TWEET_LIMIT

13.13.2 Initiating Stream Processing

Let’s use an IPython session to test our new TweetListener.

Authenticating

First, you must authenticate with Twitter and create a Tweepy API object:

In [1]: import tweepy

In [2]: import keys

In [3]: auth = tweepy.OAuthHandler(keys.consumer_key,

 ...: keys.consumer_secret)

 ...:

In [4]: auth.set_access_token(keys.access_token,

 ...: keys.access_token_secret)

 ...:

In [5]: api = tweepy.API(auth, wait_on_rate_limit=True,

 ...: wait_on_rate_limit_notify=True)

 ...:

Creating a TweetListener

Next, create an object of the TweetListener class and initialize it with the api object:

In [6]: from tweetlistener import TweetListener

In [7]: tweet_listener = TweetListener(api)

We did not specify the limit argument, so this TweetListener terminates after 10 tweets.

Creating a Stream

A Tweepy Stream object manages the connection to the Twitter stream and passes the messages to your TweetListener. The Stream constructor’s auth keyword argument receives the api object’s auth property, which contains the previously configured OAuthHandler object. The listener keyword argument receives your listener object:

In [8]: tweet_stream = tweepy.Stream(auth=api.auth,

 ...: listener=tweet_listener)

 ...:

Starting the Tweet Stream

The Stream object’s filter method begins the streaming process. Let’s track tweets about the NASA Mars rovers. Here, we use the track parameter to pass a list of search terms:

In [9]: tweet_stream.filter(track=['Mars Rover'], is_async=True)

The Streaming API will return full tweet JSON objects for tweets that match any of the terms, not just in the tweet’s text, but also in @-mentions, hashtags, expanded URLs and other information that Twitter maintains in a tweet object’s JSON. So, you might not see the search terms you’re tracking if you look only at the tweet’s text.

Asynchronous vs. Synchronous Streams

The is_async=True argument indicates that filter should initiate an asynchronous tweet stream. This allows your code to continue executing while your listener waits to receive tweets and is useful if you decide to terminate the stream early. When you execute an asynchronous tweet stream in IPython, you’ll see the next In [] prompt and can terminate the tweet stream by setting the Stream object’s running property to False, as in:

tweet_stream.running=False

Without the is_async=True argument, filter initiates a synchronous tweet stream. In this case, IPython would display the next In [] prompt after the stream terminates. Asynchronous streams are particularly handy in GUI applications so your users can continue to interact with other parts of the application while tweets arrive. The following shows a portion of the output consisting of two tweets:

Connection successful

Screen name: bevjoy:

 Language: en

 Status: RT @SPACEdotcom: With Mars Dust Storm Clearing, Opportunity Rover Could Finally Wake Up https://t.co/OIRP9UyB8C https://t.co/gTfFR3RUkG

Screen name: tourmaline1973:

 Language: en

 Status: RT @BennuBirdy: Our beloved Mars rover isn't done yet, but she urgently needs our support! Spread the word that you want to keep calling ou…

...

Other filter Method Parameters

Method filter also has parameters for refining your tweet searches by Twitter user ID numbers (to follow tweets from specific users) and by location. For details, see:

https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters

Twitter Restrictions Note

Marketers, researchers and others frequently store tweets they receive from the Streaming API. If you’re storing tweets, Twitter requires you to delete any message or location data for which you receive a deletion message. This will occur if a user deletes a tweet or the tweets location data after Twitter pushes that tweet to you. In each case, your listener’s on_delete method will be called. For deletion rules and message details, see

https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/streaming-message-types

[image: tick mark] Self Check

	(Fill-In) Rather than connecting to Twitter on each method call, a stream uses a persistent connection to (that is, send) tweets to your app.

Answer: push.

	(True/False) Twitter’s free Streaming API sends to your app randomly selected tweets dynamically as they occur—up to a maximum of ten percent of the tweets per day.

Answer: False. Twitter’s free Streaming API sends to your app randomly selected tweets dynamically as they occur—up to a maximum of one percent of the tweets per day.

13.14 Tweet Sentiment Analysis

In the “Natural Language Processing (NLP)” chapter, we demonstrated sentiment analysis on sentences. Many researchers and companies perform sentiment analysis on tweets. For example, political researchers might check tweet sentiment during elections season to understand how people feel about specific politicians and issues. Companies might check tweet sentiment to see what people are saying about their products and competitors’ products.

In this section, we’ll use the techniques introduced in the preceding section to create a script (sentimentlistener.py) that enables you to check the sentiment on a specific topic. The script will keep totals of all the positive, neutral and negative tweets it processes and display the results.

The script receives two command-line arguments representing the topic of the tweets you wish to receive and the number of tweets for which to check the sentiment—only those tweets that are not eliminated are counted. For viral topics, there are large numbers of retweets, which we are not counting, so it could take some time get the number of tweets you specify. You can run the script from the ch13 folder as follows:

ipython sentimentlistener.py football 10

which produces output like the following. Positive tweets are preceded by a +, negative tweets by a - and neutral tweets by a space:

- ftblNeutral: Awful game of football. So boring slow hoofball complete

waste of another 90 minutes of my life that I'll never get back #BURMUN

+ TBulmer28: I’ve seen 2 successful onside kicks within a 40 minute span.

I love college football

+ CMayADay12: The last normal Sunday for the next couple months. Don’t

text me don’t call me. I am busy. Football season is finally here?

 rpimusic: My heart legitimately hurts for Kansas football fans

+ DSCunningham30: @LeahShieldsWPSD It's awsome that u like college

football, but my favorite team is ND - GO IRISH!!!

 damanr: I’m bummed I don’t know enough about football to roast

@samesfandiari properly about the Raiders

+ jamesianosborne: @TheRochaSays @WatfordFC @JackHind Haha.... just when

you think an American understands Football.... so close. Wat…

+ Tshanerbeer: @PennStateFball @PennStateOnBTN Ah yes, welcome back

college football. You've been missed.

- cougarhokie: @hokiehack @skiptyler I can verify the badness of that

football

+ Unite_Reddevils: @Pablo_di_Don Well make yourself clear it's football

not soccer we follow European football not MLS soccer

Tweet sentiment for "football"

Positive: 6

 Neutral: 2

Negative: 2

The script (sentimentlistener.py) is presented below. We focus only on the new capabilities in this example.

Imports

Lines 4–8 import the keys.py file and the libraries used throughout the script:

1 # sentimentlisener.py

2 """Script that searches for tweets that match a search string

3 and tallies the number of positive, neutral and negative tweets."""

4 import keys

5 import preprocessor as p

6 import sys

7 from textblob import TextBlob

8 import tweepy

9

Class SentimentListener: __init__ Method

In addition to the API object that interacts with Twitter, the __init__ method receives three additional parameters:

	sentiment_dict—a dictionary in which we’ll keep track of the tweet sentiments,

	topic—the topic we’re searching for so we can ensure that it appears in the tweet text and

	limit—the number of tweets to process (not including the ones we eliminate).

Each of these is stored in the current SentimentListener object (self).

10 class SentimentListener(tweepy.StreamListener):

11 """Handles incoming Tweet stream."""

12

13 def __init__(self, api, sentiment_dict, topic, limit=10):

14 """Configure the SentimentListener."""

15 self.sentiment_dict = sentiment_dict

16 self.tweet_count = 0

17 self.topic = topic

18 self.TWEET_LIMIT = limit

19

20 # set tweet-preprocessor to remove URLs/reserved words

21 p.set_options(p.OPT.URL, p.OPT.RESERVED)

22 super().__init__(api) # call superclass's init

23

Method on_status

When a tweet is received, method on_status:

	gets the tweet’s text (lines 27–30)

	skips the tweet if it’s a retweet (lines 33–34)

	cleans the tweet to remove URLs and reserved words like RT and FAV (line 36)

	skips the tweet if it does not have the topic in the tweet text (lines 39–40)

	uses a TextBlob to check the tweet’s sentiment and updates the sentiment_dict accordingly (lines 43–52)

	prints the tweet text (line 55) preceded by + for positive sentiment, space for neutral sentiment or - for negative sentiment and

	checks whether we’ve processed the specified number of tweets yet (lines 57–60).

24 def on_status(self, status):

25 """Called when Twitter pushes a new tweet to you."""

26 # get the tweet's text

27 try:

28 tweet_text = status.extended_tweet.full_text

29 except:

30 tweet_text = status.text

31

32 # ignore retweets

33 if tweet_text.startswith('RT'):

34 return

35

36 tweet_text = p.clean(tweet_text) # clean the tweet

37

38 # ignore tweet if the topic is not in the tweet text

39 if self.topic.lower() not in tweet_text.lower():

40 return

41

42 # update self.sentiment_dict with the polarity

43 blob = TextBlob(tweet_text)

44 if blob.sentiment.polarity > 0:

45 sentiment = '+'

46 self.sentiment_dict['positive'] += 1

47 elif blob.sentiment.polarity == 0:

48 sentiment = ' '

49 self.sentiment_dict['neutral'] += 1

50 else:

51 sentiment = '-'

52 self.sentiment_dict['negative'] += 1

53

54 # display the tweet

55 print(f'{sentiment} {status.user.screen_name}: {tweet_text}\n')

56

57 self.tweet_count += 1 # track number of tweets processed

58

59 # if TWEET_LIMIT is reached, return False to terminate streaming

60 return self.tweet_count != self.TWEET_LIMIT

61

Main Application

The main application is defined in the function main (lines 62–87; discussed after the following code), which is called by lines 90–91 when you execute the file as a script. So sentimentlistener.py can be imported into IPython or other modules to use class SentimentListener as we did with TweetListener in the previous section:

62 def main():

63 # configure the OAuthHandler

64 auth = tweepy.OAuthHandler(keys.consumer_key, keys.consumer_secret)

65 auth.set_access_token(keys.access_token, keys.access_token_secret)

66

67 # get the API object

68 api = tweepy.API(auth, wait_on_rate_limit=True,

69 wait_on_rate_limit_notify=True)

70

71 # create the StreamListener subclass object

72 search_key = sys.argv[1]

73 limit = int(sys.argv[2]) # number of tweets to tally

74 sentiment_dict = {'positive': 0, 'neutral': 0, 'negative': 0}

75 sentiment_listener = SentimentListener(api,

76 sentiment_dict, search_key, limit)

77

78 # set up Stream

79 stream = tweepy.Stream(auth=api.auth, listener=sentiment_listener)

80

81 # start filtering English tweets containing search_key

82 stream.filter(track=[search_key], languages=['en'], is_async=False)

83

84 print(f'Tweet sentiment for "{search_key}"')

85 print('Positive:', sentiment_dict['positive'])

86 print(' Neutral:', sentiment_dict['neutral'])

87 print('Negative:', sentiment_dict['negative'])

88

89 # call main if this file is executed as a script

90 if __name__ == '__main__':

91 main()

Lines 72–73 get the command-line arguments. Line 74 creates the sentiment_dict dictionary that keeps track of the tweet sentiments. Lines 75–76 create the SentimentListener. Line 79 creates the Stream object. We once again initiate the stream by calling Stream method filter (line 82). However, this example uses a synchronous stream so that lines 84–87 display the sentiment report only after the specified number of tweets (limit) are processed. In this call to filter, we also provided the keyword argument languages, which specifies a list of language codes. The one language code 'en' indicates Twitter should return only English language tweets.

13.15 Geocoding and Mapping

In this section, we’ll collect streaming tweets, then plot the locations of those tweets. Most tweets do not include latitude and longitude coordinates, because Twitter disables this by default for all users. Those who wish to include their precise location in tweets must opt into that feature. Though most tweets do not include precise location information, a large percentage include the user’s home location information; however, even that is sometimes invalid, such as “Far Away” or a fictitious location from a user’s favorite movie.

In this section, for simplicity, we’ll use the location property of the tweet’s User object to plot that user’s location on an interactive map. The map will let you zoom in and out and drag to move the map around so you can look at different areas (known as panning). For each tweet, we’ll display a map marker that you can click to see a popup containing the user’s screen name and tweet text.

We’ll ignore retweets and tweets that do not contain the search topic. For other tweets, we’ll track the percentage of tweets with location information. When we get the latitude and longitude information for those locations, we’ll also track the percentage of those tweets that had invalid location data.

geopy Library

We’ll use the geopy library (https://github.com/geopy/geopy) to translate locations into latitude and longitude coordinates—known as geocoding—so we can place markers on a map. The library supports dozens of geocoding web services, many of which have free or lite tiers. For this example, we’ll use the OpenMapQuest geocoding service (discussed shortly). You installed geopy in Section 13.6.

OpenMapQuest Geocoding API

We’ll use the OpenMapQuest Geocoding API to convert locations, such as Boston, MA into their latitudes and longitudes, such as 42.3602534 and -71.0582912, for plotting on maps. OpenMapQuest currently allows 15,000 transactions per month on their free tier. To use the service, first sign up at

https://developer.mapquest.com/

Once logged in, go to

https://developer.mapquest.com/user/me/apps

and click Create a New Key, fill in the App Name field with a name of your choosing, leave the Callback URL empty and click Create App to create an API key. Next, click your app’s name in the web page to see your consumer key. In the keys.py file you used earlier in the chapter, store the consumer key by replacing YourKeyHere in the line

mapquest_key = 'YourKeyHere'

As we did earlier in the chapter, we’ll import keys.py to access this key.

Folium Library and Leaflet.js JavaScript Mapping Library

For the maps in this example, we’ll use the folium library

https://github.com/python-visualization/folium

which uses the popular Leaflet.js JavaScript mapping library to display maps. The maps that folium produces are saved as HTML files that you can view in your web browser. To install folium, execute the following command:

pip install folium

Maps from OpenStreetMap.org

By default, Leaflet.js uses open source maps from OpenStreetMap.org. These maps are copyrighted by the OpenStreetMap.org contributors. To use these maps25, they require the following copyright notice:
25. https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ.

Map data © OpenStreetMap contributors

and they state:

	

 You must make it clear that the data is available under the Open Database License. This can be achieved by providing a “License” or “Terms” link which links to www.openstreetmap.org/copyright or www.opendatacommons.org/licenses/odbl.

[image: tick mark] Self Check

	(Fill-In) The geopy library enables you to translate locations into latitude and longitude coordinates, known as , so you can plot locations on a map.

Answer: geocoding

	(Fill-In) The OpenMapQuest Geocoding API converts locations, like Boston, MA into their and for plotting on maps.

Answer: latitudes, longitudes.

13.15.1 Getting and Mapping the Tweets

Let’s interactively develop the code that plots tweet locations. We’ll use utility functions from our tweetutilities.py file and class LocationListener in locationlistener.py. We’ll explain the details of the utility functions and class in the subsequent sections.

Get the API Object

As in the other streaming examples, let’s authenticate with Twitter and get the Tweepy API object. In this case, we do this via the get_API utility function in tweetutilities.py:

In [1]: from tweetutilities import get_API

In [2]: api = get_API()

Collections Required By LocationListener

Our LocationListener class requires two collections: A list (tweets) to store the tweets we collect and a dictionary (counts) to track the total number of tweets we collect and the number that have location data:

In [3]: tweets = []

In [4]: counts = {'total_tweets': 0, 'locations': 0}

Creating the LocationListener

For this example, the LocationListener will collect 50 tweets about 'football':

In [5]: from locationlistener import LocationListener

In [6]: location_listener = LocationListener(api, counts_dict=counts,

 ...: tweets_list=tweets, topic='football', limit=50)

 ...:

The LocationListener will use our utility function get_tweet_content to extract the screen name, tweet text and location from each tweet, place that data in a dictionary.

Configure and Start the Stream of Tweets

Next, let’s set up our Stream to look for English language 'football' tweets:

In [7]: import tweepy

In [8]: stream = tweepy.Stream(auth=api.auth, listener=location_listener)

In [9]: stream.filter(track=['football'], languages=['en'], is_async=False)

Now wait to receive the tweets. Though we do not show them here (to save space), the LocationListener displays each tweet’s screen name and text so you can see the live stream. If you’re not receiving any (perhaps because it is not football season), you might want to type Ctrl + C to terminate the previous snippet then try again with a different search term.

Displaying the Location Statistics

When the next In [] prompt displays, we can check how many tweets we processed, how many had locations and the percentage that had locations:

In [10]: counts['total_tweets']

Out[10]: 63

In [11]: counts['locations']

Out[11]: 50

In [12]: print(f'{counts["locations"] / counts["total_tweets"]:.1%}')

79.4%

In this particular execution, 79.4% of the tweets contained location data.

Geocoding the Locations

Now, let’s use our get_geocodes utility function from tweetutilities.py to geocode the location of each tweet stored in the list tweets:

In [13]: from tweetutilities import get_geocodes

In [14]: bad_locations = get_geocodes(tweets)

Getting coordinates for tweet locations...

OpenMapQuest service timed out. Waiting.

OpenMapQuest service timed out. Waiting.

Done geocoding

Sometimes the OpenMapQuest geocoding service times out, meaning that it cannot handle your request immediately and you need to try again. In that case, our function get_geocodes displays a message, waits for a short time, then retries the geocoding request.

As you’ll soon see, for each tweet with a valid location, the get_geocodes function adds to the tweet’s dictionary in the tweets list two new keys—'latitude' and 'longitude'. For the corresponding values, the function uses the tweet’s coordinates that OpenMapQuest returns.

Displaying the Bad Location Statistics

When the next In [] prompt displays, we can check the percentage of tweets that had invalid location data:

In [15]: bad_locations

Out[15]: 7

In [16]: print(f'{bad_locations / counts["locations"]:.1%}')

14.0%

In this case, of the 50 tweets with location data, 7 (14%) had invalid locations.

Cleaning the Data

Before we plot the tweet locations on a map, let’s use a pandas DataFrame to clean the data. When you create a DataFrame from the tweets list, it will contain the value NaN for the 'latitude' and 'longitude' of any tweet that did not have a valid location. We can remove any such rows by calling the DataFrame’s dropna method:

In [17]: import pandas as pd

In [18]: df = pd.DataFrame(tweets)

In [19]: df = df.dropna()

Creating a Map with Folium

Now, let’s create a folium Map on which we’ll plot the tweet locations:

In [20]: import folium

In [21]: usmap = folium.Map(location=[39.8283, -98.5795],

 ...: tiles='Stamen Terrain',

 ...: zoom_start=5, detect_retina=True)

 ...:

The location keyword argument specifies a sequence containing latitude and longitude coordinates for the map’s center point. The values above are the geographic center of the continental United States (http://bit.ly/CenterOfTheUS). It’s possible that some of the tweets we plot will be outside the U.S. In this case, you will not see them initially when you open the map. You can zoom in and out using the + and - buttons at the top-left of the map, or you can pan the map by dragging it with the mouse to see anywhere in the world.

The zoom_start keyword argument specifies the map’s initial zoom level, lower values show more of the world and higher values show less. On our system, 5 displays the entire continental United States. The detect_retina keyword argument enables folium to detect high-resolution screens. When it does, it requests higher-resolution maps from OpenStreetMap.org and changes the zoom level accordingly.

Creating Popup Markers for the Tweet Locations

Next, let’s iterate through the DataFrame and add to the Map folium Popup objects containing each tweet’s text. In this case, we’ll use method itertuples to create tuples from each row of the DataFrame. Each tuple will contain a property for each DataFrame column:

In [22]: for t in df.itertuples():

 ...: text = ': '.join([t.screen_name, t.text])

 ...: popup = folium.Popup(text, parse_html=True)

 ...: marker = folium.Marker((t.latitude, t.longitude),

 ...: popup=popup)

 ...: marker.add_to(usmap)

 ...:

First, we create a string (text) containing the user’s screen_name and tweet text separated by a colon. This will be displayed on the map if you click the corresponding marker. The second statement creates a folium Popup to display the text. The third statement creates a folium Marker object using a tuple to specify the Marker’s latitude and longitude. The popup keyword argument associates the tweet’s Popup object with the new Marker. Finally, the last statement calls the Marker’s add_to method to specify the Map that will display the Marker.

Saving the Map

The last step is to call the Map’s save method to store the map in an HTML file, which you can then double click to open in your web browser:

In [23]: usmap.save('tweet_map.html')

The resulting map follows. The Markers on your map will differ:

[image: A map of the U S is dotted with markers. One marker in northern Wisconsin has a tag reading, Coach Josh Fizel colon at symbol Spooner Football awesome stuff watch this, hash tag family.]

[image: tick mark] Self Check

	(Fill-In) The folium classes and enable you to mark locations on a map and add text that displays when the user clicks a marked location.

Answer: Marker, Popup.

	(Fill-In) Pandas DataFrame method creates an iterator for accessing the rows of a DataFrame as tuples.

Answer: itertuples.

13.15.2 Utility Functions in tweetutilities.py

Here we present the utility functions get_tweet_content and get_geo_codes used in the preceding section’s IPython session. In each case, the line numbers start from 1 for discussion purposes. These are both defined in tweetutilities.py, which is included in the ch13 examples folder.

get_tweet_content Utility Function

Function get_tweet_content receives a Status object (tweet) and creates a dictionary containing the tweet’s screen_name (line 4), text (lines 7–10) and location (lines 12–13). The location is included only if the location keyword argument is True. For the tweet’s text, we try to use the full_text property of an extended_tweet. If it’s not available, we use the text property:

 1 def get_tweet_content(tweet, location=False):

 2 """Return dictionary with data from tweet (a Status object)."""

 3 fields = {}

 4 fields['screen_name'] = tweet.user.screen_name

 5

 6 # get the tweet's text

 7 try:

 8 fields['text'] = tweet.extended_tweet.full_text

 9 except:

10 fields['text'] = tweet.text

11

12 if location:

13 fields['location'] = tweet.user.location

14

15 return fields

get_geocodes Utility Function

Function get_geocodes receives a list of dictionaries containing tweets and geocodes their locations. If geocoding is successful for a given tweet, the function adds the latitude and longitude to the corresponding tweet’s dictionary in tweet_list. This code requires class OpenMapQuest from the geopy module, which we import into the file tweetutilities.py as follows:

from geopy import OpenMapQuest

 1 def get_geocodes(tweet_list):

 2 """Get the latitude and longitude for each tweet's location.

 3 Returns the number of tweets with invalid location data."""

 4 print('Getting coordinates for tweet locations...')

 5 geo = OpenMapQuest(api_key=keys.mapquest_key) # geocoder

 6 bad_locations = 0

 7

 8 for tweet in tweet_list:

 9 processed = False

10 delay = .1 # used if OpenMapQuest times out to delay next call

11 while not processed:

12 try: # get coordinates for tweet['location']

13 geo_location = geo.geocode(tweet['location'])

14 processed = True

15 except: # timed out, so wait before trying again

16 print('OpenMapQuest service timed out. Waiting.')

17 time.sleep(delay)

18 delay += .1

19

20 if geo_location:

21 tweet['latitude'] = geo_location.latitude

22 tweet['longitude'] = geo_location.longitude

23 else:

24 bad_locations += 1 # tweet['location'] was invalid

25

26 print('Done geocoding')

27 return bad_locations

The function operates as follows:

	Line 5 creates the OpenMapQuest object we’ll use to geocode locations. The api_key keyword argument is loaded from the keys.py file you edited earlier.

	Line 6 initializes bad_locations which we use to keep track of the number of invalid locations in the tweet objects we collected.

	In the loop, lines 9–18 attempt to geocode the current tweet’s location. As we mentioned, sometimes the OpenMapQuest geocoding service will time out, meaning that it’s temporarily unavailable. This can happen if you make too many requests too quickly. For this reason, the while loop continues executing as long as processed is False. In each iteration, this loop calls the OpenMapQuest object’s geocode method with the tweet’s location string as an argument. If successful, processed is set to True and the loop terminates. Otherwise, lines 16–18 display a time-out message, tell the loop to wait for delay seconds and increase the delay in case we get another time out. Line 17 calls the Python Standard Library time module’s sleep method to pause the code execution.

	After the while loop terminates, lines 20–24 check whether location data was returned and, if so, add it to the tweet’s dictionary. Otherwise, line 24 increments the bad_locations counter.

	Finally, the function prints a message that it’s done geocoding and returns the bad_locations value.

[image: tick mark] Self Check

	(IPython Session) Use an OpenMapQuest geocoding object to get the latitude and Longitude for Chicago, IL.

Answer:

In [1]: import keys

In [2]: from geopy import OpenMapQuest

In [3]: geo = OpenMapQuest(api_key=keys.mapquest_key)

In [4]: geo.geocode('Chicago, IL')

Out[4]: Location(Chicago, Cook County, Illinois, United States of America, (41.8755546, -87.6244212, 0.0))

13.15.3 Class LocationListener

Class LocationListener performs many of the same tasks we demonstrated in the prior streaming examples, so we’ll focus on just a few lines in this class:

 1 # locationlistener.py

 2 """Receives tweets matching a search string and stores a list of

 3 dictionaries containing each tweet's screen_name/text/location."""

 4 import tweepy

 5 from tweetutilities import get_tweet_content

 6

 7 class LocationListener(tweepy.StreamListener):

 8 """Handles incoming Tweet stream to get location data."""

 9

10 def __init__(self, api, counts_dict, tweets_list, topic, limit=10):

11 """Configure the LocationListener."""

12 self.tweets_list = tweets_list

13 self.counts_dict = counts_dict

14 self.topic = topic

15 self.TWEET_LIMIT = limit

16 super().__init__(api) # call superclass's init

17

18 def on_status(self, status):

19 """Called when Twitter pushes a new tweet to you."""

20 # get each tweet's screen_name, text and location

21 tweet_data = get_tweet_content(status, location=True)

22

23 # ignore retweets and tweets that do not contain the topic

24 if (tweet_data['text'].startswith('RT') or

25 self.topic.lower() not in tweet_data['text'].lower()):

26 return

27

28 self.counts_dict['total_tweets'] += 1 # original tweet

29

30 # ignore tweets with no location

31 if not status.user.location:

32 return

33

34 self.counts_dict['locations'] += 1 # tweet with location

35 self.tweets_list.append(tweet_data) # store the tweet

36 print(f'{status.user.screen_name}: {tweet_data["text"]}\n')

37

38 # if TWEET_LIMIT is reached, return False to terminate streaming

39 return self.counts_dict['locations'] != self.TWEET_LIMIT

In this case, the __init__ method receives a counts dictionary that we use to keep track of the total number of tweets processed and a tweet_list in which we store the dictionaries returned by the get_tweet_content utility function.

Method on_status:

	Calls get_tweet_content to get the screen name, text and location of each tweet.

	Ignores the tweet if it is a retweet or if the text does not include the topic we’re searching for—we’ll use only original tweets containing the search string.

	Adds 1 to the value of the 'total_tweets' key in the counts dictionary to track the number of original tweets we process.

	Ignores tweets that have no location data.

	Adds 1 to the value of the 'locations' key in the counts dictionary to indicate that we found a tweet with a location.

	Appends to the tweets_list the tweet_data dictionary that get_tweet_content returned.

	Displays the tweet’s screen name and tweet text so you can see that the app is making progress.

	Checks whether the TWEET_LIMIT has been reached and, if so, returns False to terminate the stream.

13.16 Ways to Store Tweets

For analysis, you’ll commonly store tweets in:

	CSV files—A file format that we introduced in the “Files and Exceptions” chapter.

	pandas DataFrames in memory—CSV files can be loaded easily into DataFrames for cleaning and manipulation.

	SQL databases—Such as MySQL, a free and open source relational database management system (RDBMS).

	NoSQL databases—Twitter returns tweets as JSON documents, so the natural way to store them is in a NoSQL JSON document database, such as MongoDB. Tweepy generally hides the JSON from the developer. If you’d like to manipulate the JSON directly, use the techniques we present in the “Big Data: Hadoop, Spark, NoSQL and IoT Databases” chapter, where we’ll look at the PyMongo library.

13.17 Twitter and Time Series

A time series is a sequence of values with timestamps. Some examples are daily closing stock prices, daily high temperatures at a given location, monthly U.S. job-creation numbers, quarterly earnings for a given company and more. Tweets are natural for time-series analysis because they’re time stamped. In the “Machine Learning” chapter, we’ll use a technique called simple linear regression to make predictions with time series. We’ll take another look at time series in the “Deep Learning” chapter when we study recurrent neural networks.

13.18 Wrap-Up

In this chapter, we explored data mining Twitter, perhaps the most open and accessible of all the social media sites, and one of the most commonly used big-data sources. You created a Twitter developer account and connected to Twitter using your account credentials. We discussed Twitter’s rate limits and some additional rules, and the importance of conforming to them.

We looked at the JSON representation of a tweet. We used Tweepy—one of the most widely used Twitter API clients—to authenticate with Twitter and access its APIs. We saw that tweets returned by the Twitter APIs contain much metadata in addition to a tweet’s text. We determined an account’s followers and whom an account follows, and looked at a user’s recent tweets.

We used Tweepy Cursors to conveniently request successive pages of results from various Twitter APIs. We used Twitter’s Search API to download past tweets that met specified criteria. We used Twitter’s Streaming API to tap into the flow of live tweets as they happened. We used the Twitter Trends API to determine trending topics for various locations and created a word cloud from trending topics.

We used the tweet-preprocessor library to clean and preprocess tweets to prepare them for analysis, and performed sentiment analysis on tweets. We used the folium library to create a map of tweet locations and interacted with it to see the tweets at particular locations. We enumerated common ways to store tweets and noted that tweets are a natural form of time series data. In the next chapter, we’ll study IBM’s Watson and its cognitive computing capabilities.

Exercises

	13.1 (Percentage of English Tweets) Twitter is truly an international social network. Use the Twitter search API to look at 10,000 tweets. Look at each tweet’s lang property. Count and display the number of tweets in each language.

	13.2 (Percentage of Retweets) Look at 10,000 tweets and determine the percentage of tweets that begin with Twitter’s reserved word RT (for retweet).

	13.3 (Percentage of Extended Tweets) Look at 10,000 tweets and determine what percentage of them are extended tweets.

	13.4 (Basic Account Information) Get the ID, name, screen name and description of a Twitter account of interest to you.

	13.5 (User Timeline) Get the last 10 tweets from an account of interest to you.

	13.6 (Sentiment Analysis) When searching for tweets, you can include :) or :(to look for positive and negative tweets, respectively. Perform searches for 10 positive tweets and 10 negative tweets, then use TextBlob sentiment analysis to confirm that each is positive or negative.

	13.7 (Condensing Tweet Objects) You’ve already seen a complete JSON representation of a typical tweet. That’s about 9000 characters of information for the new 280-character tweet text limit. When you work with Tweepy it forms a large Status object. For most applications you’ll need a relatively small number of that object’s properties. Write a script that will extract only a small subset of a tweet’s common properties and place those in a CSV file.

	13.8 (Trends Bar Chart Using Pandas) Use the pandas plotting you learned in the “Natural Language Processing (NLP)” chapter to create a bar chart showing the tweet counts for Twitter’s trending topics in a city of your choice.

	13.9 (Trending Topics Word Cloud) Use the Twitter Trends API to determine the locations for which Twitter has trending topics. Pick one of the locations and display its trending-topics list.

	13.10 (Tweet Mapping Modification) In this chapter’s tweet mapping example, for simplicity, we used the location property of a Status object to grab the user’s location. Another level of location is to check the tweet object’s coordinates property to see if it contains latitude and longitude information. This field is included in a small percentage of tweets. Update your code to look only at tweets with coordinates and use those to plot the map. You might need to look through a large number of tweets before you have enough information to make the map worthwhile. Count the number of tweets you find and divide by the total number of tweets you received to determine the percentage of tweets that included latitude and longitude information directly.

	13.11 (Project: Mapping Only Tweets Inside the Continental U.S.) Look at geopy’s supported geocoding APIs in its online documentation. Locate one that supports reverse geocoding in which you provide the coordinates to the geocoder object’s reverse method and it returns the location. Display and study the JSON properties in the result. Next, modify this chapter’s mapping example to use this capability. Check each tweet’s location and plot on a map only those tweets inside the continental U.S.

	13.12 (Project: Twitter Geo API) Use the Twitter Geo API’s reverse_geocode method to locate up to 20 places near the latitude and longitude 47.6205, -122.3493 (the Seattle Space Needle, built for the 1962 World’s Fair).

	13.13 (Project: Twitter Geo API) Use the Twitter Geo API’s search method to locate places near the Eiffel Tower. This method can receive latitude and longitude, a place name or an IP address.

	13.14 (Project: Twitter Geo API) The results returned by the reverse_geocode and search methods in the two previous exercises include place IDs. Use the Twitter Geo API’s place_id method to get the information for each of the places returned.

	13.15 (Project: Heat Maps with Folium) In this chapter, you used the folium library to create an interactive map showing tweet locations. Investigate creating heat maps with folium. Build a folium heat map showing the tweeting activity on a given subject throughout the United States.

	13.16 (Project: Live Translating the Flow of Tweets to English) Twitter is a global network. Use Twitter and the language translation services you learned in the “Natural Language Processing (NLP)” chapter to data mine tweets for a Spanish-speaking city. In particular, get the trending topics list then stream 10 tweets on that city’s top trending topic. Use TextBlob to translate the tweets to English.

	13.17 (Project: Data Mining Foreign Language Tweets) Add this capability into one of your existing examples. Enhance your application with the language-translation services you’ll learn in the next chapter, “IBM Watson and Cognitive Computing.”

	13.18 (Project: Tweet Cleaner/Preprocessor) Section 13.12 discussed cleaning and preprocessing tweets and demonstrated basic cleaning with the tweet-preprocessor library. Use the search API to get 100 tweets on a topic of your choice. Preprocess the tweets using all of tweet-preprocessor’s features. Then, investigate and use TextBlob’s lowerstrip utility function to remove all punctuation and convert the text to lowercase letters. Display the original and cleaned version of each tweet.

	13.19 (Project: Data Mining Facebook) Now that you’re familiar with data mining Twitter, research data mining Facebook and implement several examples like those here in this chapter. Develop some examples of data mining with capabilities unique to Facebook.

	13.20 (Project: Data Mining LinkedIn) Now that you’re familiar with data mining Twitter, research data mining LinkedIn and implement several examples like those here in this chapter. Develop some examples of data mining with capabilities unique to the LinkedIn social network, especially those for professional people.

	13.21 (Project: Predicting the Stock Market with Twitter) Many articles and research papers have been published on predicting the stock market with Twitter. Some of the approaches are quite mathematical. Choose a few public companies listed on the major stock exchanges. Use sentiment analysis with tweets mentioning these companies. Based on the strength of the sentiment values, determine what recommendations you would have made for buying and selling the securities of these companies. Would these trades have been profitable? If you’re successful with stocks, you may want to apply a similar approach to the bond and commodities markets.

	13.22 (Project: Hedge Funds Use Twitter to Predict the Securities Markets) Some hedge funds employ powerful computer equipment and sophisticated software to predict the securities markets. They must distinguish between correct information about companies and their products, and fake information from people who are trying to influence stock prices. Research the kinds of things this software should find. Implement a system for detecting fake information.

	13.23 (Project: Predicting Movie Revenues) Research “Using Twitter to Predict How Well New Movies Will Do at the Box Office.” Try to do this only with the techniques you’ve learned so far in this book. You may want to refine your effort with techniques you’ll learn in the forthcoming “Machine Learning” and “Deep Learning” chapters. You can use similar techniques to predict the success of stage plays, TV programs and products of all kinds. The quality of these kinds of predictions will surely improve with time. Eventually, it’s reasonable to expect that the product design process will be influenced by what is learned from years of prediction efforts.

	13.24 (Project: Generating the Social Graph) Because you can look at whom a Twitter account follows and who follows that account, you can build “social graphs” showing the relationships among Twitter accounts. Study the NetworkX tool. Write a script that uses NetworkX to draw the social graph of a small “sub-community” in Twitter.

	13.25 (Project: Using Twitter to Predict Elections) Research online "Predicting Elections with Twitter." Develop and test your approach on local, statewide and/or national elections. Try refining your approach after you study the “Machine Learning” and “Deep Learning” chapters.

	13.26 (Project: Predicting a User’s Gender on Twitter) A person’s gender often is valuable to marketers. Try determining gender from tweet text by using the techniques you’ve learned so far. Later, try using the techniques you’ll learn in the “Machine Learning” and “Deep Learning” chapters. Always check Twitters latest rules and regulations to be sure you’re not compromising a user’s privacy or other rights.

	13.27 (Project: Using Twitter to Predict If a User Is Conservative or Liberal) This kind of information is valuable to people who run political campaigns. Try doing this with the techniques you’ve learned so far. Then try using the techniques you’ll learn in the “Machine Learning” and “Deep Learning” chapters. Always check Twitter’s latest rules and regulations to be sure you’re not compromising a user’s privacy or other rights.

	13.28 (Project: Using Twitter Find Job Opportunities) Many companies encourage their employees to tweet regularly about ongoing development efforts and job opportunities. Analyze the tweet streams of a possibly large number of companies in your field companies to determine if the specific projects they’re doing interests you.

	13.29 (Project: Using Twitter to Examine Tweets By Congressional District) Investigate the site govtrack.us, which includes the statement, "You are encouraged to reuse any material on this site." Analyze the trending topics in key cities in several congressional districts of interest to you. Try to determine from the tweets the relative percentages of Democrats, Republicans and Independents in each district. Research the term "gerrymandering," which is often used in a negative context, to see how politicians have used changes in these percentages over time for political advantage. Find instances of where gerrymandering has been used in a positive context.

	13.30 (Project: Accessing the YouTube API) In this chapter, you used web services to access Twitter through its APIs. The hugely popular YouTube website serves up billions of videos per day. Look for Python libraries that conveniently access the YouTube APIs, then use them to integrate YouTube videos into one of your Twitter applications. You might, for example, display YouTube videos for trending topics.

	13.31 (Project: Tracking Natural Disasters with Twitter and Spatial Data) Research spatial data, then use Twitter and spatial data to implement a system for tracking natural disasters like hurricanes, earthquakes and tornadoes.

	13.32 (Project: Twitter Sentiment Analysis with Emoticons) Emoticons scream emotions, making them useful for sentiment analysis. Identify common emoticons as positive, negative or neutral, then look for them in tweets and use them to classify the sentiment of those tweets.

	13.33 (Project: Tweet Normalization—Expanding Common Abbreviations) Search for common social media abbreviations and expansions. Add expanding common abbreviations to your tweet preprocessing script. Find tools that do these expansions. Some of the tools are likely to be domain specific.

	13.34 (Project: Tweet Normalization—Shortening “Stretched Words”) Shorten “stretched words” like “sooooooo” to “so.” Make a list of stretched words commonly used in social media.

	13.35 (Project: Sentiment Analysis of Streaming Tweets) Stream tweets during an event and note how sentiment changes throughout the event.

	13.36 (Project: Finding Positive and Negative Sentiment Words) There are lots of free and open source sentiment datasets online, such as IMDB (the Internet Movie Database) and others. Many of these have labeled descriptions of movies, airline service, and more, with sentiment tags, such as positive, negative and neutral. Analyze one or more of these datasets. Find the most common words used in the positive sentiment descriptions and the most common words in the negative sentiment descriptions. Then, search through tweets looking for these positive and negative words. Based on the matches, decide whether the tweets have positive or negative sentiment. Compare your sentiment results to what TextBlob returns for each tweet.

	13.37 (For the Entrepreneur) Check out business.twitter.com. Research Twitter business applications. Developer a Twitter-based business application.

	13.38 (Uber Visualization Video) In this chapter, we visualized tweets on a map. To learn more about visualizing live data, watch the following visualization video to see how Uber is using visualization to optimize their business:

https://www.youtube.com/watch?v=nLy3OQYsXWA

14 IBM Watson and Cognitive Computing

Objectives

In this chapter you’ll:

	Learn Watson’s range of services and use their Lite tier to become familiar with them at no charge.

	Try lots of demos of Watson services.

	Understand what cognitive computing is and how you can incorporate it into your applications.

	Register for an IBM Cloud account and get credentials to use various services.

	Install the Watson Developer Cloud Python SDK to interact with Watson services.

	Develop a traveler’s companion language translator app by using Python to weave together a mashup of the Watson Speech to Text, Language Translator and Text to Speech services.

	Learn about the Watson Analytics platform’s automated data preparation, predictive modeling and visualization capabilities.

	Check out additional resources, such as IBM Watson Redbooks that will help you jump start your custom Watson application development.

Outline

	14.1 Introduction: IBM Watson and Cognitive Computing

	14.2 IBM Cloud Account and Cloud Console

	14.3 Watson Services

	14.4 Additional Services and Tools

	14.5 Watson Developer Cloud Python SDK

	14.6 Case Study: Traveler’s Companion Translation App

	14.6.1 Before You Run the App

	14.6.2 Test-Driving the App

	14.6.3 SimpleLanguageTranslator.py Script Walkthrough

	14.7 Watson Resources

	14.8 Wrap-Up

	Exercises

14.1 Introduction: IBM Watson and Cognitive Computing

In Chapter 1, we discussed some key IBM artificial-intelligence accomplishments, including beating the two best human Jeopardy players in a $1 million match. Watson won the competition and IBM donated the prize money to charity. Watson simultaneously executed hundreds of language-analysis algorithms to locate correct answers in 200 million pages of content (including all of Wikipedia) requiring four terabytes of storage.1, 2 IBM researchers trained Watson using machine-learning and reinforcement-learning techniques (which we discuss in upcoming chapters).3
1. https:www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/.
2. https:en.wikipedia.org/wiki/Watson_(computer).
3. https:www.aaai.org/Magazine/Watson/watson.php, AI Magazine, Fall 2010.

Early in our research for this book, we recognized the rapidly growing importance of Watson, so we placed Google Alerts on Watson and related topics. Through those alerts and the newsletters and blogs we follow, we accumulated 900+ current Watson-related articles, documentation pieces and videos. We investigated many competitive services and found Watson’s “no credit card required” policy and free Lite tier services4 to be among friendliest to people who’d like to experiment with Watson’s services at no charge.
4. Always check the latest terms on IBM’s website as the terms and services may change.

IBM Watson is a cloud-based cognitive-computing platform being employed across a wide range of real-world scenarios. Cognitive-computing systems simulate the pattern-recognition and decision-making capabilities of the human brain to “learn” as they consume more data.5

,6,7 We overview Watson’s broad range of web services and provide a hands-on Watson treatment, demonstrating many Watson capabilities. The table on the next page shows just a few of the ways in which organizations are using Watson.
5. http:whatis.techtarget.com/definition/cognitive-computing.
6. https:en.wikipedia.org/wiki/Cognitive_computing.
7. https:www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing.

Watson offers an intriguing set of capabilities that you can incorporate into your applications. In this chapter, you’ll set up an IBM Cloud account8 and use the Lite tier and IBM’s Watson demos to experiment with various web services, such as natural language translation, speech-to-text, text-to-speech, natural language understanding, chatbots, analyzing text for tone and visual object recognition in images and video. We’ll briefly overview some additional Watson services and tools.
8. IBM Cloud previously was called Bluemix. You’ll still see “bluemix” in many of this chapter’s URLs.

Watson use cases

	ad targeting

artificial intelligence

augmented intelligence

augmented reality

chatbots

closed captioning

cognitive computing

conversational interfaces

crime prevention

customer support

detecting cyberbullying

drug development

education

facial recognition

finance

	fraud prevention

game playing

genetics

healthcare

image processing

IoT (Internet of Things)

language translation

machine learning

malware detection

medical diagnosis and treatment

medical imaging

music

natural language processing

natural language understanding

object recognition

	personal assistants

predictive maintenance

product recommendations

robots and drones

self-driving cars

sentiment and mood analysis

smart homes

sports

supply-chain management

threat detection

virtual reality

voice analysis

weather forecasting

workplace safety

You’ll install the Watson Developer Cloud Python Software Development Kit (SDK) for programmatic access to Watson services from your Python code. Then, in our hands-on implementation case study, you’ll develop a traveler’s companion translation app by quickly and conveniently mashing up several Watson services. The app enables English-only and Spanish-only speakers to communicate with one another verbally, despite the language barrier. You’ll transcribe English and Spanish audio recordings to text, translate the text to the other language, then synthesize and play English and Spanish audio from the translated text. The chapter concludes with one of the richest exercise/project sets in the book, enabling you to develop Watson-based solutions to a broad range of interesting problems. Watson services can be used in many of this book’s other data science chapters, so we’ll include Watson exercises and projects in later chapters, too.

Watson is a dynamic and evolving set of capabilities. During the time we worked on this book, new services were added and existing services were updated and/or removed multiple times. The descriptions of the Watson services and the steps we present were accurate as of the time of this writing. We’ll post updates as necessary on the book’s web page at www.deitel.com.

[image: tick mark] Self Check

	(Fill-In) IBM researchers trained Watson using ____________-learning and reinforcement-learning techniques (which we discuss in upcoming chapters).

Answer: machine.

	(True/False) IBM Watson is a desktop-based cognitive-computing platform being employed across a wide range of real-world scenarios.

Answer: False. IBM Watson is cloud-based, not desktop-based.

	(True/False) The Watson Developer Cloud Python Software Development Kit (SDK) enables you to programmatically access Watson services from your Python code.

Answer: True.

14.2 IBM Cloud Account and Cloud Console

You’ll need a free IBM Cloud account to access Watson’s Lite tier services. Each service’s description web page lists the service’s tiered offerings and what you get with each tier. Though the Lite tier services limit your use, they typically offer what you’ll need to familiarize yourself with Watson features and begin using them to develop apps. The limits are subject to change, so rather than list them here, we point you to each service’s web page. IBM increased the limits significantly on some services while we were writing this book. Paid tiers are available for use in commercial-grade applications.

To get a free IBM Cloud account, follow the instructions at:
https://console.bluemix.net/docs/services/watson/index.html#about

You’ll receive an e-mail. Follow its instructions to confirm your account. Then you can log in to the IBM Cloud console. Once there, you can go to the Watson dashboard at:
https://console.bluemix.net/developer/watson/dashboard

 where you can:

	Browse the Watson services.

	Link to the services you’ve already registered to use.

	Look at the developer resources, including the Watson documentation, SDKs and various resources for learning Watson.

	View the apps you’ve created with Watson.

 Later, you’ll register for and get your credentials to use various Watson services. You can view and manage your list of services and your credentials in the IBM Cloud dashboard at:
https://console.bluemix.net/dashboard/apps

 You can also click Existing Services

 in the Watson dashboard to get to this list.

[image: tick mark] Self Check

	(Fill-In) Accessing Watson’s Lite tier services requires a free ____________.

Answer: IBM Cloud account.

14.3 Watson Services

This section overviews many of Watson’s services and provides links to the details for each. Be sure to run the demos to see the services in action. For links to each Watson service’s documentation and API reference, visit:
https://console.bluemix.net/developer/watson/documentation

 We provide footnotes with links to each service’s details. When you’re ready to use a particular service, click the

Create

 button on its details page to set up your credentials.

Watson Assistant

The Watson Assistant service9 helps you build chatbots and virtual assistants that enable users to interact via natural language text. IBM provides a web interface that you can use to train the Watson Assistant service for specific scenarios associated with your app. For example, a weather chatbot could be trained to respond to questions like, “What is the weather forecast for New York City?” In a customer service scenario, you could create chatbots that answer customer questions and route customers to the correct department, if necessary. Try the demo at the following site to see some sample interactions:
9. https:console.bluemix.net/catalog/services/watson-assistant-formerly-conversation.
https://www.ibm.com/watson/services/conversation/demo/index.html#demo

Visual Recognition

The Visual Recognition service10 enables apps to locate and understand information in images and video, including colors, objects, faces, text, food and inappropriate content. IBM provides predefined models (used in the service’s demo), or you can train and use your own (as you’ll do in the “Deep Learning” chapter). Try the following demo with the images provided and upload some of your own:
10. https:console.bluemix.net/catalog/services/visual-recognition.
https://watson-visual-recognition-duo-dev.ng.bluemix.net/

Speech to Text

The Speech to Text service,11 which we’ll use in building this chapter’s app, converts speech audio files to text transcriptions of the audio. You can give the service keywords to “listen” for, and it tells you whether it found them, what the likelihood of a match was and where the match occurred in the audio. The service can distinguish among multiple speakers. You could use this service to help implement voice-controlled apps, transcribe live audio and more. Try the following demo with its sample audio clips or upload your own:
11. https:console.bluemix.net/catalog/services/speech-to-text.
https://speech-to-text-demo.ng.bluemix.net/

Text to Speech

The Text to Speech service,12 which we’ll also use in building this chapter’s app, enables you to synthesize speech from text. You can use Speech Synthesis Markup Language (SSML) to embed instructions in the text for control over voice inflection, cadence, pitch and more. Currently, this service supports English (U.S. and U.K.), French, German, Italian, Spanish, Portuguese and Japanese. Try the following demo with its plain sample text, its sample text that includes SSML and text that you provide:
12. https:console.bluemix.net/catalog/services/text-to-speech.
https://text-to-speech-demo.ng.bluemix.net/

Language Translator

The Language Translator service,13 which we’ll also use in building in this chapter’s app, has two key components:
13. https:console.bluemix.net/catalog/services/language-translator.

	translating text between languages and

	identifying text as being written in one of over 60 languages.

Translation is supported to and from English and many languages, as well as between other languages. Try translating text into various languages with the following demo:
https://language-translator-demo.ng.bluemix.net/

Natural Language Understanding

The Natural Language Understanding service14 analyzes text and produces information including the text’s overall sentiment and emotion and keywords ranked by their relevance. Among other things, the service can identify
14. https:console.bluemix.net/catalog/services/natural-language-understanding.

	people, places, job titles, organizations, companies and quantities.

	categories and concepts like sports, government and politics.

	parts of speech like subjects and verbs.

You also can train the service for industry- and application-specific domains with Watson Knowledge Studio (discussed shortly). Try the following demo with its sample text, with text that you paste in or by providing a link to an article or document online:
https://natural-language-understanding-demo.ng.bluemix.net/

Discovery

The Watson Discovery service15 shares many features with the Natural Language Understanding service but also enables enterprises to store and manage documents. So, for example, organizations can use Watson Discovery to store all their text documents and be able to use natural language understanding across the entire collection. Try this service’s demo, which enables you to search recent news articles for companies:
15. https:console.bluemix.net/catalog/services/discovery.
https://discovery-news-demo.ng.bluemix.net/

Personality Insights

The Personality Insights service16 analyzes text for personality traits. According to the service description, it can help you “gain insight into how and why people think, act, and feel the way they do. This service applies linguistic analytics and personality theory to infer attributes from a person’s unstructured text.” This information could be used to target product advertising at the people most likely to purchase those products. Try the following demo with tweets from various Twitter accounts or documents built into the demo, with text documents that you paste into the demo or with your own Twitter account:
16. https:console.bluemix.net/catalog/services/personality-insights.
https://personality-insights-livedemo.ng.bluemix.net/

Tone Analyzer

The Tone Analyzer service17 analyzes text for its tone in three categories:
17. https:console.bluemix.net/catalog/services/tone-analyzer.

	emotions—anger, disgust, fear, joy, sadness.

	social propensities—openness, conscientiousness, extroversion, agreeableness and emotional range.

	language style—analytical, confident, tentative.

Try the following demo with sample tweets, a sample product review, a sample e-mail or text you provide. You’ll see the tone analyses at both the document and sentence levels:
https://tone-analyzer-demo.ng.bluemix.net/

Natural Language Classifier

You train the Natural Language Classifier service18 with sentences and phrases that are specific to your application and classify each sentence or phrase. For example, you might classify “I need help with your product” as “tech support” and “My bill is incorrect” as “billing.” Once you’ve trained your classifier, the service can receive sentences and phrases, then use Watson’s cognitive computing capabilities and your classifier to return the best matching classifications and their match probabilities. You might then use the returned classifications and probabilities to determine the next steps in your app. For example, in a customer service app where someone is calling in with a question about a particular product, you might use Speech to Text to convert a question into text, use the Natural Language Classifier service to classify the text, then route the call to the appropriate person or department. This service does not offer a Lite tier. In the following demo, enter a question about the weather—the service will respond by indicating whether your question was about the temperature or the weather conditions:
18. https:console.bluemix.net/catalog/services/natural-language-classifier.
https://natural-language-classifier-demo.ng.bluemix.net/

Synchronous and Asynchronous Capabilities

Many of the APIs we discuss throughout the book are synchronous—when you call a function or method, the program waits for the function or method to return before moving on to the next task. Asynchronous programs can start a task, continue doing other things, then be notified when the original task completes and returns its results. Many Watson services offer both synchronous and asynchronous APIs.

The Speech to Text demo is a good example of asynchronous APIs. The demo processes sample audio of two people speaking. As the service transcribes the audio, it returns intermediate transcription results, even if it has not yet been able to distinguish among the speakers. The demo displays these intermediate results in parallel with the service’s continued work. Sometimes the demo displays “Detecting speakers” while the service figures out who is speaking. Eventually, the service sends updated transcription results for distinguishing among the speakers, and the demo then replaces the prior transcription results.

With today’s multi-core computers and multi-computer clusters, the asynchronous APIs can help you improve program performance. However, programming with them can be more complicated than programming with synchronous APIs. When we discuss installing the Watson Developer Cloud Python SDK, we provide a link to the SDK’s code examples on GitHub, where you can see examples that use synchronous and asynchronous versions of several services. Each service’s API reference provides the complete details.

[image: tick mark] Self Check

	(Fill-In) You can use ____________ to embed instructions in the text for control over voice inflection, cadence, pitch and more.

Answer: Speech Synthesis Markup Language (SSML).

	(Fill-In) The ____________ service analyzes text and produces information including the text’s overall sentiment and emotion and keywords ranked by their relevance.

Answer: Natural Language Understanding.

	(True/False) Synchronous programs can start a task, continue doing other things, then be notified when the original task completes and returns its results.

Answer: False. Asynchronous programs can start a task, continue doing other things, then be notified when the original task completes and returns its results.

14.4 Additional Services and Tools

In this section, we overview several Watson advanced services and tools.

Watson Studio

Watson Studio19 is the new Watson interface for creating and managing your Watson projects and for collaborating with your team members on those projects. You can add data, prepare your data for analysis, create Jupyter Notebooks for interacting with your data, create and train models and work with Watson’s deep-learning capabilities. Watson Studio offers a single-user Lite tier. Once you’ve set up your Watson Studio Lite access by clicking

Create

 on the service’s details web page
19. https:console.bluemix.net/catalog/services/data-science-experience.
https://console.bluemix.net/catalog/services/data-science-experience

you can access Watson Studio at
https://dataplatform.cloud.ibm.com/

 Watson Studio contains preconfigured projects.20 Click

Create a project

 to view them:
20. https:dataplatform.cloud.ibm.com/.

	Standard—“Work with any type of asset. Add services for analytical assets as you need them.”

	Data Science—“Analyze data to discover insights and share your findings with others.”

	Visual Recognition—“Tag and classify visual content using the Watson Visual Recognition service.”

	Deep Learning—“Build neural networks and deploy deep learning models.”

	Modeler—“Build modeler flows to train SPSS models or design deep neural networks.”

	Business Analytics—“Create visual dashboards from your data to gain insights faster.”

	Data Engineering—“Combine, cleanse, analyze, and shape data using Data Refinery.”

	Streams Flow—“Ingest and analyze streaming data using the Streaming Analytics service.”

Knowledge Studio

Various Watson services work with predefined models, but also allow you to provide custom models that are trained for specific industries or applications. Watson’s Knowledge Studio21 helps you build custom models. It allows enterprise teams to work together to create and train new models, which can then be deployed for use by Watson services.
21. https:console.bluemix.net/catalog/services/knowledge-studio.

Machine Learning

The Watson Machine Learning service22 enables you to add predictive capabilities to your apps via popular machine-learning frameworks, including Tensorflow, Keras, scikit-learn and others. You’ll use scikit-learn and Keras in the next two chapters.
22. https:console.bluemix.net/catalog/services/machine-learning.

Knowledge Catalog

The Watson Knowledge Catalog23

,24

 is an advanced enterprise-level tool for securely managing, finding and sharing your organization’s data. The tool offers:
23. https:medium.com/ibm-watson/introducing-ibm-watson-knowledge-catalog-cf42c13032c1.
24. https:dataplatform.cloud.ibm.com/docs/content/catalog/overview-wkc.html.

	Central access to an enterprise’s local and cloud-based data and machine learning models.

	Watson Studio support so users can find and access data, then easily use it in machine-learning projects.

	Security policies that ensure only the people who should have access to specific data actually do.

	Support for over 100 data cleaning and wrangling operations.

	And more.

Cognos Analytics

The IBM Cognos Analytics25 service, which has a 30-day free trial, uses AI and machine learning to discover and visualize information in your data, without any programming on your part. It also provides a natural-language interface that enables you to ask questions which Cognos Analytics answers based on the knowledge it gathers from your data.
25. https:www.ibm.com/products/cognos-analytics.

[image: tick mark] Self Check

	(Fill-In) Watson’s ____________ helps you build custom models.

Answer: Knowledge Studio.

	(Fill-In) The Watson Machine Learning service enables you to add ____________ capabilities to your apps via popular machine-learning frameworks, including Tensorflow, Keras, scikit-learn and others.

Answer: predictive.

14.5 Watson Developer Cloud Python SDK

In this section, you’ll install the modules required for the next section’s full-implementation Watson case study. For your coding convenience, IBM provides the Watson Developer Cloud Python SDK (software development kit). Its watson_developer_cloud module contains classes that you’ll use to interact with Watson services. You’ll create objects for each service you need, then interact with the service by calling the object’s methods.

To install the SDK26 open an Anaconda Prompt (Windows; open as Administrator), Terminal (macOS/Linux) or shell (Linux), then execute the following command27:
26. For detailed installation instructions and troubleshooting tips, see https:github.com/watson-developer-cloud/python-sdk/blob/develop/README.md.
27. Windows users might need to install Microsoft’s C++ build tools from https:visualstudio.microsoft.com/visual-cpp-build-tools/, then install the watson-developer-cloud module.

pip install --upgrade watson-developer-cloud

Modules We’ll Need for Audio Recording and Playback

You’ll also need two additional modules for audio recording (PyAudio) and playback (PyDub). To install these, use the following commands28:
28. Mac users might need to first execute conda install -c conda-forge portaudio.

pip install pyaudio

pip install pydub

SDK Examples

On GitHub, IBM provides sample code demonstrating how to access Watson services using the Watson Developer Cloud Python SDK’s classes. You can find the examples at:
https://github.com/watson-developer-cloud/python-sdk/tree/master/examples

[image: tick mark] Self Check

	(True/False) The Watson Developer Cloud Python SDK’s watson_developer_cloud module contains classes for interacting with each of the Watson services.

Answer: True.

14.6 Case Study: Traveler’s Companion Translation App

Suppose you’re traveling in a Spanish-speaking country, but you do not speak Spanish, and you need to communicate with someone who does not speak English. You could use a translation app to speak in English, and the app could translate that, then speak it in Spanish. The Spanish-speaking person could then respond, and the app could translate that and speak it to you in English.

Here, you’ll use three powerful IBM Watson services to implement such a traveler’s companion translation app,29 enabling people who speak different languages to converse in near real time. Combining services like this is known as creating a mashup. This app also uses simple file-processing capabilities that we introduced in the “Files and Exceptions” chapter.
29. These services could change in the future. If they do, we’ll post updates on the book’s web page at http:www.deitel.com/books/IntroToPython.

[image: tick mark] Self Check

	(Fill-In) Combining services is known as creating a(n) ____________.

Answer: mashup.

14.6.1 Before You Run the App

You’ll build this app using the Lite (free) tiers of several IBM Watson services. Before executing the app, make sure that you’ve registered for an IBM Cloud account, as we discussed earlier in the chapter, so you can get credentials for each of the three services the app uses. Once you have your credentials (described below), you’ll insert them in our keys.py file (located in the ch14 examples folder) that we import into the example. Never share your credentials.

As you configure the services below, each service’s credentials page also shows you the service’s URL. These are the default URLs used by the Watson Developer Cloud Python SDK, so you do not need to copy them. In Section 14.6.3, we present the SimpleLanguageTranslator.py script and a detailed walkthrough of the code.

Registering for the Speech to Text Service

This app uses the Watson Speech to Text service to transcribe English and Spanish audio files to English and Spanish text, respectively. To interact with the service, you must get a username and password. To do so:

	Create a Service Instance: Go to https:console.bluemix.net/catalog/services/speech-to-text and click the Create button on the bottom of the page. This auto-generates an API key for you and takes you to a tutorial for working with the Speech to Text service.

	Get Your Service Credentials: To see your API key, click Manage at the top-left of the page. To the right of Credentials, click Show credentials, then copy the API Key, and paste it into the variable speech_to_text_key’s string in the keys.py file provided in this chapter’s ch14 examples folder.

Registering for the Text to Speech Service

In this app, you’ll use the Watson Text to Speech service to synthesize speech from text. This service also requires you to get a username and password. To do so:

	Create a Service Instance: Go to https:console.bluemix.net/catalog/services/text-to-speech and click the Create button on the bottom of the page. This auto-generates an API key for you and takes you to a tutorial for working with the Text to Speech service.

	Get Your Service Credentials: To see your API key, click Manage at the top-left of the page. To the right of Credentials, click Show credentials, then copy the API Key and paste it into the variable text_to_speech_key’s string in the keys.py file provided in this chapter’s ch14 examples folder.

Registering for the Language Translator Service

In this app, you’ll use the Watson Language Translator service to pass text to Watson and receive back the text translated into another language. This service requires you to get an API key. To do so:

	Create a Service Instance: Go to https:console.bluemix.net/catalog/services/language-translator and click the Create button on the bottom of the page. This auto-generates an API key for you and takes you to a page to manage your instance of the service.

	Get Your Service Credentials: To the right of Credentials, click Show credentials, then copy the API Key and paste it into the variable translate_key’s string in the keys.py file provided in this chapter’s ch14 examples folder.

Retrieving Your Credentials

To view your credentials at any time, click the appropriate service instance at:
https://console.bluemix.net/dashboard/apps

[image: tick mark] Self Check

	(Fill-In) Once you have an IBM Cloud account, you can get your ____________ for interacting with Watson services.

Answer: credentials.

14.6.2 Test-Driving the App

Once you’ve added your credentials to the script, open an Anaconda Prompt (Windows), a Terminal (macOS/Linux) or a shell (Linux). Run the script30 by executing the following command from the ch14 examples folder:
30. The pydub.playback module we use in this app issues a warning when you run our script. The warning has to do with module features we don’t use and can be ignored. To eliminate this warning, you can install ffmpeg for Windows, macOS or Linux from https:www.ffmpeg.org.

ipython SimpleLanguageTranslator.py

Processing the Question

The app performs 10 steps, which we point out via comments in the code. When the app begins executing:

Step 1 prompts for and records a question. First, the app displays:

Press Enter then ask your question in English

and waits for you to press Enter. When you do, the app displays:

Recording 5 seconds of audio

 Speak your question. We said, “Where is the closest bathroom?” After five seconds, the app displays:

Recording complete

Step 2 interacts with Watson’s Speech to Text service to transcribe your audio to text and displays the result:

English: where is the closest bathroom

Step 3 then uses Watson’s Language Translator service to translate the English text to Spanish and displays the translated text returned by Watson:

Spanish: ¿Dónde está el baño más cercano?

Step 4 passes this Spanish text to Watson’s Text to Speech service to convert the text to an audio file.

Step 5 plays the resulting Spanish audio file.

Processing the Response

At this point, we’re ready to process the Spanish speaker’s response.

Step 6 displays:

Press Enter then speak the Spanish answer

 and waits for you to press Enter. When you do, the app displays:

Recording 5 seconds of audio

and the Spanish speaker records a response. We do not speak Spanish, so we used Watson’s Text to Speech service to prerecord Watson saying the Spanish response “El baño más cercano está en el restaurante,” then played that audio loud enough for our computer’s microphone to record it. We provided this prerecorded audio for you as SpokenResponse.wav in the ch14 folder. If you use this file, play it quickly after pressing Enter above as the app records for only 5 seconds.31 To ensure that the audio loads and plays quickly, you might want to play it once before you press Enter to begin recording. After five seconds, the app displays:
31. For simplicity, we set the app to record five seconds of audio. You can control the duration with the variable SECONDS in function record_audio. It’s possible to create a recorder that begins recording once it detects sound and stops recording after a period of silence, but the code is more complicated.

Recording complete

Step 7 interacts with Watson’s Speech to Text service to transcribe the Spanish audio to text and displays the result:

Spanish response: el baño más cercano está en el restaurante

Step 8 then uses Watson’s Language Translator service to translate the Spanish text to English and displays the result:

English response: The nearest bathroom is in the restaurant

Step 9 passes the English text to Watson’s Text to Speech service to convert the text to an audio file.

Step 10 then plays the resulting English audio.

[image: tick mark] Self Check

	(Fill-In) Watson’s Text to Speech service converts text to ____________.

Answer: audio.

14.6.3 SimpleLanguageTranslator.py Script Walkthrough

In this section, we present the SimpleLanguageTranslator.py script’s source code, which we’ve divided into small consecutively numbered pieces. Let’s use a top-down approach as we did in the “Control Statements and Program Development” chapter. Here’s the top:

Create a translator app that enables English and Spanish speakers to communicate.

The first refinement is:

Translate a question spoken in English into Spanish speech.

Translate the answer spoken in Spanish into English speech.

We can break the first line of the second refinement into five steps:

Step 1: Prompt for then record English speech into an audio file.

Step 2: Transcribe the English speech to English text.

Step 3: Translate the English text into Spanish text.

Step 4: Synthesize the Spanish text into Spanish speech and save it into an audio file.

Step 5: Play the Spanish audio file.

 We can break the second line of the second refinement into five steps:

Step 6: Prompt for then record Spanish speech into an audio file.

Step 7: Transcribe the Spanish speech to Spanish text.

Step 8: Translate the Spanish text into English text.

Step 9: Synthesize the English text into English speech and save it into an audio file.

Step 10: Play the English audio.

This top-down development makes the benefits of the divide-and-conquer approach clear, focusing our attention on small pieces of a more significant problem.

In this section’s script, we implement the 10 steps specified in the second refinement. Steps 2 and 7 use the Watson Speech to Text service, Steps 3 and 8 use the Watson Language Translator service, and Steps 4 and 9 use the Watson Text to Speech service.

Importing Watson SDK Classes

Lines 4–6 import classes from the watson_developer_cloud module that was installed with the Watson Developer Cloud Python SDK. Each of these classes uses the Watson credentials you obtained earlier to interact with a corresponding Watson service:

	Class SpeechToTextV132 enables you to pass an audio file to the Watson Speech to Text service and receive a JSON33 document containing the text transcription.
32. The V1 in the class name indicates the service’s version number. As IBM revises its services, it adds new classes to the watson_developer_cloud module, rather than modifying the existing classes. This ensures that existing apps do not break when the services are updated. The Speech to Text and Text to Speech services are each Version 1 (V1) and the Language Translator service is Version 3 (V3) at the time of this writing.
33. We introduced JSON in the previous chapter, “Data Mining Twitter.”

	Class LanguageTranslatorV3 enables you to pass text to the Watson Language Translator service and receive a JSON document containing the translated text.

	Class TextToSpeechV1 enables you to pass text to the Watson Text to Speech service and receive audio of the text spoken in a specified language.

1 # SimpleLanguageTranslator.py

2 """Use IBM Watson Speech to Text, Language Translator and Text to Speech

3 APIs to enable English and Spanish speakers to communicate."""

4 from watson_developer_cloud import SpeechToTextV1

5 from watson_developer_cloud import LanguageTranslatorV3

6 from watson_developer_cloud import TextToSpeechV1

Other Imported Modules

Line 7 imports the keys.py file containing your Watson credentials. Lines 8–11 import modules that support this app’s audio-processing capabilities:

	The pyaudio module enables us to record audio from the microphone.

	pydub and pydub.playback modules enable us to load and play audio files.

	The Python Standard Library’s wave module enables us to save WAV (Waveform Audio File Format) files. WAV is a popular audio format originally developed by Microsoft and IBM. This app uses the wave module to save the recorded audio to a .wav file that we send to Watson’s Speech to Text service for transcription.

 7 import keys # contains your API keys for accessing Watson services

 8 import pyaudio # used to record from mic

 9 import pydub # used to load a WAV file

10 import pydub.playback # used to play a WAV file

11 import wave # used to save a WAV file

12

Main Program: Function run_translator

Let’s look at the main part of the program defined in function run_translator (lines 13–54), which calls the functions defined later in the script. For discussion purposes, we broke run_translator into the 10 steps it performs. In Step 1 (lines 15–17), we prompt in English for the user to press Enter, then speak a question. Function record_audio then records audio for five seconds and stores it in the file english.wav:

13 def run_translator():

14 """Calls the functions that interact with Watson services."""

15 # Step 1: Prompt for then record English speech into an audio file

16 input('Press Enter then ask your question in English')

17 record_audio('english.wav')

18

In Step 2, we call function speech_to_text, passing the file english.wav for transcription and telling the Speech to Text service to transcribe the text using its predefined model 'en-US_BroadbandModel'.34 We then display the transcribed text:
34. For most languages, the Watson Speech to Text service supports broadband and narrowband models. Each has to do with the audio quality. For audio captured at 16 kHZ and higher, IBM recommends using the broadband models. In this app, we capture the audio at 44.1 kHZ.

19 # Step 2: Transcribe the English speech to English text

20 english = speech_to_text(

21 file_name='english.wav', model_id='en-US_BroadbandModel')

22 print('English:', english)

23

In Step 3, we call function translate, passing the transcribed text from Step 2 as the text to translate. Here we tell the Language Translator service to translate the text using its predefined model 'en-es' to translate from English (en) to Spanish (es). We then display the Spanish translation:

24 # Step 3: Translate the English text into Spanish text

25 spanish = translate(text_to_translate=english, model='en-es')

26 print('Spanish:', spanish)

27

In Step 4, we call function text_to_speech, passing the Spanish text from Step 3 for the Text to Speech service to speak using its voice 'es-US_SofiaVoice'. We also specify the file in which the audio should be saved:

28 # Step 4: Synthesize the Spanish text into Spanish speech

29 text_to_speech(text_to_speak=spanish, voice_to_use='es-US_SofiaVoice',

30 file_name='spanish.wav')

31

In Step 5, we call function play_audio to play the file 'spanish.wav', which contains the Spanish audio for the text we translated in Step 3.

32 # Step 5: Play the Spanish audio file

33 play_audio(file_name='spanish.wav')

34

Finally, Steps 6–10 repeat what we did in Steps 1–5, but for Spanish speech to English speech:

	Step 6 records the Spanish audio.

	Step 7 transcribes the Spanish audio to Spanish text using the Speech to Text service’s predefined model 'es-ES_BroadbandModel'.

	Step 8 translates the Spanish text to English text using the Language Translator Service’s 'es-en' (Spanish-to-English) model.

	Step 9 creates the English audio using the Text to Speech Service’s voice 'en-US_AllisonVoice'.

	Step 10 plays the English audio.

35 # Step 6: Prompt for then record Spanish speech into an audio file

36 input('Press Enter then speak the Spanish answer')

37 record_audio('spanishresponse.wav')

38

39 # Step 7: Transcribe the Spanish speech to Spanish text

40 spanish = speech_to_text(

41 file_name='spanishresponse.wav', model_id='es-ES_BroadbandModel')

42 print('Spanish response:', spanish)

43

44 # Step 8: Translate the Spanish text into English text

45 english = translate(text_to_translate=spanish, model='es-en')

46 print('English response:', english)

47

48 # Step 9: Synthesize the English text into English speech

49 text_to_speech(text_to_speak=english,

50 voice_to_use='en-US_AllisonVoice',

51 file_name='englishresponse.wav')

52

53 # Step 10: Play the English audio

54 play_audio(file_name='englishresponse.wav')

55

Now let’s implement the functions we call from Steps 1 through 10.

Function speech_to_text

To access Watson’s Speech to Text service, function speech_to_text (lines 56–87) creates a SpeechToTextV1 object named stt (short for speech-to-text), passing as the argument the API key you set up earlier. The with statement (lines 62–65) opens the audio file specified by the file_name parameter and assigns the resulting file object to audio_file. The open mode 'rb' indicates that we’ll read (r) binary data (b)—audio files are stored as bytes in binary format. Next, lines 64–65 use the SpeechToTextV1 object’s recognize method to invoke the Speech to Text service. The method receives three keyword arguments:

	audio is the file (audio_file) to pass to the Speech to Text service.

	content_type is the media type of the file’s contents—'audio/wav' indicates that this is an audio file stored in WAV format.35
35. Media types were formerly known as MIME (Multipurpose Internet Mail Extensions) types—a standard that specifies data formats, which programs can use to interpret data correctly.

	model indicates which spoken language model the service will use to recognize the speech and transcribe it to text. This app uses predefined models—either 'en-US_BroadbandModel' (for English) or 'es-ES_BroadbandModel' (for Spanish).

56 def speech_to_text(file_name, model_id):

57 """Use Watson Speech to Text to convert audio file to text."""

58 # create Watson Speech to Text client

59 stt = SpeechToTextV1(iam_apikey=keys.speech_to_text_key)

60

61 # open the audio file

62 with open(file_name, 'rb') as audio_file:

63 # pass the file to Watson for transcription

64 result = stt.recognize(audio=audio_file,

65 content_type='audio/wav', model=model_id).get_result()

66

67 # Get the 'results' list. This may contain intermediate and final

68 # results, depending on method recognize's arguments. We asked

69 # for only final results, so this list contains one element.

70 results_list = result['results']

71

72 # Get the final speech recognition result--the list's only element.

73 speech_recognition_result = results_list[0]

74

75 # Get the 'alternatives' list. This may contain multiple alternative

76 # transcriptions, depending on method recognize's arguments. We did

77 # not ask for alternatives, so this list contains one element.

78 alternatives_list = speech_recognition_result['alternatives']

79

80 # Get the only alternative transcription from alternatives_list.

81 first_alternative = alternatives_list[0]

82

83 # Get the 'transcript' key's value, which contains the audio's

84 # text transcription.

85 transcript = first_alternative['transcript']

86

87 return transcript # return the audio's text transcription

88

The recognize method returns a DetailedResponse object. Its getResult method returns a JSON document containing the transcribed text, which we store in result. The JSON will look similar to the following but depends on the question you ask:

[image: A sample J Son.]

14.6-1 Full Alternative Text

The JSON contains nested dictionaries and lists. To simplify navigating this data structure, lines 70–85 use separate small statements to “pick off” one piece at a time until we get the transcribed text—"where is the closest bathroom ", which we then return. The boxes around portions of the JSON and the line numbers in each box correspond to the statements in lines 70–85. The statements operate as follows:

	Line 70 assigns to results_list the list associated with the key 'results':

results_list = result['results']

Depending on the arguments you pass to method recognize, this list may contain intermediate and final results. Intermediate results might be useful, for example, if you were transcribing live audio, such as a newscast. We asked for only final results, so this list contains one element.36
36. For method recognize’s arguments and JSON response details, see https:www.ibm.com/watson/developercloud/speech-to-text/api/v1/python.html?python#recognize-sessionless.

	Line 73 assigns to speech_recognition_result the final speech-recognition result—the only element in results_list:

speech_recognition_result = results_list[0]

	Line 78

alternatives_list = speech_recognition_result['alternatives']

assigns to alternatives_list the list associated with the key 'alternatives'. This list may contain multiple alternative transcriptions, depending on method recognize’s arguments. The arguments we passed result in a one-element list.

	Line 81 assigns to first_alternative the only element in alternatives_list:

first_alternative = alternatives_list[0]

	Line 85 assigns to transcript the 'transcript' key’s value, which contains the audio’s text transcription:

transcript = first_alternative['transcript']

 	Finally, line 87 returns the audio’s text transcription.

Lines 70–85 could be replaced with the denser statement

return result['results'][0]['alternatives'][0]['transcript']

 but we prefer the separate simpler statements.

Function translate

To access the Watson Language Translator service, function translate (lines 89–111) first creates a LanguageTranslatorV3 object named language_translator, passing as arguments the service version ('2018-05-31'37), the API Key you set up earlier and the service’s URL. Lines 93–94 use the LanguageTranslatorV3 object’s translate method to invoke the Language Translator service, passing two keyword arguments:
37. According to the Language Translator service’s API reference, '2018-05-31' is the current version string at the time of this writing. IBM changes the version string only if they make API changes that are not backward compatible. Even when they do, the service will respond to your calls using the API version you specify in the version string. For more details, see https:www.ibm.com/watson/developercloud/language-translator/api/v3/python.html?python#versioning.

	text is the string to translate to another language.

	model_id is the predefined model that the Language Translator service will use to understand the original text and translate it into the appropriate language. In this app, model will be one of IBM’s predefined translation models—'en-es' (for English to Spanish) or 'es-en' (for Spanish to English).

89 def translate(text_to_translate, model):

90 """Use Watson Language Translator to translate English to Spanish

91 (en-es) or Spanish to English (es-en) as specified by model."""

92 # create Watson Translator client

93 language_translator = LanguageTranslatorV3(version='2018-05-31',

94 iam_apikey=keys.translate_key)

95

96 # perform the translation

97 translated_text = language_translator.translate(

98 text=text_to_translate, model_id=model).get_result()

99

100 # Get 'translations' list. If method translate's text argument has

101 # multiple strings, the list will have multiple entries. We passed

102 # one string, so the list contains only one element.

103 translations_list = translated_text['translations']

104

105 # get translations_list's only element

106 first_translation = translations_list[0]

107

108 # get 'translation' key's value, which is the translated text

109 translation = first_translation['translation']

110

111 return translation # return the translated string

112

The method returns a DetailedResponse. That object’s getResult method returns a JSON document, like:

[image: A sample J son.]

14.6-2 Full Alternative Text

The JSON you get as a response depends on the question you asked and, again, contains nested dictionaries and lists. Lines 103–109 use small statements to pick off the translated text "¿Dónde está el baño más cercano? ". The boxes around portions of the JSON and the line numbers in each box correspond to the statements in lines 103–109. The statements operate as follows:

	Line 103 gets the 'translations' list:

translations_list = translated_text['translations']

If method translate’s text argument has multiple strings, the list will have multiple entries. We passed only one string, so the list contains only one element.

	Line 106 gets translations_list’s only element:

first_translation = translations_list[0]

	Line 109 gets the 'translation' key’s value, which is the translated text:

translation = first_translation['translation']

 	Line 111 returns the translated string.

Lines 103–109 could be replaced with the more concise statement

return translated_text['translations'][0]['translation']

 but again, we prefer the separate simpler statements.

Function text_to_speech

To access the Watson Text to Speech service, function text_to_speech (lines 113–122) creates a TextToSpeechV1 object named tts (short for text-to-speech), passing as the argument the API key you set up earlier. The with statement opens the file specified by file_name and associates the file with the name audio_file. The mode 'wb' opens the file for writing (w) in binary (b) format. We’ll write into that file the contents of the audio returned by the Speech to Text service.

113 def text_to_speech(text_to_speak, voice_to_use, file_name):

114 """Use Watson Text to Speech to convert text to specified voice

115 and save to a WAV file."""

116 # create Text to Speech client

117 tts = TextToSpeechV1(iam_apikey=keys.text_to_speech_key)

118

119 # open file and write the synthesized audio content into the file

120 with open(file_name, 'wb') as audio_file:

121 audio_file.write(tts.synthesize(text_to_speak,

122 accept='audio/wav', voice=voice_to_use).get_result().content)

123

Lines 121–122 call two methods. First, we invoke the Speech to Text service by calling the TextToSpeechV1 object’s synthesize method, passing three arguments:

	text_to_speak is the string to speak.

	the keyword argument accept is the media type indicating the audio format the Speech to Text service should return—again, 'audio/wav' indicates an audio file in WAV format.

	the keyword argument voice is one of the Speech to Text service’s predefined voices. In this app, we’ll use 'en-US_AllisonVoice' to speak English text and 'es-US_SofiaVoice' to speak Spanish text. Watson provides many male and female voices across various languages.38
38. For a complete list, see https:www.ibm.com/watson/developercloud/text-to-speech/api/v1/python.html?python#get-voice. Try experimenting with other voices.

Watson’s DetailedResponse contains the spoken text audio file, accessible via get_result. We access the returned file’s content attribute to get the bytes of the audio and pass them to the audio_file object’s write method to output the bytes to a .wav file.

Function record_audio

The pyaudio module enables you to record audio from the microphone. The function record_audio (lines 124–154) defines several constants (lines 126–130) used to configure the stream of audio information coming from your computer’s microphone. We used the settings from the pyaudio module’s online documentation:

	FRAME_RATE—44100 frames-per-second represents 44.1 kHz, which is common for CD-quality audio.

	CHUNK—1024 is the number of frames streamed into the program at a time.

	FORMAT—pyaudio.paInt16 is the size of each frame (in this case, 16-bit or 2-byte integers).

	CHANNELS—2 is the number of samples per frame.

	SECONDS—5 is the number of seconds for which we’ll record audio in this app.

124 def record_audio(file_name):

125 """Use pyaudio to record 5 seconds of audio to a WAV file."""

126 FRAME_RATE = 44100 # number of frames per second

127 CHUNK = 1024 # number of frames read at a time

128 FORMAT = pyaudio.paInt16 # each frame is a 16-bit (2-byte) integer

129 CHANNELS = 2 # 2 samples per frame

130 SECONDS = 5 # total recording time

131

132 recorder = pyaudio.PyAudio() # opens/closes audio streams

133

134 # configure and open audio stream for recording (input=True)

135 audio_stream = recorder.open(format=FORMAT, channels=CHANNELS,

136 rate=FRAME_RATE, input=True, frames_per_buffer=CHUNK)

137 audio_frames = [] # stores raw bytes of mic input

138 print('Recording 5 seconds of audio')

139

140 # read 5 seconds of audio in CHUNK-sized pieces

141 for i in range(0, int(FRAME_RATE * SECONDS / CHUNK)):

142 audio_frames.append(audio_stream.read(CHUNK))

143

144 print('Recording complete')

145 audio_stream.stop_stream() # stop recording

146 audio_stream.close()

147 recorder.terminate() # release underlying resources used by PyAudio

148

149 # save audio_frames to a WAV file

150 with wave.open(file_name, 'wb') as output_file:

151 output_file.setnchannels(CHANNELS)

152 output_file.setsampwidth(recorder.get_sample_size(FORMAT))

153 output_file.setframerate(FRAME_RATE)

154 output_file.writeframes(b''.join(audio_frames))

155

Line 132 creates the PyAudio object from which we’ll obtain the input stream to record audio from the microphone. Lines 135–136 use the PyAudio object’s open method to open the input stream, using the constants FORMAT, CHANNELS, FRAME_RATE and CHUNK to configure the stream. Setting the input keyword argument to True indicates that the stream will be used to receive audio input. The open method returns a pyaudio Stream object for interacting with the stream.

Lines 141–142 use the Stream object’s read method to get 1024 (that is, CHUNK) frames at a time from the input stream, which we then append to the audio_frames list. To determine the total number of loop iterations required to produce 5 seconds of audio using CHUNK frames at a time, we multiply the FRAME_RATE by SECONDS, then divide the result by CHUNK. Once reading is complete, line 145 calls the Stream object’s stop_stream method to terminate recording, line 146 calls the Stream object’s close method to close the Stream, and line 147 calls the PyAudio object’s terminate method to release the underlying audio resources that were being used to manage the audio stream.

The with statement in lines 150–154 uses the wave module’s open function to open the WAV file specified by file_name for writing in binary format ('wb’). Lines 151–153 configure the WAV file’s number of channels, sample width (obtained from the PyAudio object’s get_sample_size method) and frame rate. Then line 154 writes the audio content to the file. The expression b''.join(audio_frames) concatenates all the frames’ bytes into a byte string. Prepending a string with b indicates that it’s a string of bytes rather than a string of characters.

Function play_audio

To play the audio files returned by Watson’s Text to Speech service, we use features of the pydub and pydub.playback modules. First, from the pydub module, line 158 uses the AudioSegment class’s from_wav method to load a WAV file. The method returns a new AudioSegment object representing the audio file. To play the AudioSegment, line 159 calls the pydub.playback module’s play function, passing the AudioSegment as an argument.

156 def play_audio(file_name):

157 """Use the pydub module (pip install pydub) to play a WAV file."""

158 sound = pydub.AudioSegment.from_wav(file_name)

159 pydub.playback.play(sound)

160

Executing the run_translator Function

We call the run_translator function when you execute SimpleLanguageTranslator.py as a script:

161 if __name__ == '__main__':

162 run_translator()

Hopefully, the fact that we took a divide-and-conquer approach on this substantial case study script made it manageable. Many of the steps matched up nicely with some key Watson services, enabling us to quickly create a powerful mashup application.

[image: tick mark] Self Check

	(True/False) Class SpeechToTextV1 enables you to pass an audio file to the Watson Speech to Text service and receive an XML document containing the text transcription.

Answer: False. Watson returns a JSON document, not an XML document.

	(Fill-In) The Language Translator service’s ____________ model translates from English to Spanish.

Answer: 'en-es'.

	(Fill-In) The ____________ type 'audio/wav' indicates that data is audio in WAV format.

Answer: media.

	(True/False) 44100 frames-per-second is common for BluRay quality audio.

Answer: False. This is a common frame rate for CD quality sound.

	(Code Explanation) In lines 121–122 of the script, what’s the content attribute?

Answer: The content attribute represents the bytes of the audio file received from the Text to Speech service. We write those bytes to an audio file.

	(Code Explanation) In lines 97–98 of the script, what’s the purpose of the keyword argument model_id?

Answer: The model_id specifies the model that the Language Translator service uses to understand the original text and translate it into the appropriate language.

14.7 Watson Resources

IBM provides a wide range of developer resources to help you familiarize yourself with their services and begin using them to build applications.

Watson Services Documentation

The Watson Services documentation is at:
https://console.bluemix.net/developer/watson/documentation

For each service, there are documentation and API reference links. Each service’s documentation typically includes some or all of the following:

	a getting started tutorial.

	a video overview of the service.

	a link to a service demo.

	links to more specific how-to and tutorial documents.

	sample apps.

	additional resources, such as more advanced tutorials, videos, blog posts and more.

Each service’s API reference shows all the details of interacting with the service using any of several languages, including Python. Click the

Python

 tab to see the Python-specific documentation and corresponding code samples for the Watson Developer Cloud Python SDK. The API reference explains all the options for invoking a given service, the kinds of responses it can return, sample responses, and more.

Watson SDKs

We used the Watson Developer Cloud Python SDK to develop this chapter’s script. There are SDKs for many other languages and platforms. The complete list is located at:
https://console.bluemix.net/developer/watson/sdks-and-tools

Learning Resources

On the Learning Resources page
https://console.bluemix.net/developer/watson/learning-resources

you’ll find links to:

	Blog posts on Watson features and how Watson and AI are being used in industry.

	Watson’s GitHub repository (developer tools, SDKs and sample code).

	The Watson YouTube channel (discussed below).

	Code patterns, which IBM refers to as “roadmaps for solving complex programming challenges.” Some are implemented in Python, but you may still find the other code patterns helpful in designing and implementing your Python apps.

Watson Videos

The Watson YouTube channel
https://www.youtube.com/user/IBMWatsonSolutions/

contains hundreds of videos showing you how to use all aspects of Watson. There are also spotlight videos showing how Watson is being used.

IBM Redbooks

The following IBM Redbooks publications cover IBM Cloud and Watson services in detail, helping you develop your Watson skills.

	Essentials of Application Development on IBM Cloud:http:www.redbooks.ibm.com/abstracts/sg248374.html

	Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started: http:www.redbooks.ibm.com/abstracts/sg248387.html

	Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation (now called Watson Assistant): http:www.redbooks.ibm.com/abstracts/sg248394.html

	Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition: http:www.redbooks.ibm.com/abstracts/sg248393.html

	Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier: http:www.redbooks.ibm.com/abstracts/sg248391.html

	Building Cognitive Applications with IBM Watson Services: Volume 5 Language Translator: http:www.redbooks.ibm.com/abstracts/sg248392.html

	Building Cognitive Applications with IBM Watson Services: Volume 6 Speech to Text and Text to Speech: http:www.redbooks.ibm.com/abstracts/sg248388.html

	Building Cognitive Applications with IBM Watson Services: Volume 7 Natural Language Understanding: http:www.redbooks.ibm.com/abstracts/sg248398.html

[image: tick mark] Self Check

	(Fill-In) IBM provides dozens of ____________, which IBM refers to as “roadmaps for solving complex programming challenges.”

Answer: code patterns.

14.8 Wrap-Up

In this chapter, we introduced IBM’s Watson cognitive-computing platform and overviewed its broad range of services. You saw that Watson offers intriguing capabilities that you can integrate into in your applications. IBM encourages learning and experimentation via its free Lite tiers. To take advantage of that, you set up an IBM Cloud account. You tried Watson demos to experiment with various services, such as natural language translation, speech-to-text, text-to-speech, natural language understanding, chatbots, analyzing text for tone, and visual object recognition in images and video.

You installed the Watson Developer Cloud Python SDK for programmatic access to Watson services from your Python code. In the traveler’s companion translation app, we mashed up several Watson services to enable English-only and Spanish-only speakers to communicate easily with one another verbally. We transcribed English and Spanish audio recordings to text, translated the text to the other language, then synthesized English and Spanish audio from the translated text. Finally, we discussed various Watson resources, including documentation, blogs, the Watson GitHub repository, the Watson YouTube channel, code patterns implemented in Python (and other languages) and IBM Redbooks.

Exercises

	14.1 (Try It: Watson Speech to Text) Use the microphone on your computer to record yourself speaking a paragraph of text. Upload that audio to the Watson Speech to Text demo: https:speech-to-text-demo.ng.bluemix.net/. Check the transcription results to see whether there are any words Watson has trouble understanding.

	14.2 (Try It: Watson Speech to Text—Detecting Separate Speakers) With a friend’s permission and using the microphone on your computer, record a conversation between you and a friend, then upload that audio file to the Watson Speech to Text demo at https:speech-to-text-demo.ng.bluemix.net/. Enable the option to detect multiple speakers. As the demo transcribes your voices to text, check whether Watson accurately distinguishes between your voices and transcribes the text accordingly.

	14.3 (Visual Object Recognition) Investigate the Visual Recognition service and use its demo to locate various items in your photos and your friends’ photos.

	14.4 (Language Translator App Enhancement) In our Traveler’s Assistant Translator app’s Steps 1 and 6, we displayed only English text prompting the user to press Enter and record. Display the instructions in both English and Spanish.

	14.5 (Language Translator App Enhancement) The Text to Speech service supports multiple voices for some languages. For example, there are four English voices and four Spanish voices. Experiment with the different voices. For the names of the voices, see

https://www.ibm.com/watson/developercloud/text-to-speech/api/v1/python.html?python#get-voice

	14.6 (Language Translator App Enhancement) Our Traveler’s Assistant Translator app supports only English and Spanish. Investigate the languages Watson currently supports in common for the Speech to Text, Language Translator and Text to Speech services. Pick one and convert our app to use that language rather than Spanish.

	14.7 (United Nations Dilemma: Inter-Language Translation) Inter-language translation is one of the most challenging artificial intelligence and natural language processing problems. Literally hundreds of languages are spoken at the United Nations. As of this writing, the Watson Language Translator service will allow you to translate an English sentence to Spanish, then the Spanish to French, then the French to German, then the German to Italian, then the Italian back to English. You may be surprised with how the final result differs from the original. For a list of all the inter-language translations that Watson allows, see

https://console.bluemix.net/catalog/services/language-translator

Use the Watson Language Translator service to build a Python application that performs the preceding series of translations, showing the text in each language along the way and the final English result. This will help you appreciate the challenge of having people from many countries understand one another.

	14.8 (Python Pizza Parlor) Use Watson Text to Speech and Speech to Text services to communicate verbally with a person ordering a pizza. Your app should welcome the person and ask them what size pizza they’d like (small or large). Then ask the person if they’d like pepperoni (yes or no). Then ask if they’d like mushrooms (yes or no). The user responds by speaking each answer. After processing the user’s responses, the app should summarize the order verbally and thank the customer for their order. For an extra challenge, consider researching and using the Watson Assistant service to build a chatbot to solve this problem.

	14.9 (Language Translator: Language Identification) Investigate the Language Translator service’s ability to detect the language of text. Then write an app that will send text strings in a variety of languages to the Language Translator service and see if it identifies the source languages correctly. See

https:console.bluemix.net/catalog/services/language-translator for a list of the dozens of supported languages.

	14.10 (Watson Internet of Things Platform) Watson also provides the Watson Internet of Things (IoT) Platform for analyzing live data streams from devices in the Internet of Things, such as temperature sensors, motion sensors and more. To get a sense of a live data stream, you can follow the instructions at

https://discover-iot.eu-gb.mybluemix.net/#/play

to connect your smartphone to the demo, then watch on your computer and phone screens as live sensor data displays. On your computer screen, a phone image moves dynamically to show the your phone’s orientation as you move and rotate it in your hand.

	14.11 (Pig Latin Translator App) Research the rules for translating English-language words into pig Latin. Read a sentence from the user. Then, encode the sentence into pig Latin, display the pig Latin text and use speech synthesis to speak 'The sentence insertOriginalSentenceHere in pig Latin is insertPigLatinSentenceHere' (replace the italicized English text with the corresponding pig Latin text). For simplicity, assume that the English sentence consists of words separated by blanks, there are no punctuation marks and all words have two or more letters.

	14.12 (Random Story Writer App) Write a script that uses random-number generation to create, display and speak sentences. Use four arrays of strings called article, noun, verb and preposition. Create a sentence by selecting a word at random from each array in the following order: article, noun, verb, preposition, article, noun. As each word is picked, concatenate it to the previous words in the sentence. Spaces should separate the words. When a sentence is displayed, it should start with a capital letter and end with a period. Allow the script to produce a short story consisting of several sentences. Use Text to Speech to read the story aloud to the user.

	14.13 (Eyesight Tester App) You’ve probably had your eyesight tested. In an eye exam, you’re asked to cover one eye, then read out loud the letters from an eyesight chart called a Snellen chart. The letters are arranged in 11 rows and include only the letters C, D, E, F, L, N, O, P, T, Z. The first row has one letter in a huge font. As you move down the page, the number of letters in each row increases and the font size decreases, ending with a row of 11 letters in a tiny font. Your ability to read the letters accurately measures your visual acuity. Create an eyesight testing chart similar to the Snellen chart used by medical professionals

(https:en.wikipedia.org/wiki/Snellen_chart).

The app should prompt the user to say each letter. Then use speech synthesis to determine if the user said the correct letter. At the end of the test, display—and speak—'Your vision is 20/20' or whatever the appropriate value is for the user’s visual acuity.

	14.14 (Project: Speech Synthesis Markup Language) Investigate SSML (Speech Synthesis Markup Language), then use it to mark up a paragraph of text to see how the SSML you specify affects Watson’s voices. Experiment with inflection, cadence, pitch and more. Try out your text with various voices in the Watson Text to Speech demo at:

https://text-to-speech-demo.ng.bluemix.net/

You can learn more about SSML at https:www.w3.org/TR/speech-synthesis/.

	14.15 (Project: Text to Speech and SSML—Singing Happy Birthday) Use Watson Text to Speech and SSML to have Watson sing Happy Birthday. Let users enter their names.

 	14.16 (Enhanced Tortoise and Hare) Add speech-synthesis capabilities to your solution to the simulation of the tortoise-and-hare race in Exercise4.12 . Use speech to call the race as it proceeds, dropping in phrases like 'On your mark. Get set. Go!', "And they're off!", 'The tortoise takes the lead!', 'The hare is taking a snooze', etc. At the end of the race, announce the winner.

 	14.17 (Project: Enhanced Tortoise and Hare with SSML) Use SSML in your solution to Exercise14.16 to make the speech sound like a sportscaster announcing a race on TV.

	14.18 (Challenge Project: Language Translator App—Supporting Any Length Audio) Our Traveler’s Assistant Translator app allows each speaker to record for five seconds. Investigate how to use PyAudio (which is not a Watson capability) to detect when someone starts speaking and stops speaking so you can record audio of any length. Caution: The code for doing this is complex.

	14.19 (Project: Building a Chatbot with Watson Assistant) Investigate the Watson Assistant service. Next, go to https:console.bluemix.net/developer/watson/dashboard and try

Build a chatbot

. After you click

Create

, follow the steps provided to build your chatbot. Be sure to follow the

Getting started tutorial

 at

https://console.bluemix.net/docs/services/conversation/getting-started.html#getting-started-tutorial

	14.20 (For the Entrepreneur: Bot Applications) Research common bot applications. Indicate how they can improve things like call center operations. For example, you would eliminate time spent on the phone waiting for a human to become available. The bot can ask if the caller is satisfied with the answer, then the caller can hang up or the bot can route the caller to a human. Bots can accumulate massive expertise over time. If you’re entrepreneurial, you could develop sophisticated bots for organizations to purchase. Opportunities abound in fields, such as health care, answering Social Security and Medicare questions, helping travelers plan itineraries, and many more.

	14.21 (Project: Metric Conversion App) Write an app that uses speech recognition and speech synthesis to assist users with metric conversions. Allow the user to specify the names of the units (e.g., centimeters, liters, grams, for the metric system and inches, quarts, pounds, for the English system) and should respond to simple questions, such as

'How many inches are in 2 meters?'

'How many liters are in 10 quarts?'

Your program should recognize invalid conversions. For example, the question

'How many feet are in 5 kilograms?'

is not a meaningful question because 'feet' is a unit of length whereas 'kilograms' is a unit of mass. Use speech synthesis to speak the result and display the result in text. If the question is invalid, the app should speak, 'That is an invalid conversion.' and display the same message as text.

	14.22 (Accessibility Challenge Project: Voice-Driven Text Editor) The speech synthesis and recognition technologies you learned in this chapter are particularly useful for implementing apps for people who cannot use their hands. Create a simple text editor app that allows the user to speak some text, then edit the text verbally. Provide basic editing features such as insert and delete via voice commands.

	14.23 (Project: Watson Sentiment Analysis) In the “Natural Language Processing” chapter and in the Data Mining Twitter chapter, we performed sentiment analysis. Run some of the tweets whose sentiment you analyzed in the Twitter chapter through the Watson Natural Language Understanding service’s sentiment analysis capability. Compare the analysis results.

15 Machine Learning: Classification, Regression and Clustering

Objectives

In this chapter you’ll:

	Use scikit-learn with popular datasets to perform machine learning studies.

	Use Seaborn and Matplotlib to visualize and explore data.

	Perform supervised machine learning with k-nearest neighbors classification and linear regression.

	Perform multi-classification with Digits dataset.

	Divide a dataset into training, test and validation sets.

	Tune model hyperparameters with k-fold cross-validation.

	Measure model performance.

	Display a confusion matrix showing classification prediction hits and misses.

	Perform multiple linear regression with the California Housing dataset.

	Perform dimensionality reduction with PCA and t-SNE on the Iris and Digits datasets to prepare them for two-dimensional visualizations.

	Perform unsupervised machine learning with k-means clustering and the Iris dataset.

Outline

	15.1 Introduction to Machine Learning

	15.1.1 Scikit-Learn

	15.1.2 Types of Machine Learning

	15.1.3 Datasets Bundled with Scikit-Learn

	15.1.4 Steps in a Typical Data Science Study

	15.2 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 1

	15.2.1 k-Nearest Neighbors Algorithm

	15.2.2 Loading the Dataset

	15.2.3 Visualizing the Data

	15.2.4 Splitting the Data for Training and Testing

	15.2.5 Creating the Model

	15.2.6 Training the Model

	15.2.7 Predicting Digit Classes

	15.3 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 2

	15.3.1 Metrics for Model Accuracy

	15.3.2 K-Fold Cross-Validation

	15.3.3 Running Multiple Models to Find the Best One

	15.3.4 Hyperparameter Tuning

	15.4 Case Study: Time Series and Simple Linear Regression

	15.5 Case Study: Multiple Linear Regression with the California Housing Dataset

	15.5.1 Loading the Dataset

	15.5.2 Exploring the Data with Pandas

	15.5.3 Visualizing the Features

	15.5.4 Splitting the Data for Training and Testing

	15.5.5 Training the Model

	15.5.6 Testing the Model

	15.5.7 Visualizing the Expected vs. Predicted Prices

	15.5.8 Regression Model Metrics

	15.5.9 Choosing the Best Model

	15.6 Case Study: Unsupervised Machine Learning, Part 1—Dimensionality Reduction

	15.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering

	15.7.1 Loading the Iris Dataset

	15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas

	15.7.3 Visualizing the Dataset with a Seaborn pairplot

	15.7.4 Using a KMeans Estimator

	15.7.5 Dimensionality Reduction with Principal Component Analysis

	15.7.6 Choosing the Best Clustering Estimator

	15.8 Wrap-Up

	Exercises

15.1 Introduction to Machine Learning

In this chapter and the next, we’ll present machine learning—one of the most exciting and promising subfields of artificial intelligence. You’ll see how to quickly solve challenging and intriguing problems that novices and most experienced programmers probably would not have attempted just a few years ago. Machine learning is a big, complex topic that raises lots of subtle issues. Our goal here is to give you a friendly, hands-on introduction to a few of the simpler machine-learning techniques.

What Is Machine Learning?

Can we really make our machines (that is, our computers) learn? In this and the next chapter, we’ll show exactly how that magic happens. What’s the “secret sauce” of this new application-development style? It’s data and lots of it. Rather than programming expertise into our applications, we program them to learn from data.

We’ll present many Python-based code examples that build working machine-learning models then use them to make remarkably accurate predictions. The chapter is loaded with exercises and projects that will give you the opportunity to broaden and deepen your machine-learning expertise.

Prediction

Wouldn’t it be fantastic if you could improve weather forecasting to save lives, minimize injuries and property damage? What if we could improve cancer diagnoses and treatment regimens to save lives, or improve business forecasts to maximize profits and secure people’s jobs? What about detecting fraudulent credit-card purchases and insurance claims? How about predicting customer “churn,” what prices houses are likely to sell for, ticket sales of new movies, and anticipated revenue of new products and services? How about predicting the best strategies for coaches and players to use to win more games and championships? All of these kinds of predictions are happening today with machine learning.

Machine Learning Applications

Here’s a table of some popular machine-learning applications:

Machine learning applications

	Anomaly detection

Chatbots

Classifying emails as spam or not spam

Classifying news articles as sports, financial, politics, etc.

Computer vision and image classification

Credit-card fraud detection

Customer churn prediction

Data compression

Data exploration

Data mining social media (like Facebook, Twitter, LinkedIn)

	Detecting objects in scenes

Detecting patterns in data

Diagnostic medicine

Facial recognition

Insurance fraud detection

Intrusion detection in computer networks

Handwriting recognition

Marketing: Divide customers into clusters

Natural language translation (English to Spanish, French to Japanese, etc.)

Predict mortgage loan defaults

	Recommender systems (“people who bought this product also bought…”)

Self-Driving cars (more generally, autonomous vehicles)

Sentiment analysis (like classifying movie reviews as positive, negative or neutral)

Spam filtering

Time series predictions like stock-price forecasting and weather forecasting

Voice recognition

15.1.1 Scikit-Learn

We’ll use the popular scikit-learn machine learning library. Scikit-learn, also called sklearn, conveniently packages the most effective machine-learning algorithms as estimators. Each is encapsulated, so you don’t see the intricate details and heavy mathematics of how these algorithms work. You should feel comfortable with this—you drive your car without knowing the intricate details of how engines, transmissions, braking systems and steering systems work. Think about this the next time you step into an elevator and select your destination floor, or turn on your television and select the program you’d like to watch. Do you really understand the internal workings of your smart phone’s hardware and software?

With scikit-learn and a small amount of Python code, you’ll create powerful models quickly for analyzing data, extracting insights from the data and most importantly making predictions. You’ll use scikit-learn to train each model on a subset of your data, then test each model on the rest to see how well your model works. Once your models are trained, you’ll put them to work making predictions based on data they have not seen. You’ll often be amazed at the results. All of a sudden your computer that you’ve used mostly on rote chores will take on characteristics of intelligence.

Scikit-learn has tools that automate training and testing your models. Although you can specify parameters to customize the models and possibly improve their performance, in this chapter, we’ll typically use the models’ default parameters, yet still obtain impressive results. It gets even better. In the exercises, you’ll investigate auto-sklearn which automates many of the tasks you perform with scikit-learn.

Which Scikit-Learn Estimator Should You Choose for Your Project

It’s difficult to know in advance which model(s) will perform best on your data, so you typically try many models and pick the one that performs best. As you’ll see, scikit-learn makes this convenient for you. A popular approach is to run many models and pick the best one(s). How do we evaluate which model performed best?

You’ll want to experiment with lots of different models on different kinds of datasets. You’ll rarely get to know the details of the complex mathematical algorithms in the sklearn estimators, but with experience, you’ll become familiar with which algorithms may be best for particular types of datasets and problems. Even with that experience, it’s unlikely that you’ll be able to intuit the best model for each new dataset. So scikit-learn makes it easy for you to “try ’em all.” It takes at most a few lines of code for you to create and use each model. The models report their performance so you can compare the results and pick the model(s) with the best performance.

15.1.2 Types of Machine Learning

We’ll study the two main types of machine learning—supervised machine learning, which works with labeled data, and unsupervised machine learning, which works with unlabeled data.

If, for example, you’re developing a computer vision application to recognize dogs and cats, you’ll train your model on lots of dog photos labeled “dog” and cat photos labeled “cat.” If your model is effective, when you put it to work processing unlabeled photos it will recognize dogs and cats it has never seen before. The more photos you train with, the greater the chance that your model will accurately predict which new photos are dogs and which are cats. In this era of big data and massive, economical computer power, you should be able to build some pretty accurate models with the techniques you’re about to learn.

How can looking at unlabeled data be useful? Online booksellers sell lots of books. They record enormous amounts of (unlabeled) book purchase transaction data. They noticed early on that people who bought certain books were likely to purchase other books on the same or similar topics. That led to their recommendation systems. Now, when you browse a bookseller site for a particular book, you’re likely to see recommendations like, “people who bought this book also bought these other books.” Recommendation systems are big business today, helping to maximize product sales of all kinds.

Supervised Machine Learning

Supervised machine learning falls into two categories—classification and regression. You train machine-learning models on datasets that consist of rows and columns. Each row represents a data sample. Each column represents a feature of that sample. In supervised machine learning, each sample has an associated label called a target (like “dog” or “cat”). This is the value you’re trying to predict for new data that you present to your models.

Datasets

You’ll work with some “toy” datasets, each with a small number of samples with a limited number of features. You’ll also work with several richly featured real-world datasets, one containing a few thousand samples and one containing tens of thousands of samples. In the world of big data, datasets commonly have, millions and billions of samples, or even more.

There’s an enormous number of free and open datasets available for data science studies. Libraries like scikit-learn package up popular datasets for you to experiment with and provide mechanisms for loading datasets from various repositories (such as openml.org). Governments, businesses and other organizations worldwide offer datasets on a vast range of subjects. Between the text examples and the exercises and projects, you’ll work with many popular free datasets, using a variety of machine learning techniques.

Classification

We’ll use one of the simplest classification algorithms, k-nearest neighbors, to analyze the Digits dataset bundled with scikit-learn. Classification algorithms predict the discrete classes (categories) to which samples belong. Binary classification uses two classes, such as “spam” or “not spam” in an email classification application. Multi-classification uses more than two classes, such as the 10 classes, 0 through 9, in the Digits dataset. A classification scheme looking at movie descriptions might try to classify them as “action,” “adventure,” “fantasy,” “romance,” “history” and the like.

Regression

Regression models predict a continuous output, such as the predicted temperature output in the weather time series analysis from Chapter 10’s Intro to Data Science section. In this chapter, we’ll revisit that simple linear regression example, this time implementing it using scikit-learn’s LinearRegression estimator. Next, we use a LinearRegression estimator to perform multiple linear regression with the California Housing dataset that’s bundled with scikit-learn. We’ll predict the median house value of a U. S. census block of homes, considering eight features per block, such as the average number of rooms, median house age, average number of bedrooms and median income. The LinearRegression estimator, by default, uses all the numerical features in a dataset to make more sophisticated predictions than you can with a single-feature simple linear regression.

Unsupervised Machine Learning

Next, we’ll introduce unsupervised machine learning with clustering algorithms. We’ll use dimensionality reduction (with scikit-learn’s TSNE estimator) to compress the Digits dataset’s 64 features down to two for visualization purposes. This will enable us to see how nicely the Digits data “cluster up.” This dataset contains handwritten digits like those the post office’s computers must recognize to route each letter to its designated zip code. This is a challenging computer-vision problem, given that each person’s handwriting is unique. Yet, we’ll build this clustering model with just a few lines of code and achieve impressive results. And we’ll do this without having to understand the inner workings of the clustering algorithm. This is the beauty of object-based programming. We’ll see this kind of convenient object-based programming again in the next chapter, where we’ll build powerful deep learning models using the open source Keras library.

K-Means Clustering and the Iris Dataset

We’ll present the simplest unsupervised machine-learning algorithm, k-means clustering, and use it on the Iris dataset that’s also bundled with scikit-learn. We’ll use dimensionality reduction (with scikit-learn’s PCA estimator) to compress the Iris dataset’s four features to two for visualization purposes. We’ll show the clustering of the three Iris species in the dataset and graph each cluster’s centroid, which is the cluster’s center point. Finally, we’ll run multiple clustering estimators to compare their ability to divide the Iris dataset’s samples effectively into three clusters.

You normally specify the desired number of clusters, k. K-means works through the data trying to divide it into that many clusters. As with many machine learning algorithms, k-means is iterative and gradually zeros in on the clusters to match the number you specify.

K-means clustering can find similarities in unlabeled data. This can ultimately help with assigning labels to that data so that supervised learning estimators can then process it. Given that it’s tedious and error-prone for humans to have to assign labels to unlabeled data, and given that the vast majority of the world’s data is unlabeled, unsupervised machine learning is an important tool.

Big Data and Big Computer Processing Power

The amount of data that’s available today is already enormous and continues to grow exponentially. The data produced in the world in the last few years equals the amount produced up to that point since the dawn of civilization. We commonly talk about big data, but “big” may not be a strong enough term to describe truly how huge data is getting.

People used to say “I’m drowning in data and I don’t know what to do with it.” With machine learning, we now say, “Flood me with big data so I can use machine-learning technology to extract insights and make predictions from it.”

This is occurring at a time when computing power is exploding and computer memory and secondary storage are exploding in capacity while costs dramatically decline. All of this enables us to think differently about the solution approaches. We now can program computers to learn from data, and lots of it. It’s now all about predicting from data.

15.1.3 Datasets Bundled with Scikit-Learn

The following table lists scikit-learn’s bundled datasets.1 It also provides capabilities for loading datasets from other sources, such as the 20,000+ datasets available at openml.org.
1. http://scikit-learn.org/stable/datasets/index.html.

[image: A table lists scikit learn’s bundled datasets.]

15.1-1 Full Alternative Text

15.1.4 Steps in a Typical Data Science Study

We’ll perform the steps of a typical machine-learning case study, including:

	loading the dataset

	exploring the data with pandas and visualizations

	transforming your data (converting non-numeric data to numeric data because scikit-learn requires numeric data; in the chapter, we use datasets that are “ready to go,” but we’ll discuss the issue again in the “Deep Learning” chapter)

	splitting the data for training and testing

	creating the model

	training and testing the model

	tuning the model and evaluating its accuracy

	making predictions on live data that the model hasn’t seen before.

In the “Array-Oriented Programming with NumPy” and “Strings: A Deeper Look” chapters’ Intro to Data Science sections, we discussed using pandas to deal with missing and erroneous values. These are important steps in cleaning your data before using it for machine learning.

[image: tick mark] Self Check

	(Fill-In) Machine learning falls into two main categories— ___________ machine learning, which works with labeled data and _________ machine learning, which works with unlabeled data

Answer: supervised, unsupervised.

	(True/False) With machine learning, rather than programming expertise into our applications, we program them to learn from data.

Answer: True.

15.2 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 1

To process mail efficiently and route each letter to the correct destination, postal service computers must be able to scan handwritten names, addresses and zip codes and recognize the letters and digits. As you’ll see in this chapter, powerful libraries like scikit-learn enable even novice programmers to make such machine-learning problems manageable. In the next chapter, we’ll use even more powerful computer-vision capabilities as we study the deep learning technology of convolutional neural networks.

Classification Problems

In this section, we’ll look at classification in supervised machine learning, which attempts to predict the distinct class2 to which a sample belongs. For example, if you have images of dogs and images of cats, you can classify each image as a “dog” or a “cat.” This is a binary classification problem because there are two classes.
2. Note that the term “class” in this case means “category,” not the Python concept of a class.

We’ll use the Digits dataset3 bundled with scikit-learn, which consists of 8-by-8 pixel images representing 1797 hand-written digits (0 through 9). Our goal is to predict which digit an image represents. Since there are 10 possible digits (the classes), this is a multi-classification problem. You train a classification model using labeled data—we know in advance each digit’s class. In this case study, we’ll use one of the simplest machine-learning classification algorithms, k-nearest neighbors (k-NN), to recognize handwritten digits.
3. http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset.

The following low-resolution digit visualization of a 5 was produced with Matplotlib from one digit’s 8-by-8 pixel raw data. We’ll show how to display images like this with Matplotlib momentarily:

[image: A black and white, pixelated image of the numeral 5.]

Researchers created the images in this dataset from the MNIST database’s tens of thousands of 32-by-32 pixel images that were produced in the early 1990s. At today’s high-definition camera and scanner resolutions, such images can be captured with much higher resolutions.

Our Approach

We’ll cover this case study over two sections. In this section, we’ll begin with the basic steps of a machine learning case study:

	Decide the data from which to train a model.

	Load and explore the data.

	Split the data for training and testing.

	Select and build the model.

	Train the model.

	Make predictions.

As you’ll see, in scikit-learn each of these steps requires at most a few lines of code. In the next section, we’ll

	Evaluate the results.

	Tune the model.

	Run several classification models to choose the best one(s).

We’ll visualize the data using Matplotlib and Seaborn, so launch IPython with Matplotlib support:

ipython --matplotlib

[image: tick mark] Self Check

	(Fill-In) _________ classification divides samples into two distinct classes, and _________ -classification divides samples into many distinct classes.

Answer: Binary, multi.

15.2.1 k-Nearest Neighbors Algorithm

Scikit-learn supports many classification algorithms, including the simplest—k-nearest neighbors (k-NN). This algorithm attempts to predict a test sample’s class by looking at the k training samples that are nearest (in distance) to the test sample. For example, consider the following diagram in which the blue, purple, green and red dots represent four sample classes. For this discussion, we’ll use the color names as the class names:

[image: A graph plots the nearest neighbors algorithm.]

15.2-3 Full Alternative Text

We want to predict the classes to which the new samples

X

,

Y

and

Z

belong. Let’s assume we’d like to make these predictions using each sample’s three nearest neighbors—three is k in the k-nearest neighbors algorithm:

	Sample

X

’s three nearest neighbors are all purple dots, so we’d predict that

X

’s class is purple.

	Sample

Y

’s three nearest neighbors are all green dots, so we’d predict that

Y

’s class is green.

	For

Z

, the choice is not as clear, because it appears between the green and red dots. Of the three nearest neighbors, one is green and two are red. In the k-nearest neighbors algorithm, the class with the most “votes” wins. So, based on two red votes to one green vote, we’d predict that

Z

’s class is red. Picking an odd k value in the kNN algorithm avoids ties by ensuring there’s never an equal number of votes.

Hyperparameters and Hyperparameter Tuning

In machine learning, a model implements a machine-learning algorithm. In scikit-learn, models are called estimators. There are two parameter types in machine learning:

	those the estimator calculates as it learns from the data you provide and

	those you specify in advance when you create the scikit-learn estimator object that represents the model.

The parameters specified in advance are called hyperparameters.

In the k-nearest neighbors algorithm, k is a hyperparameter. For simplicity, we’ll use scikit-learn’s default hyperparameter values. In real-world machine-learning studies, you’ll want to experiment with different values of k to produce the best possible models for your studies. This process is called hyperparameter tuning. Later we’ll use hyperparameter tuning to choose the value of k that enables the k-nearest neighbors algorithm to make the best predictions for the Digits dataset. Scikit-learn also has automated hyperparameter tuning capabilities that you’ll explore in the exercises.

[image: tick mark] Self Check

	(True/False) In machine learning, a model implements a machine-learning algorithm. In scikit-learn, models are called estimators.

Answer: True.

	(Fill-In) The process of choosing the best value of k for the k-nearest neighbors algorithm is called ___________.

Answer: hyperparameter tuning.

15.2.2 Loading the Dataset

The load_digits function from the sklearn.datasets module returns a scikit-learn Bunch object containing the digits data and information about the Digits dataset (called metadata):

In [1]: from sklearn.datasets import load_digits

In [2]: digits = load_digits()

Bunch is a subclass of dict that has additional attributes for interacting with the dataset.

Displaying the Description

The Digits dataset bundled with scikit-learn is a subset of the UCI (University of California Irvine) ML hand-written digits dataset at:

http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

The original UCI dataset contains 5620 samples—3823 for training and 1797 for testing. The version of the dataset bundled with scikit-learn contains only the 1797 testing samples. A Bunch’s DESCR attribute contains a description of the dataset. According to the Digits dataset’s description4, each sample has 64 features (as specified by Number of Attributes) that represent an 8-by-8 image with pixel values in the range 0–16 (specified by Attribute Information). This dataset has no missing values (as specified by Missing Attribute Values). The 64 features may seem like a lot, but real-world datasets can sometimes have hundreds, thousands or even millions of features.
4. We highlighted some key information in bold.

In [3]: print(digits.DESCR)

.. _digits_dataset:

Optical recognition of handwritten digits dataset

--

Data Set Characteristics:

 :Number of Instances: 5620

 :Number of Attributes: 64

 :Attribute Information: 8x8 image of integer pixels in the range 0..16.

 :Missing Attribute Values: None

 :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)

 :Date: July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets

http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

The data set contains images of hand-written digits: 10 classes where each class refers to a digit.

Preprocessing programs made available by NIST were used to extract normalized bitmaps of handwritten digits from a preprinted form. From a total of 43 people, 30 contributed to the training set and different 13 to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of 4x4 and the number of on pixels are counted in each block. This generates an input matrix of 8x8 where each element is an integer in the range 0..16. This reduces dimensionality and gives invariance to small distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994.

.. topic:: References

 - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit Recognition, MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University.

 - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.

 - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin. Linear dimensionality reduction using relevance weighted LDA. School of Electrical and Electronic Engineering Nanyang Technological University. 2005.

 - Claudio Gentile. A New Approximate Maximal Margin Classification Algorithm. NIPS. 2000.

Checking the Sample and Target Sizes

The Bunch object’s data and target attributes are NumPy arrays:

	The data array contains the 1797 samples (the digit images), each with 64 features, having values in the range 0–16, representing pixel intensities. With Matplotlib, we’ll visualize these intensities in grayscale shades from white (0) to black (16):

[image: In Matplotlib, the grey scale ranges from 0 to 16 and white to black from left to right.]

	The target array contains the images’ labels—that is, the classes indicating which digit each image represents. The array is called target because, when you make predictions, you’re aiming to “hit the target” values. To see labels of samples throughout the dataset, let’s display the target values of every 100th sample:

In [4]: digits.target[::100]

Out[4]: array([0, 4, 1, 7, 4, 8, 2, 2, 4, 4, 1, 9, 7, 3, 2, 1, 2, 5])

We can confirm the number of samples and features (per sample) by looking at the data array’s shape attribute, which shows that there are 1797 rows (samples) and 64 columns (features):

In [5]: digits.data.shape

Out[5]: (1797, 64)

You can confirm that the number of target values matches the number of samples by looking at the target array’s shape:

In [6]: digits.target.shape

Out[6]: (1797,)

A Sample Digit Image

Each image is two-dimensional—it has a width and a height in pixels. The Bunch object returned by load_digits contains an images attribute—an array in which each element is a two-dimensional 8-by-8 array representing a digit image’s pixel intensities. Though the original dataset represents each pixel as an integer value from 0–16, scikit-learn stores these values as floating-point values (NumPy type float64). For example, here’s the two-dimensional array representing the sample image at index 13:

In [7]: digits.images[13]

Out[7]:

array([[0., 2., 9., 15., 14., 9., 3., 0.],

 [0., 4., 13., 8., 9., 16., 8., 0.],

 [0., 0., 0., 6., 14., 15., 3., 0.],

 [0., 0., 0., 11., 14., 2., 0., 0.],

 [0., 0., 0., 2., 15., 11., 0., 0.],

 [0., 0., 0., 0., 2., 15., 4., 0.],

 [0., 1., 5., 6., 13., 16., 6., 0.],

 [0., 2., 12., 12., 13., 11., 0., 0.]])

and here’s the image represented by this two-dimensional array—we’ll soon show the code for displaying this image:

[image: A black and white, pixelated image of the numeral 3.]

Preparing the Data for Use with Scikit-Learn

Scikit-learn’s machine-learning algorithms require samples to be stored in a two-dimensional array of floating-point values (or two-dimensional array-like collection, such as a list of lists or a pandas DataFrame):

	Each row represents one sample.

	Each column in a given row represents one feature for that sample.

To represent every sample as one row, multi-dimensional data like the two-dimensional image array shown in snippet [7] must be flattened into a one-dimensional array.

If you were working with a data containing categorical features (typically represented as strings, such as 'spam' or 'not-spam'), you’d also have to preprocess those features into numerical values—known as one-hot encoding, which we cover in the next chapter. Scikit-learn’s sklearn.preprocessing module provides capabilities for converting categorical data to numeric data. The Digits dataset has no categorical features.

For your convenience, the load_digits function returns the preprocessed data ready for machine learning. The Digits dataset is numerical, so load_digits simply flattens each image’s two-dimensional array into a one-dimensional array. For example, the 8-by-8 array digits.images[13] shown in snippet [7] corresponds to the 1-by-64 array digits.data[13] shown below:

In [8]: digits.data[13]

Out[8]:

array([0., 2., 9., 15., 14., 9., 3., 0., 0., 4., 13., 8., 9.,

 16., 8., 0., 0., 0., 0., 6., 14., 15., 3., 0., 0., 0.,

 0., 11., 14., 2., 0., 0., 0., 0., 0., 2., 15., 11., 0.,

 0., 0., 0., 0., 0., 2., 15., 4., 0., 0., 1., 5., 6.,

 13., 16., 6., 0., 0., 2., 12., 12., 13., 11., 0., 0.])

In this one-dimensional array, the first eight elements are the two-dimensional array’s row 0, the next eight elements are the two-dimensional array’s row 1, and so on.

[image: tick mark] Self Check

	(Fill-In) A Bunch object’s ___________ and ___________ attributes are NumPy arrays containing the dataset’s samples and labels, respectively.

Answer: data, target.

	(True/False) A scikit-learn Bunch object contains only a dataset’s data.

Answer: False. A scikit-learn Bunch object contains a dataset’s data and information about the dataset (called metadata), available through the DESCR attribute.

	(IPython Session) For sample number 22 in the Digits dataset, display the 8-by-8 image data and numeric value of the digit the image represents.

Answer:

In [9]: digits.images[22]

Out[9]:

array([[0., 0., 8., 16., 5., 0., 0., 0.],

 [0., 1., 13., 11., 16., 0., 0., 0.],

 [0., 0., 10., 0., 13., 3., 0., 0.],

 [0., 0., 3., 1., 16., 1., 0., 0.],

 [0., 0., 0., 9., 12., 0., 0., 0.],

 [0., 0., 3., 15., 5., 0., 0., 0.],

 [0., 0., 14., 15., 8., 8., 3., 0.],

 [0., 0., 7., 12., 12., 12., 13., 1.]])

In [10]: digits.target[22]

Out[10]: 2

15.2.3 Visualizing the Data

You should always familiarize yourself with your data. This process is called data exploration. For the digit images, you can get a sense of what they look like by displaying them with the Matplotlib implot function. The following image shows the dataset’s first 24 images. To see how difficult a problem handwritten digit recognition is, consider the variations among the images of the 3s in the first, third and fourth rows, and look at the images of the 2s in the first, third and fourth rows.

[image: Black and white, pixelated images of the numerals 0 through 9 and then 0 through 3 arranged in 4 rows of 6 images each.]

Creating the Diagram

Let’s look at the code that displayed these 24 digits. The following call to function subplots creates a 6-by-4 inch Figure (specified by the figsize(6, 4) keyword argument) containing 24 subplots arranged in 4 rows (nrows=4) and 6 columns (ncols=6). Each subplot has its own Axes object, which we’ll use to display one digit image:

In [11]: import matplotlib.pyplot as plt

In [12]: figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(6, 4))

Function subplots returns the Axes objects in a two-dimensional NumPy array. Initially, the Figure appears as shown below with labels (which we’ll remove) on every subplot’s x- and y-axes:

[image: The values of a NumPy array appear over a field of 4 rows of 6 squares. The values are lined up to the left of each square.]

Displaying Each Image and Removing the Axes Labels

Next, use a for statement with the built-in zip function to iterate in parallel through the 24 Axes objects, the first 24 images in digits.images and the first 24 values in digits.target:

In [13]: for item in zip(axes.ravel(), digits.images, digits.target):

 ...: axes, image, target = item

 ...: axes.imshow(image, cmap=plt.cm.gray_r)

 ...: axes.set_xticks([]) # remove x-axis tick marks

 ...: axes.set_yticks([]) # remove y-axis tick marks

 ...: axes.set_title(target)

 ...: plt.tight_layout()

 ...:

 ...:

Recall that NumPy array method ravel creates a one-dimensional view of a multidimensional array. Also, recall that each tuple zip produces contains elements from the same index in each of zip’s arguments and that argument with the fewest elements determines how many tuples zip returns.

Each iteration of the loop:

	Unpacks one tuple from the zipped items into three variables representing the Axes object, image and target value.

	Calls the Axes object’s imshow method to display one image. The keyword argument cmap=plt.cm.gray_r determines the colors displayed in the image. The value plt.cm.gray_r is a color map—a group of colors that are typically chosen to work well together. This particular color map enables us to display the image’s pixels in grayscale, with 0 as white, 16 as black and the values in between as gradually darkening shades of gray. For Matplotlib’s color map names see https://matplotlib.org/examples/color/colormaps_reference.html. Each can be accessed through the plt.cm object or via a string, like 'gray_r'.

	Calls the Axes object’s set_xticks and set_yticks methods with empty lists to indicate that the x- and y-axes should not have tick marks.

	Calls the Axes object’s set_title method to display the target value above the image—this shows the actual value that the image represents.

After the loop, we call tight_layout to remove the extra whitespace at the Figure’s top, right, bottom and left, so the rows and columns of digit images can fill more of the Figure.

[image: tick mark] Self Check

	(Fill-In) The process of familiarizing yourself with your data is called ___________ .

Answer: data exploration.

	(IPython Session) Display the image for sample number 22 of the Digits dataset.

Answer:

In [14]: axes = plt.subplot()

In [15]: image = plt.imshow(digits.images[22], cmap=plt.cm.gray_r)

In [16]: xticks = axes.set_xticks([])

In [17]: yticks = axes.set_yticks([])

[image: A black and white pixelated image of the numeral 2.]

15.2.4 Splitting the Data for Training and Testing

You typically train a machine-learning model with a subset of a dataset. Typically, the more data you have for training, the better you can train the model. It’s important to set aside a portion of your data for testing, so you can evaluate a model’s performance using data that the model has not yet seen. Once you’re confident that the model is performing well, you can use it to make predictions using new data it hasn’t seen.

We first break the data into a training set and a testing set to prepare to train and test the model. The function train_test_split from the sklearn.model_selection module shuffles the data to randomize it, then splits the samples in the data array and the target values in the target array into training and testing sets. This helps ensure that the training and testing sets have similar characteristics. The shuffling and splitting is performed conveniently for you by a ShuffleSplit object from the sklearn.model_selection module. Function train_test_split returns a tuple of four elements in which the first two are the samples split into training and testing sets, and the last two are the corresponding target values split into training and testing sets. By convention, uppercase X is used to represent the samples, and lowercase y is used to represent the target values:

In [18]: from sklearn.model_selection import train_test_split

In [19]: X_train, X_test, y_train, y_test = train_test_split(

 ...: digits.data, digits.target, random_state=11)

 ...:

We assume the data has balanced classes—that is, the samples are divided evenly among the classes. This is the case for each of scikit-learn’s bundled classification datasets. Unbalanced classes could lead to incorrect results.

In the “Functions” chapter, you saw how to seed a random-number generator for reproducibility. In machine-learning studies, this helps others confirm your results by working with the same randomly selected data. Function train_test_split provides the keyword argument random_state for reproducibility. When you run the code in the future with the same seed value, train_test_split will select the same data for the training set and the same data for the testing set. We chose the seed value (11) arbitrarily.

Training and Testing Set Sizes

Looking at X_train’s and X_test’s shapes, you can see that, by default, train_test_split reserves 75% of the data for training and 25% for testing:

In [20]: X_train.shape

Out[20]: (1347, 64)

In [21]: X_test.shape

Out[21]: (450, 64)

To specify different splits, you can set the sizes of the testing and training sets with the train_test_split function’s keyword arguments test_size and train_size. Use floating-point values from 0.0 through 1.0 to specify the percentages of the data to use for each. You can use integer values to set the precise numbers of samples. If you specify one of these keyword arguments, the other is inferred. For example, the statement

X_train, X_test, y_train, y_test = train_test_split(

 digits.data, digits.target, random_state=11, test_size=0.20)

specifies that 20% of the data is for testing, so train_size is inferred to be 0.80.

[image: tick mark] Self Check

	(True/False) You should typically use all of a dataset’s data to train a model.

Answer: False. It’s important to set aside a portion of your data for testing, so you can evaluate a model’s performance using data that the model has not yet seen.

	(Discussion) For the Digits dataset, what numbers of samples would the following statement reserve for training and testing purposes?

X_train, X_test, y_train, y_test = train_test_split(

 digits.data, digits.target, test_size=0.40)

Answer: 1078 and 719.

15.2.5 Creating the Model

The KNeighborsClassifier estimator (module sklearn.neighbors) implements the k-nearest neighbors algorithm. First, we create the KNeighborsClassifier estimator object:

In [22]: from sklearn.neighbors import KNeighborsClassifier

In [23]: knn = KNeighborsClassifier()

To create an estimator, you simply create an object. The internal details of how this object implements the k-nearest neighbors algorithm are hidden in the object. You’ll simply call its methods. This is the essence of Python object-based programming.

15.2.6 Training the Model

Next, we invoke the KNeighborsClassifier object’s fit method, which loads the sample training set (X_train) and target training set (y_train) into the estimator:

In [24]: knn.fit(X=X_train, y=y_train)

Out[24]:

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=None, n_neighbors=5, p=2,

 weights='uniform')

For most, scikit-learn estimators, the fit method loads the data into the estimator then uses that data to perform complex calculations behind the scenes that learn from the data and train the model. The KNeighborsClassifier’s fit method just loads the data into the estimator, because k-NN actually has no initial learning process. The estimator is said to be lazy because its work is performed only when you use it to make predictions. In this and the next chapter, you’ll use lots of models that have significant training phases. In the real-world machine-learning applications, it can sometimes take minutes, hours, days or even months to train your models. We’ll see in the next chapter, “Deep Learning,” that special-purpose, high-performance hardware called GPUs and TPUs can significantly reduce model training time.

As shown in snippet [24]’s output, the fit method returns the estimator, so IPython displays its string representation, which includes the estimator’s default settings. The n_neighbors value corresponds to k in the k-nearest neighbors algorithm. By default, a KNeighborsClassifier looks at the five nearest neighbors to make its predictions. For simplicity, we generally use the default estimator settings. For KNeighborsClassifier, these are described at:

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Many of these settings are beyond the scope of this book. In Part 2 of this case study, we’ll discuss how to choose the best value for n_neighbors.

[image: tick mark] Self Check

	(Fill-In) The KNeighborsClassifier is said to be ___________ because its work is performed only when you use it to make predictions.

Answer: lazy.

	(True/False) Each scikit-learn estimator’s fit method simply loads a dataset.

Answer: False. For most, scikit-learn estimators, the fit method loads the data into the estimator then uses that data to perform complex calculations behind the scenes that learn from the data and train the model.

15.2.7 Predicting Digit Classes

Now that we’ve loaded the data into the KNeighborsClassifier, we can use it with the test samples to make predictions. Calling the estimator’s predict method with X_test as an argument returns an array containing the predicted class of each test image:

In [25]: predicted = knn.predict(X=X_test)

In [26]: expected = y_test

Let’s look at the predicted digits vs. expected digits for the first 20 test samples:

In [27]: predicted[:20]

Out[27]: array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 5, 6])

In [28]: expected[:20]

Out[28]: array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 3, 6])

As you can see, in the first 20 elements, only the predicted and expected arrays’ values at index 18 do not match. We expected a 3, but the model predicted a 5.

Let’s use a list comprehension to locate all the incorrect predictions for the entire test set—that is, the cases in which the predicted and expected values do not match:

In [29]: wrong = [(p, e) for (p, e) in zip(predicted, expected) if p != e]

In [30]: wrong

Out[30]:

[(5, 3),

 (8, 9),

 (4, 9),

 (7, 3),

 (7, 4),

 (2, 8),

 (9, 8),

 (3, 8),

 (3, 8),

 (1, 8)]

The list comprehension uses zip to create tuples containing the corresponding elements in predicted and expected. We include a tuple in the result only if its p (the predicted value) and e (the expected value) differ—that is, the predicted value was incorrect. In this example, the estimator incorrectly predicted only 10 of the 450 test samples. So the prediction accuracy of this estimator is an impressive 97.78%, even though we used only the estimator’s default parameters.

[image: tick mark] Self Check

	(IPython Session) Using the predicted and expected arrays, calculate and display the prediction accuracy percentage.

Answer:

In [31]: print(f'{(len(expected) - len(wrong)) / len(expected):.2%}')

97.78%

	(IPython Session) Rewrite the list comprehension in snippet [29] using a for loop. Which coding style do you prefer?

Answer:

In [32]: wrong = []

In [33]: for p, e in zip(predicted, expected):

 ...: if p != e:

 ...: wrong.append((p, e))

In [34]: wrong

Out[34]:

[(5, 3),

 (8, 9),

 (4, 9),

 (7, 3),

 (7, 4),

 (2, 8),

 (9, 8),

 (3, 8),

 (3, 8),

 (1, 8)]

15.3 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 2

In this section, we continue the digit classification case study. We’ll:

	evaluate the k-NN classification estimator’s accuracy,

	execute multiple estimators and can compare their results so you can choose the best one(s), and

	show how to tune k-NN’s hyperparameter k to get the best performance out of a KNeighborsClassifier.

15.3.1 Metrics for Model Accuracy

Once you’ve trained and tested a model, you’ll want to measure its accuracy. Here, we’ll look at two ways of doing this—a classification estimator’s score method and a confusion matrix.

Estimator Method score

Each estimator has a score method that returns an indication of how well the estimator performs for the test data you pass as arguments. For classification estimators, this method returns the prediction accuracy for the test data:

In [35]: print(f'{knn.score(X_test, y_test):.2%}')

97.78%

The kNeighborsClassifier’s with its default k (that is, n_neighbors=5) achieved 97.78% prediction accuracy. Shortly, we’ll perform hyperparameter tuning to try to determine the optimal value for k, hoping that we get even better accuracy.

Confusion Matrix

Another way to check a classification estimator’s accuracy is via a confusion matrix, which shows the correct and incorrect predicted values (also known as the hits and misses) for a given class. Simply call the function confusion_matrix from the sklearn.metrics module, passing the expected classes and the predicted classes as arguments, as in:

In [36]: from sklearn.metrics import confusion_matrix

In [37]: confusion = confusion_matrix(y_true=expected, y_pred=predicted)

The y_true keyword argument specifies the test samples’ actual classes. People looked at the dataset’s images and labeled them with specific classes (the digit values). The y_pred keyword argument specifies the predicted digits for those test images.

Below is the confusion matrix produced by the preceding call. The correct predictions are shown on the diagonal from top-left to bottom-right. This is called the principal diagonal. The nonzero values that are not on the principal diagonal indicate incorrect predictions:

In [38]: confusion

Out[38]:

array([[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 45, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 54, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 42, 0, 1, 0, 1, 0, 0],

 [0, 0, 0, 0, 49, 0, 0, 1, 0, 0],

 [0, 0, 0, 0, 0, 38, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 42, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 45, 0, 0],

 [0, 1, 1, 2, 0, 0, 0, 0, 39, 1],

 [0, 0, 0, 0, 1, 0, 0, 0, 1, 41]])

Each row represents one distinct class—that is, one of the digits 0–9. The columns within a row specify how many of the test samples were classified into each distinct class. For example, row 0:

[45, 0, 0, 0, 0, 0, 0, 0, 0, 0]

represents the digit 0 class. The columns represent the ten possible target classes 0 through 9. Because we’re working with digits, the classes (0–9) and the row and column index numbers (0–9) happen to match. According to row 0, 45 test samples were classified as the digit 0, and none of the test samples were misclassified as any of the digits 1 through 9. So 100% of the 0s were correctly predicted.

On the other hand, consider row 8 which represents the results for the digit 8:

[0, 1, 1, 2, 0, 0, 0, 0, 39, 1]

	The 1 at column index 1 indicates that one 8 was incorrectly classified as a 1.

	The 1 at column index 2 indicates that one 8 was incorrectly classified as a 2.

	The 2 at column index 3 indicates that two 8s were incorrectly classified as 3s.

	The 39 at column index 8 indicates that 39 8s were correctly classified as 8s.

	The 1 at column index 9 indicates that one 8 was incorrectly classified as a 9.

So the algorithm correctly predicted 88.63% (39 of 44) of the 8s. Earlier we saw that the overall prediction accuracy of this estimator was 97.78%. The lower prediction accuracy for 8s indicates that they’re apparently harder to recognize than the other digits.

Classification Report

The sklearn.metrics module also provides function classification_report, which produces a table of classification metrics5 based on the expected and predicted values:
5. http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-and-f-measures.

In [39]: from sklearn.metrics import classification_report

In [40]: names = [str(digit) for digit in digits.target_names]

In [41]: print(classification_report(expected, predicted,

 ...: target_names=names))

 ...:

 precision recall f1-score support

 0 1.00 1.00 1.00 45

 1 0.98 1.00 0.99 45

 2 0.98 1.00 0.99 54

 3 0.95 0.95 0.95 44

 4 0.98 0.98 0.98 50

 5 0.97 1.00 0.99 38

 6 1.00 1.00 1.00 42

 7 0.96 1.00 0.98 45

 8 0.97 0.89 0.93 44

 9 0.98 0.95 0.96 43

micro avg 0.98 0.98 0.98 450

macro avg 0.98 0.98 0.98 450

weighted avg 0.98 0.98 0.98 450

In the report:

	precision is the total number of correct predictions for a given digit divided by the total number of predictions for that digit. You can confirm the precision by looking at each column in the confusion matrix. For example, if you look at column index 7, you’ll see 1s in rows 3 and 4, indicating that one 3 and one 4 were incorrectly classified as 7s and a 45 in row 7 indicating the 45 images were correctly classified as 7s. So the precision for the digit 7 is 45/47 or 0.96.

	recall is the total number of correct predictions for a given digit divided by the total number of samples that should have been predicted as that digit. You can confirm the recall by looking at each row in the confusion matrix. For example, if you look at row index 8, you’ll see three 1s and a 2 indicating that some 8s were incorrectly classified as other digits and a 39 indicating that 39 images were correctly classified. So the recall for the digit 8 is 39/44 or 0.89.

	f1-score—This is the average of the precision and the recall.

	support—The number of samples with a given expected value. For example, 50 samples were labeled as 4s, and 38 samples were labeled as 5s.

For details on the averages displayed at the bottom of the report, see:

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

Visualizing the Confusion Matrix

A heat map displays values as colors, often with values of higher magnitude displayed as more intense colors. Seaborn’s graphing functions work with two-dimensional data. When using a pandas DataFrame as the data source, Seaborn automatically labels its visualizations using the column names and row indices. Let’s convert the confusion matrix into a DataFrame, then graph it:

In [42]: import pandas as pd

In [43]: confusion_df = pd.DataFrame(confusion, index=range(10),

 ...: columns=range(10))

 ...:

In [44]: import seaborn as sns

In [45]: axes = sns.heatmap(confusion_df, annot=True,

 ...: cmap='nipy_spectral_r')

 ...:

The Seaborn function heatmap creates a heat map from the specified DataFrame. The keyword argument annot=True (short for “annotation”) displays a color bar to the right of the diagram, showing how the values correspond to the heat map’s colors. The cmap='nipy_spectral_r' keyword argument specifies which color map to use. We used the nipy_spectral_r color map with the colors shown in the heat map’s color bar. When you display a confusion matrix as a heat map, the principal diagonal and the incorrect predictions stand out nicely.

[image: An example of a confusion matrix as a heat map.]

15.3-9 Full Alternative Text

[image: tick mark] Self Check

	(Fill-In) A Seaborn ___________ displays values as colors, often with values of higher magnitude displayed as more intense colors.

Answer: heat map.

	(True/False) In a classification report, the precision specifies the total number of correct predictions for a class divided by the total number of samples for that class.

Answer: True.

	(Discussion) Explain row 3 of the confusion matrix presented in this section:

[0, 0, 0, 42, 0, 1, 0, 1, 0, 0]

Answer: The number 42 in column index 3 indicates that 42 3s were correctly predicted as 3s. The number 1 at column indices 5 and 7 indicates that one 3 was incorrectly classified as a 5 and one was incorrectly classified as a 7.

15.3.2 K-Fold Cross-Validation

K-fold cross-validation enables you to use all of your data for both training and testing, to get a better sense of how well your model will make predictions for new data by repeatedly training and testing the model with different portions of the dataset.K-fold cross-validation splits the dataset into k equal-size folds (this k is unrelated to k in the k-nearest neighbors algorithm). You then repeatedly train your model with k – 1 folds and test the model with the remaining fold. For example, consider using k = 10 with folds numbered 1 through 10. With 10 folds, we’d do 10 successive training and testing cycles:

	First, we’d train with folds 1–9, then test with fold 10.

	Next, we’d train with folds 1–8 and 10, then test with fold 9.

	Next, we’d train with folds 1–7 and 9–10, then test with fold 8.

This training and testing cycle continues until each fold has been used to test the model.

KFold Class

Scikit-learn provides the KFold class and the cross_val_score function (both in the module sklearn.model_selection) to help you perform the training and testing cycles described above. Let’s perform k-fold cross-validation with the Digits dataset and the KNeighborsClassifier created earlier. First, create a KFold object:

In [46]: from sklearn.model_selection import KFold

In [47]: kfold = KFold(n_splits=10, random_state=11, shuffle=True)

The keyword arguments are:

	n_splits=10, which specifies the number of folds.

	random_state=11, which seeds the random number generator for reproducibility.

	shuffle=True, which causes the KFold object to randomize the data by shuffling it before splitting it into folds. This is particularly important if the samples might be ordered or grouped. For example, the Iris dataset we’ll use later in this chapter has 150 samples of three Iris species—the first 50 are Iris setosa, the next 50 are Iris versicolor and the last 50 are Iris virginica. If we do not shuffle the samples, then the training data might contain none of a particular Iris species and the test data might be all of one species.

Using the KFold Object with Function cross_val_score

Next, use function cross_val_score to train and test your model:

In [48]: from sklearn.model_selection import cross_val_score

In [49]: scores = cross_val_score(estimator=knn, X=digits.data,

 ...: y=digits.target, cv=kfold)

 ...:

The keyword arguments are:

	estimator=knn, which specifies the estimator you’d like to validate.

	X=digits.data, which specifies the samples to use for training and testing.

	y=digits.target, which specifies the target predictions for the samples.

	cv=kfold, which specifies the cross-validation generator that defines how to split the samples and targets for training and testing.

Function cross_val_score returns an array of accuracy scores—one for each fold. As you can see below, the model was quite accurate. Its lowest accuracy score was 0.97777778 (97.78%) and in one case it was 100% accurate in predicting an entire fold:

In [50]: scores

Out[50]:

array([0.97777778, 0.99444444, 0.98888889, 0.97777778, 0.98888889,

 0.99444444, 0.97777778, 0.98882682, 1. , 0.98324022])

Once you have the accuracy scores, you can get an overall sense of the model’s accuracy by calculating the mean accuracy score and the standard deviation among the 10 accuracy scores (or whatever number of folds you choose):

In [51]: print(f'Mean accuracy: {scores.mean():.2%}')

Mean accuracy: 98.72%

In [52]: print(f'Accuracy standard deviation: {scores.std():.2%}')

Accuracy standard deviation: 0.75%

On average, the model was 98.72% accurate—even better than the 97.78% we achieved when we trained the model with 75% of the data and tested the model with 25% earlier.

[image: tick mark] Self Check

	(True/False) Randomizing the data by shuffling it before splitting it into folds is particularly important if the samples might be ordered or grouped.

Answer: True.

	(True/False) When you call cross_val_score to peform k-fold cross-validation, the function returns the best score produced while testing the model with each fold.

Answer: False. The function returns an array containing the scores for each fold. The mean of those scores is the estimator’s overall score.

15.3.3 Running Multiple Models to Find the Best One

It’s difficult to know in advance which machine learning model(s) will perform best for a given dataset, especially when they hide the details of how they operate from their users. Even though the KNeighborsClassifier predicts digit images with a high degree of accuracy, it’s possible that other scikit-learn estimators are even more accurate. Scikit-learn provides many models with which you can quickly train and test your data. This encourages you to run multiple models to determine which is the best for a particular machine learning study.

Let’s use the techniques from the preceding section to compare several classification estimators—KNeighborsClassifier, SVC and GaussianNB (there are more). Though we have not studied the SVC and GaussianNB estimators, scikit-learn nevertheless makes it easy for you to test-drive them by using their default settings.6 First, let’s import the other two estimators:
6. To avoid a warning in the current scikit-learn version at the time of this writing (version 0.20), we supplied one keyword argument when creating the SVC estimator. This argument’s value will become the default in scikit-learn version 0.22.

In [53]: from sklearn.svm import SVC

In [54]: from sklearn.naive_bayes import GaussianNB

Next, let’s create the estimators. The following dictionary contains key–value pairs for the existing KNeighborsClassifier we created earlier, plus new SVC and GaussianNB estimators:

In [55]: estimators = {

 ...: 'KNeighborsClassifier': knn,

 ...: 'SVC': SVC(gamma='scale'),

 ...: 'GaussianNB': GaussianNB()}

 ...:

Now, we can execute the models:

In [56]: for estimator_name, estimator_object in estimators.items():

...: kfold = KFold(n_splits=10, random_state=11, shuffle=True)

...: scores = cross_val_score(estimator=estimator_object,

...: X=digits.data, y=digits.target, cv=kfold)

...: print(f'{estimator_name:>20}: ' +

...: f'mean accuracy={scores.mean():.2%}; ' +

...: f'standard deviation={scores.std():.2%}')

...:

KNeighborsClassifier: mean accuracy=98.72%; standard deviation=0.75%

 SVC: mean accuracy=99.00%; standard deviation=0.85%

 GaussianNB: mean accuracy=84.48%; standard deviation=3.47%

This loop iterates through items in the estimators dictionary and for each key-value pair performs the following tasks:

	Unpacks the key into estimator_name and value into estimator_object.

	Creates a KFold object that shuffles the data and produces 10 folds. The keyword argument random_state is particularly important here because it ensures that each estimator works with identical folds, so we’re comparing “apples to apples.”

	Evaluates the current estimator_object using cross_val_score.

	Prints the estimator’s name, followed by the mean and standard deviation of the accuracy scores’ computed for each of the 10 folds.

Based on the results, it appears that we can get slightly better accuracy from the SVC estimator—at least when using the estimator’s default settings. It’s possible that by tuning some of the estimators’ settings, we could get even better results. The KNeighborsClassifier and SVC estimators’ accuracies are nearly identical so we might want to perform hyperparameter tuning on each to determine the best.

Scikit-Learn Estimator Diagram

The scikit-learn documentation provides a helpful diagram for choosing the right estimator, based on the kind and size of your data and the machine learning task you wish to perform:

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

[image: tick mark] Self Check

	(True/False) You should choose the best estimator before performing your machine learning study.

Answer: False. It’s difficult to know in advance which machine learning model(s) will perform best for a given dataset, especially when they hide the details of how they operate from their users. For this reason, you should run multiple models to determine which is the best for your study.

	(Discussion) How would you modify the code in this section so that it would also test a LinearSVC estimator?

Answer: You’d import the LinearSVC class, add a key–value pair to the estimators dictionary ('LinearSVC': LinearSVC()), then execute the for loop, which tests every estimator in the dictionary.

15.3.4 Hyperparameter Tuning

Earlier in this section, we mentioned that k in the k-nearest neighbors algorithm is a hyperparameter of the algorithm. Hyperparameters are set before using the algorithm to train your model. In real-world machine learning studies, you’ll want to use hyperparameter tuning to choose hyperparameter values that produce the best possible predictions.

To determine the best value for k in the kNN algorithm, try different values of k then compare the estimator’s performance with each. We can do this using techniques similar to comparing estimators. The following loop creates KNeighborsClassifiers with odd k values from 1 through 19 (again, we use odd k values in kNN to avoid ties) and performs k-fold cross-validation on each. As you can see from the accuracy scores and standard deviations, the k value 1 in kNN produces the most accurate predictions for the Digits dataset. You can also see that accuracy tends to decrease for higher k values:

In [57]: for k in range(1, 20, 2):

 ...: kfold = KFold(n_splits=10, random_state=11, shuffle=True)

 ...: knn = KNeighborsClassifier(n_neighbors=k)

 ...: scores = cross_val_score(estimator=knn,

 ...: X=digits.data, y=digits.target, cv=kfold)

 ...: print(f'k={k:<2}; mean accuracy={scores.mean():.2%}; ' +

 ...: f'standard deviation={scores.std():.2%}')

 ...:

k=1 ; mean accuracy=98.83%; standard deviation=0.58%

k=3 ; mean accuracy=98.78%; standard deviation=0.78%

k=5 ; mean accuracy=98.72%; standard deviation=0.75%

k=7 ; mean accuracy=98.44%; standard deviation=0.96%

k=9 ; mean accuracy=98.39%; standard deviation=0.80%

k=11; mean accuracy=98.39%; standard deviation=0.80%

k=13; mean accuracy=97.89%; standard deviation=0.89%

k=15; mean accuracy=97.89%; standard deviation=1.02%

k=17; mean accuracy=97.50%; standard deviation=1.00%

k=19; mean accuracy=97.66%; standard deviation=0.96%

Machine learning is not without its costs, especially as we head toward big data and deep learning. You must “know your data” and “know your tools.” For example, compute time grows rapidly with k, because k-NN needs to perform more calculations to find the nearest neighbors. In an exercise, we’ll ask you to try the function cross_validate, which does cross-validation and times the results.

[image: tick mark] Self Check

	(True/False) When you create an estimator object, the default hyperparameter values that scikit-learn uses are generally the best ones for every machine learning study.

Answer: False. The default hyperparameter values make it easy for you to test estimators quickly. In real-world machine learning studies, you’ll want to use hyperparameter tuning to choose hyperparameter values that produce the best possible predictions.

15.4 Case Study: Time Series and Simple Linear Regression

In the previous section, we demonstrated classification in which each sample was associated with a distinct class. Here, we continue our discussion of simple linear regression—the simplest of the regression algorithms—that began in Chapter 10’s Intro to Data Science section. Recall that given a collection of numeric values representing an independent variable and a dependent variable, simple linear regression describes the relationship between these variables with a straight line, known as the regression line.

Previously, we performed simple linear regression on a time series of average New York City January high-temperature data for 1895 through 2018. In that example, we used Seaborn’s regplot function to create a scatter plot of the data with a corresponding regression line. We also used the scipy.stats module’s linregress function to calculate the regression line’s slope and intercept. We then used those values to predict future temperatures and estimate past temperatures.

In this section, we’ll

	use a scikit-learn estimator to reimplement the simple linear regression we showed in Chapter 10,

	use Seaborn’s scatterplot function to plot the data and Matplotlib’s plot function to display the regression line, then

	use the coefficient and intercept values calculated by the scikit-learn estimator to make predictions.

Later, we’ll look at multiple linear regression (also simply called linear regression).

For your convenience, we provide the temperature data in the ch15 examples folder in a CSV file named ave_hi_nyc_jan_1895-2018.csv. Once again, launch IPython with the --matplotlib option:

ipython --matplotlib

Loading the Average High Temperatures into a DataFrame

As we did in Chapter 10, let’s load the data from ave_hi_nyc_jan_1895-2018.csv, rename the 'Value' column to 'Temperature', remove 01 from the end of each date value and display a few data samples:

In [1]: import pandas as pd

In [2]: nyc = pd.read_csv('ave_hi_nyc_jan_1895-2018.csv')

In [3]: nyc.columns = ['Date', 'Temperature', 'Anomaly']

In [4]: nyc.Date = nyc.Date.floordiv(100)

In [5]: nyc.head(3)

Out[5]:

 Date Temperature Anomaly

0 1895 34.2 -3.2

1 1896 34.7 -2.7

2 1897 35.5 -1.9

Splitting the Data for Training and Testing

In this example, we’ll use the LinearRegression estimator from sklearn.linear_model. By default, this estimator uses all the numeric features in a dataset, performing a multiple linear regression (which we’ll discuss in the next section). Here, we perform simple linear regression using one feature as the independent variable. So, we’ll need to select one feature (the Date) from the dataset.

When you select one column from a two-dimensional DataFrame, the result is a one-dimensional Series. However, scikit-learn estimators require their training and testing data to be two-dimensional arrays (or two-dimensional array-like data, such as lists of lists or pandas DataFrames). To use one-dimensional data with an estimator, you must transform it from one dimension containing n elements, into two dimensions containing n rows and one column as you’ll see below.

As we did in the previous case study, let’s split the data into training and testing sets. Once again, we used the keyword argument random_state for reproducibility:

In [6]: from sklearn.model_selection import train_test_split

In [7]: X_train, X_test, y_train, y_test = train_test_split(

 ...: nyc.Date.values.reshape(-1, 1), nyc.Temperature.values,

 ...: random_state=11)

 ...:

The expression nyc.Date returns the Date column’s Series, and the Series’ values attribute returns the NumPy array containing that Series’ values. To transform this one-dimensional array into two dimensions, we call the array’s reshape method. Normally, two arguments are the precise number of rows and columns. However, the first argument -1 tells reshape to infer the number of rows, based on the number of columns (1) and the number of elements (124) in the array. The transformed array will have only one column, so reshape infers the number of rows to be 124, because the only way to fit 124 elements into an array with one column is by distributing them over 124 rows.

We can confirm the 75%–25% train-test split by checking the shapes of X_train and X_test:

In [8]: X_train.shape

Out[8]: (93, 1)

In [9]: X_test.shape

Out[9]: (31, 1)

Training the Model

Scikit-learn does not have a separate class for simple linear regression because it’s just a special case of multiple linear regression, so let’s train a LinearRegression estimator:

In [10]: from sklearn.linear_model import LinearRegression

In [11]: linear_regression = LinearRegression()

In [12]: linear_regression.fit(X=X_train, y=y_train)

Out[12]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,

 normalize=False)

After training the estimator, fit returns the estimator, and IPython displays its string representation. For descriptions of the default settings, see:

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

To find the best fitting regression line for the data, the LinearRegression estimator iteratively adjusts the slope and intercept values to minimize the sum of the squares of the data points’ distances from the line. In Chapter 10’s Intro to Data Science section, we gave some insight into how the slope and intercept values are discovered.

Now, we can get the slope and intercept used in the y = mx + b calculation to make predictions. The slope is stored in the estimator’s coeff_ attribute (m in the quation) and the intercept is stored in the estimator’s intercept_ attribute (b in the equation):

In [13]: linear_regression.coef_

Out[13]: array([0.01939167])

In [14]: linear_regression.intercept_

Out[14]: -0.30779820252656265

We’ll use these later to plot the regression line and make predictions for specific dates.

Testing the Model

Let’s test the model using the data in X_test and check some of the predictions throughout the dataset by displaying the predicted and expected values for every fifth element—we discuss how to assess the regression model’s accuracy in Section 15.5.8:

In [15]: predicted = linear_regression.predict(X_test)

In [16]: expected = y_test

In [17]: for p, e in zip(predicted[::5], expected[::5]):

 ...: print(f'predicted: {p:.2f}, expected: {e:.2f}')

 ...:

predicted: 37.86, expected: 31.70

predicted: 38.69, expected: 34.80

predicted: 37.00, expected: 39.40

predicted: 37.25, expected: 45.70

predicted: 38.05, expected: 32.30

predicted: 37.64, expected: 33.80

predicted: 36.94, expected: 39.70

Predicting Future Temperatures and Estimating Past Temperatures

Let’s use the coefficient and intercept values to predict the January 2019 average high temperature and to estimate what the average high temperature was in January of 1890. The lambda in the following snippet implements the equation for a line

y = mx + b

using the coef_ as m and the intercept_ as b.

In [18]: predict = (lambda x: linear_regression.coef_ * x +

 ...: linear_regression.intercept_)

 ...:

In [19]: predict(2019)

Out[19]: array([38.84399018])

In [20]: predict(1890)

Out[20]: array([36.34246432])

Visualizing the Dataset with the Regression Line

Next, let’s create a scatter plot of the dataset using Seaborn’s scatterplot function and Matplotlib’s plot function. First, use scatterplot with the nyc DataFrame to display the data points:

In [21]: import seaborn as sns

In [22]: axes = sns.scatterplot(data=nyc, x='Date', y='Temperature',

 ...: hue='Temperature', palette='winter', legend=False)

 ...:

The keyword arguments are:

	data, which specifies the DataFrame (nyc) containing the data to display.

	x and y, which specify the names of nyc’s columns that are the source of the data along the x- and y-axes, respectively. In this case, x is the 'Date' and y is the 'Temperature'. The corresponding values from each column form x-y coordinate pairs used to plot the dots.

	hue, which specifies which column’s data should be used to determine the dot colors. In this case, we use the 'Temperature' column. Color is not particularly important in this example, but we wanted to add some visual interest to the graph.

	palette, which specifies a Matplotlib color map from which to choose the dots’ colors.

	legend=False, which specifies that scatterplot should not show a legend for the graph—the default is True, but we do not need a legend for this example.

As we did in Chapter 10, let’s scale the y-axis range of values so you’ll be able to see the linear relationship better once we display the regression line:

In [23]: axes.set_ylim(10, 70)

Out[23]: (10, 70)

Next, let’s display the regression line. First, create an array containing the minimum and maximum date values in nyc.Date. These are the x-coordinates of the regression line’s start and end points:

In [24]: import numpy as np

In [25]: x = np.array([min(nyc.Date.values), max(nyc.Date.values)])

Passing the array x to the predict lambda from snippet [16] produces an array containing the corresponding predicted values, which we’ll use as the y-coordinates:

In [26]: y = predict(x)

Finally, we can use Matplotlib’s plot function to plot a line based on the x and y arrays, which represent the x- and y-coordinates of the points, respectively:

In [27]: import matplotlib.pyplot as plt

In [28]: line = plt.plot(x, y)

The resulting scatterplot and regression line are shown below. This graph is nearly identical to the one you saw in Chapter 10’s Intro to Data Science section.

[image: A scatter plot graph depicts temperature from 10 to 70 degrees on the vertical axis and dates from 1900 to 2020 on the horizontal axis. A slightly sloped line passes through the middle of the plotted points.]

Overfitting/Underfitting

When creating a model, a key goal is to ensure that it is capable of making accurate predictions for data it has not yet seen. Two common problems that prevent accurate predictions are overfitting and underfitting:

	Underfitting occurs when a model is too simple to make predictions, based on its training data. For example, you may use a linear model, such as simple linear regression, when in fact, the problem really requires a non-linear model. For example, temperatures vary significantly throughout the four seasons. If you’re trying to create a general model that can predict temperatures year-round, a simple linear regression model will underfit the data.

	Overfitting occurs when your model is too complex. The most extreme case, would be a model that memorizes its training data. That may be acceptable if your new data looks exactly like your training data, but ordinarily that’s not the case. When you make predictions with an overfit model, new data that matches the training data will produce perfect predictions, but the model will not know what to do with data it has never seen.

For additional information on underfitting and overfitting, see

	https://en.wikipedia.org/wiki/Overfitting

	https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/

[image: tick mark] Self Check

	(Fill-In) A LinearRegression object’s ___________ and ___________ attributes can be used as m and b, respectively, in the equation y = mx + b to make predictions.

Answer: coeff_, intercept_.

	(True/False) By default, the LinearRegression estimator performs simple linear regression.

Answer: False. By default, the LinearRegression estimator uses all the numeric features in a dataset, performing a multiple linear regression.

	(IPython Session) Use the predict lambda to estimate what the average January high temperature was in 1889 and to predict what it will be in 2020.

Answer:

In [29]: predict(1889)

Out[29]: array([36.34246432])

In [30]: predict(2100)

Out[30]: array([38.86338185])

15.5 Case Study: Multiple Linear Regression with the California Housing Dataset

In Chapter 10’s Intro to Data Science section, we performed simple linear regression on a small weather data time series using pandas, Seaborn’s regplot function and the SciPy’s stats module’s linregress function. In the previous section, we reimplemented that same example using scikit-learn’s LinearRegression estimator, Seaborn’s scatterplot function and Matplotlib’s plot function. Now, we’ll perform linear regression with a much larger real-world dataset.

The California Housing dataset7 bundled with scikit-learn has 20,640 samples, each with eight numerical features. We’ll perform a multiple linear regression that uses all eight numerical features to make more sophisticated housing price predictions than if we were to use only a single feature or a subset of the features. Once again, scikit-learn will do most of the work for you—LinearRegression performs multiple linear regression by default. In the exercises, we’ll ask you to perform simple linear regressions with each individual feature and compare the results with this section’s multiple linear regression. You should expect more meaningful results from the multiple linear regression.
7. http://lib.stat.cmu.edu/datasets. Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability Letters, 33 (1997) 291-297. Submitted to the StatLib Datasets Archive by Kelley Pace (kpace@unix1.sncc.lsu.edu). [9/Nov/99].

We’ll visualize some of the data using Matplotlib and Seaborn, so launch IPython with Matplotlib support:

ipython --matplotlib

15.5.1 Loading the Dataset

According to the California Housing Prices dataset’s description in scikit-learn, “This dataset was derived from the 1990 U.S. census, using one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).” The dataset has 20,640 samples—one per block group—with eight features each:

	median income—in tens of thousands, so 8.37 would represent $83,700

	median house age—in the dataset, the maximum value for this feature is 52

	average number of rooms

	average number of bedrooms

	block population

	average house occupancy

	house block latitude

	house block longitude

Each sample also has as its target a corresponding median house value in hundreds of thousands, so 3.55 would represent $355,000. In the dataset, the maximum value for this feature is 5, which represents $500,000.

It’s reasonable to expect that more bedrooms or more rooms or higher income would mean higher house value. By combining these features to make predictions, we’re more likely to get more accurate predictions.

Loading the Data

Let’s load the dataset and familiarize ourselves with it. The fetch_california_housing function from the sklearn.datasets module returns a Bunch object containing the data and other information about the dataset:

In [1]: from sklearn.datasets import fetch_california_housing

In [2]: california = fetch_california_housing()

Displaying the Dataset’s Description

Let’s look at the dataset’s description. The DESCR information includes:

	Number of Instances—this dataset contains 20,640 samples.

	Number of Attributes—there are 8 features (attributes) per sample.

	Attribute Information—feature descriptions.

	Missing Attribute Values—none are missing in this dataset.

According to the description, the target variable in this dataset is the median house value—this is the value we’ll be trying to predict via multiple linear regression.

In [3]: print(california.DESCR)

.. _california_housing_dataset:

California Housing dataset

Data Set Characteristics:

 :Number of Instances: 20640

 :Number of Attributes: 8 numeric, predictive attributes and the target

 :Attribute Information:

 - MedInc median income in block

 - HouseAge median house age in block

 - AveRooms average number of rooms

 - AveBedrms average number of bedrooms

 - Population block population

 - AveOccup average house occupancy

 - Latitude house block latitude

 - Longitude house block longitude

 :Missing Attribute Values: None

This dataset was obtained from the StatLib repository.

http://lib.stat.cmu.edu/datasets/

The target variable is the median house value for California districts.

This dataset was derived from the 1990 U.S. census, using one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).

It can be downloaded/loaded using the :func:`sklearn.datasets.fetch_california_housing` function.

.. topic:: References

 - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,

 Statistics and Probability Letters, 33 (1997) 291-297

Again, the Bunch object’s data and target attributes are NumPy arrays containing the 20,640 samples and their target values respectively. We can confirm the number of samples (rows) and features (columns) by looking at the data array’s shape attribute, which shows that there are 20,640 rows and 8 columns:

In [4]: california.data.shape

Out[4]: (20640, 8)

Similarly, you can see that the number of target values—that is, the median house values—matches the number of samples by looking at the target array’s shape:

In [5]: california.target.shape

Out[5]: (20640,)

The Bunch’s feature_names attribute contains the names that correspond to each column in the data array:

In [6]: california.feature_names

Out[6]:

['MedInc',

 'HouseAge',

 'AveRooms',

 'AveBedrms',

 'Population',

 'AveOccup',

 'Latitude',

 'Longitude']

15.5.2 Exploring the Data with Pandas

Let’s use a pandas DataFrame to explore the data further. We’ll also use the DataFrame with Seaborn in the next section to visualize some of the data. First, let’s import pandas and set some options:

In [7]: import pandas as pd

In [8]: pd.set_option('precision', 4)

In [9]: pd.set_option('max_columns', 9)

In [10]: pd.set_option('display.width', None)

In the preceding set_option calls:

	'precision' is the maximum number of digits to display to the right of each decimal point.

	'max_columns' is the maximum number of columns to display when you output the DataFrame’s string representation. By default, if pandas cannot fit all of the columns left-to-right, it cuts out columns in the middle and displays an ellipsis (…) instead. The 'max_columns' setting enables pandas to show all the columns using multiple rows of output. As you’ll see momentarily, we’ll have nine columns in the DataFrame—the eight dataset features in california.data and an additional column for the target median house values (california.target).

	'display.width' specifies the width in characters of your Command Prompt (Windows), Terminal (macOS/Linux) or shell (Linux). The value None tells pandas to auto-detect the display width when formatting string representations of Series and DataFrames.

Next, let’s create a DataFrame from the Bunch’s data, target and feature_names arrays. The first snippet below creates the initial DataFrame using the data in california.data and with the column names specified by california.feature_names. The second statement adds a column for the median house values stored in california.target:

In [11]: california_df = pd.DataFrame(california.data,

 ...: columns=california.feature_names)

 ...:

In [12]: california_df['MedHouseValue'] = pd.Series(california.target)

We can peek at some of the data using the head function. Notice that pandas displays the DataFrame’s first six columns, then skips a line of output and displays the remaining columns. The \ to the right of the column head "AveOccup" indicates that there are more columns displayed below. You’ll see the \ only if the window in which IPython is running is too narrow to display all the columns left-to-right:

In [13]: california_df.head()

Out[13]:

 MedInc HouseAge AveRooms AveBedrms Population AveOccup \

0 8.3252 41.0 6.9841 1.0238 322.0 2.5556

1 8.3014 21.0 6.2381 0.9719 2401.0 2.1098

2 7.2574 52.0 8.2881 1.0734 496.0 2.8023

3 5.6431 52.0 5.8174 1.0731 558.0 2.5479

4 3.8462 52.0 6.2819 1.0811 565.0 2.1815

 Latitude Longitude MedHouseValue

0 37.88 -122.23 4.526

1 37.86 -122.22 3.585

2 37.85 -122.24 3.521

3 37.85 -122.25 3.413

4 37.85 -122.25 3.422

Let’s get a sense of the data in each column by calculating the DataFrame’s summary statistics. Note that the median income and house values (again, measured in hundreds of thousands) are from 1990 and are significantly higher today:

In [14]: california_df.describe()

Out[14]:

 MedInc HouseAge AveRooms AveBedrms Population \

count 20640.0000 20640.0000 20640.0000 20640.0000 20640.0000

mean 3.8707 28.6395 5.4290 1.0967 1425.4767

std 1.8998 12.5856 2.4742 0.4739 1132.4621

min 0.4999 1.0000 0.8462 0.3333 3.0000

25% 2.5634 18.0000 4.4407 1.0061 787.0000

50% 3.5348 29.0000 5.2291 1.0488 1166.0000

75% 4.7432 37.0000 6.0524 1.0995 1725.0000

max 15.0001 52.0000 141.9091 34.0667 35682.0000

 AveOccup Latitude Longitude MedHouseValue

count 20640.0000 20640.0000 20640.0000 20640.0000

mean 3.0707 35.6319 -119.5697 2.0686

std 10.3860 2.1360 2.0035 1.1540

min 0.6923 32.5400 -124.3500 0.1500

25% 2.4297 33.9300 -121.8000 1.1960

50% 2.8181 34.2600 -118.4900 1.7970

75% 3.2823 37.7100 -118.0100 2.6472

max 1243.3333 41.9500 -114.3100 5.0000

[image: tick mark] Self Check

	(Discussion) Based on the DataFrame’s summary statistics, what was the average median household income across all block groups for California in 1990?

Answer: $38,707 (3.8707 * 10000—recall that the datasets median income is expressed in tens of thousands).

15.5.3 Visualizing the Features

It’s helpful to visualize your data by plotting the target value against each feature—in this case, to see how the median home value relates to each feature. To make our visualizations clearer, let’s use DataFrame method sample to randomly select 10% of the 20,640 samples for graphing purposes:

In [15]: sample_df = california_df.sample(frac=0.1, random_state=17)

The keyword argument frac specifies the fraction of the data to select (0.1 for 10%), and the keyword argument random_state enables you to seed the random number generator. The integer seed value (17), which we chose arbitrarily, is crucial for reproducibility. Each time you use the same seed value, method sample selects the same random subset of the DataFrame’s rows. Then, when we graph the data, you should get the same results.

Next, we’ll use Matplotlib and Seaborn to display scatter plots of each of the eight features. Both libraries can display scatter plots. Seaborn’s are more attractive and require less code, so we’ll use Seaborn to create the following scatter plots. First, we import both libraries and use Seaborn function set to scale each diagram’s fonts to two time their default size:

In [16]: import matplotlib.pyplot as plt

In [17]: import seaborn as sns

In [18]: sns.set(font_scale=2)

In [19]: sns.set_style('whitegrid')

The following snippet displays the scatter plots.8 Each shows one feature along the x-axis and the median home value (california.target) along the y-axis, so we can see how each feature and the median house values relate to one another. We display each scatter plot in a separate window. The windows are displayed in the order the features were listed in snippet [6] with the most recently displayed window in the foreground:
8. When you execute this code in IPython, each window will be displayed in front of the previous one. As you close each, you’ll see the one behind it.

In [20]: for feature in california.feature_names:

 ...: plt.figure(figsize=(16, 9))

 ...: sns.scatterplot(data=sample_df, x=feature,

 ...: y='MedHouseValue', hue='MedHouseValue',

 ...: palette='cool', legend=False)

 ...:

For each feature name, the snippet first creates a 16-inch-by-9-inch Matplotlib Figure—we’re plotting many data points, so we chose to use a larger window. If this window is larger than your screen, Matplotlib fits the Figure to the screen. Seaborn uses the current Figure to display the scatter plot. If you do not create a Figure first, Seaborn will create one. We created the Figure first here so we could display a large window for a scatter plot containing over 2000 points.

Next, the snippet creates a Seaborn scatterplot in which the x-axis shows the current feature, the y-axis shows the 'MedHouseValue' (median house values), and the 'MedHouseValue' determines the dot colors (hue). Some interesting things to notice in these graphs:

	The graphs showing the latitude and longitude each have two areas of especially significant density. If you search online for the latitude and longitude values where those dense areas appear, you’ll see that these represent the greater Los Angeles and greater San Francisco areas where house prices tend to be higher.

	In each graph, there is a horizontal line of dots at the y-axis value 5, which represents the median house value $500,000. The highest home value that could be chosen on the 1990 census form was “$500,000 or more.”9 So any block group with a median house value over $500,000 is listed in the dataset as 5. Being able to spot characteristics like this is a compelling reason to do data exploration and visualization.
9. https://www.census.gov/prod/1/90dec/cph4/appdxe.pdf.

 	In the HouseAge graph, there is a vertical line of dots at the x-axis value 52. The highest home age that could be chosen on the 1990 census form was 52, so any block group with a median house age over 52 is listed in the dataset as 52.

[image: 2 scatter plot graphs depict median income and house age.]

15.5-11 Full Alternative Text

[image: 3 examples of scatter plot graphs.]

15.5-12 Full Alternative Text

[image: 3 examples of scatter plot graphs.]

15.5-13 Full Alternative Text

[image: tick mark] Self Check

	(Fill-In) DataFrame method ___________ returns a randomly selected subset of the DataFrame’s rows.

Answer: sample.

	(Discussion) Why would it be useful in a scatter plot to plot a randomly selected subset of a dataset’s samples?

Answer: When you are getting to know your data for a large dataset, there could be too many samples to get a sense of how they are truly distributed.

15.5.4 Splitting the Data for Training and Testing

Once again, to prepare for training and testing the model, let’s break the data into training and testing sets using the train_test_split function then check their sizes:

In [21]: from sklearn.model_selection import train_test_split

In [22]: X_train, X_test, y_train, y_test = train_test_split(

 ...: california.data, california.target, random_state=11)

 ...:

In [23]: X_train.shape

Out[23]: (15480, 8)

In [24]: X_test.shape

Out[24]: (5160, 8)

We used train_test_split’s keyword argument random_state to seed the random number generator for reproducibility.

15.5.5 Training the Model

Next, we’ll train the model. By default, a LinearRegression estimator uses all the features in the dataset’s data array to perform a multiple linear regression. An error occurs if any of the features are categorical rather than numeric. If a dataset contains categorical data, you either must preprocess the categorical features into numerical ones (which you’ll do in the next chapter) or must exclude the categorical features from the training process. A benefit of working with scikit-learn’s bundled datasets is that they’re already in the correct format for machine learning using scikit-learn’s models.

As you saw in the previous two snippets, X_train and X_test each contain 8 columns—one per feature. Let’s create a LinearRegression estimator and invoke its fit method to train the estimator using X_train and y_train:

In [25]: from sklearn.linear_model import LinearRegression

In [26]: linear_regression = LinearRegression()

In [27]: linear_regression.fit(X=X_train, y=y_train)

Out[27]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,

 normalize=False)

Multiple linear regression produces separate coefficients for each feature (stored in coeff_) in the dataset and one intercept (stored in intercept_):

In [28]: for i, name in enumerate(california.feature_names):

 ...: print(f'{name:>10}: {linear_regression.coef_[i]}')

 ...:

 MedInc: 0.4377030215382206

 HouseAge: 0.009216834565797713

 AveRooms: -0.10732526637360985

 AveBedrms: 0.611713307391811

Population: -5.756822009298454e-06

 AveOccup: -0.0033845664657163703

 Latitude: -0.419481860964907

 Longitude: -0.4337713349874016

In [29]: linear_regression.intercept_

Out[29]: -36.88295065605547

For positive coefficients, the median house value increases as the feature value increases. For negative coefficients, the median house value decreases as the feature value increases. Note that the population coefficient has a negative exponent (e-06), so the coefficient’s value is actually -0.000005756822009298454. This is close to zero, so a block group’s population apparently has little effect the median house value.

You can use these values with the following equation to make predictions:

y = m1x1 + m2x2 + … mnxn + b

where

	m1, m2, …, mn

are the feature coefficients,

	b is the intercept,

	x

1

, x

2

, …, x

n

are the feature values (that is, the values of the independent variables), and

	y is the predicted value (that is, the dependent variable).

[image: tick mark] Self Check

	(True/False) By default, a LinearRegression estimator uses all the features in the dataset to perform a multiple linear regression.

Answer: False. By default, a LinearRegression estimator uses all the numeric features in the dataset to perform a multiple linear regression. An error occurs if any of the features are categorical rather than numeric. Categorical features must be preprocessed into numerical ones or must be excluded from the training process.

15.5.6 Testing the Model

Now, let’s test the model by calling the estimator’s predict method with the test samples as an argument. As we’ve done in each of the previous examples, we store the array of predictions in predicted and the array of expected values in expected:

In [30]: predicted = linear_regression.predict(X_test)

In [31]: expected = y_test

Let’s look at the first five predictions and their corresponding expected values:

In [32]: predicted[:5]

Out[32]: array([1.25396876, 2.34693107, 2.03794745, 1.8701254, 2.53608339])

In [33]: expected[:5]

Out[33]: array([0.762, 1.732, 1.125, 1.37 , 1.856])

With classification, we saw that the predictions were distinct classes that matched existing classes in the dataset. With regression, it’s tough to get exact predictions, because you have continuous outputs. Every possible value of x

1

, x

2

… x

n

in the calculation

y = m1x1 + m2x2 + … mnxn + b

predicts a value.

15.5.7 Visualizing the Expected vs. Predicted Prices

Let’s look at the expected vs. predicted median house values for the test data. First, let’s create a DataFrame containing columns for the expected and predicted values:

In [34]: df = pd.DataFrame()

In [35]: df['Expected'] = pd.Series(expected)

In [36]: df['Predicted'] = pd.Series(predicted)

Now let’s plot the data as a scatter plot with the expected (target) prices along the x-axis and the predicted prices along the y-axis:

In [37]: figure = plt.figure(figsize=(9, 9))

In [38]: axes = sns.scatterplot(data=df, x='Expected', y='Predicted',

...: hue='Predicted', palette='cool', legend=False)

...:

Next, let’s set the x- and y-axes’ limits to use the same scale along both axes:

In [39]: start = min(expected.min(), predicted.min())

In [40]: end = max(expected.max(), predicted.max())

In [41]: axes.set_xlim(start, end)

Out[41]: (-0.6830978604144491, 7.155719818496834)

In [42]: axes.set_ylim(start, end)

Out[42]: (-0.6830978604144491, 7.155719818496834)

Now, let’s plot a line that represents perfect predictions (note that this is not a regression line). The following snippet displays a line between the points representing the lower-left corner of the graph (start, start) and the upper-right corner of the graph (end, end). The third argument ('k--') indicates the line’s style. The letter k represents the color black, and the -- indicates that plot should draw a dashed line:

In [43]: line = plt.plot([start, end], [start, end], 'k--')

If every predicted value were to match the expected value, then all the dots would be plotted along the dashed line. In the following diagram, it appears that as the expected median house value increases, more of the predicted values fall below the line. So the model seems to predict lower median house values as the expected median house value increases.

[image: A scatter plot graph compares expected with predicted results.]

15.5-14 Full Alternative Text

15.5.8 Regression Model Metrics

Scikit-learn provides many metrics functions for evaluating how well estimators predict results and for comparing estimators to choose the best one(s) for your particular study. These metrics vary by estimator type. For example, the sklearn.metrics functions confusion_matrix and classification_report used in the Digits dataset classification case study are two of many metrics functions specifically for evaluating classification estimators.

Among the many metrics for regression estimators is the model’s coefficient of determination, which is also called the R

2

 score. To calculate an estimator’s R

2

score, call the sklearn.metrics module’s r2_score function with the arrays representing the expected and predicted results:

In [44]: from sklearn import metrics

In [45]: metrics.r2_score(expected, predicted)

Out[45]: 0.6008983115964333

R

2

scores range from 0.0 to 1.0 with 1.0 being the best. An R

2

score of 1.0 indicates that the estimator perfectly predicts the dependent variable’s value, given the independent variable(s) value(s). An R

2

score of 0.0 indicates the model cannot make predictions with any accuracy, based on the independent variables’ values.

Another common metric for regression models is the mean squared error, which

	calculates the difference between each expected and predicted value—this is called the error,

	squares each difference and

	calculates the average of the squared values.

To calculate an estimator’s mean squared error, call function mean_squared_error (from module sklearn.metrics) with the arrays representing the expected and predicted results:

In [46]: metrics.mean_squared_error(expected, predicted)

Out[46]: 0.5350149774449119

When comparing estimators with the mean squared error metric, the one with the value closest to 0 best fits your data. In the next section, we’ll run several regression estimators using the California Housing dataset. For the list of scikit-learn’s metrics functions by estimator category, see

https://scikit-learn.org/stable/modules/model_evaluation.html

[image: tick mark] Self Check

	(Fill-In) An R

2

score of ___________ indicates that an estimator perfectly predicts the dependent variable’s value, given the independent variable(s) value(s).

Answer: 1.0.

	(True/False) When comparing estimators, the one with the mean squared error value closest to 0 is the estimator that best fits your data.

Answer: True.

15.5.9 Choosing the Best Model

As we did in the classification case study, let’s try several estimators to determine whether any produces better results than the LinearRegression estimator. In this example, we’ll use the linear_regression estimator we already created as well as ElasticNet, Lasso and Ridge regression estimators (all from the sklearn.linear_model module). For information about these estimators, see

https://scikit-learn.org/stable/modules/linear_model.html

In [47]: from sklearn.linear_model import ElasticNet, Lasso, Ridge

In [48]: estimators = {

 ...: 'LinearRegression': linear_regression,

 ...: 'ElasticNet': ElasticNet(),

 ...: 'Lasso': Lasso(),

 ...: 'Ridge': Ridge()

 ...: }

Once again, we’ll run the estimators using k-fold cross-validation with a KFold object and the cross_val_score function. Here, we pass to cross_val_score the additional keyword argument scoring='r2', which indicates that the function should report the R

2

scores for each fold—again, 1.0 is the best, so it appears that LinearRegression and Ridge are the best models for this dataset:

In [49]: from sklearn.model_selection import KFold, cross_val_score

In [50]: for estimator_name, estimator_object in estimators.items():

 ...: kfold = KFold(n_splits=10, random_state=11, shuffle=True)

 ...: scores = cross_val_score(estimator=estimator_object,

 ...: X=california.data, y=california.target, cv=kfold,

 ...: scoring='r2')

 ...: print(f'{estimator_name:>16}: ' +

 ...: f'mean of r2 scores={scores.mean():.3f}')

 ...:

LinearRegression: mean of r2 scores=0.599

 ElasticNet: mean of r2 scores=0.423

 Lasso: mean of r2 scores=0.285

 Ridge: mean of r2 scores=0.599

15.6 Case Study: Unsupervised Machine Learning, Part 1—Dimensionality Reduction

In our data science presentations, we’ve focused on getting to know your data. Unsupervised machine learning and visualization can help you do this by finding patterns and relationships among unlabeled samples.

For datasets like the univariate time series we used earlier in this chapter, visualizing the data is easy. In that case, we had two variables—date and temperature—so we plotted the data in two dimensions with one variable along each axis. Using Matplotlib, Seaborn and other visualization libraries, you also can plot datasets with three variables using 3D visualizations. But how do you visualize data with more than three dimensions? For example, in the Digits dataset, every sample has 64 features and a target value. In big data, samples can have hundreds, thousands or even millions of features.

To visualize a dataset with many features (that is, many dimensions), we’ll first reduce the data to two or three dimensions. This requires an unsupervised machine learning technique called dimensionality reduction. When you graph the resulting information, you might see patterns in the data that will help you choose the most appropriate machine learning algorithms to use. For example, if the visualization contains clusters of points, it might indicate that there are distinct classes of information within the dataset. So a classification algorithm might be appropriate. Of course, you’d first need to determine the class of the samples in each cluster. This might require studying the samples in a cluster to see what they have in common.

Dimensionality reduction also serves other purposes. Training estimators on big data with significant numbers of dimensions can take hours, days, weeks or longer. It’s also difficult for humans to think about data with large numbers of dimensions. This is called the curse of dimensionality. If the data has closely correlated features, some could be eliminated via dimensionality reduction to improve the training performance. This, however, might reduce the accuracy of the model.

Recall that the Digits dataset is already labeled with 10 classes representing the digits 0–9. Let’s ignore those labels and use dimensionality reduction to reduce the dataset’s features to two dimensions, so we can visualize the resulting data.

Loading the Digits Dataset

Launch IPython with:

ipython --matplotlib

then load the dataset:

In [1]: from sklearn.datasets import load_digits

In [2]: digits = load_digits()

Creating a TSNE Estimator for Dimensionality Reduction

Next, we’ll use the TSNE estimator (from the sklearn.manifold module) to perform dimensionality reduction. This estimator uses an algorithm called t-distributed Stochastic Neighbor Embedding (t-SNE)10 to analyze a dataset’s features and reduce them to the specified number of dimensions. We first tried the popular PCA (principal components analysis) estimator but did not like the results we were getting, so we switched to TSNE. We’ll show PCA later in this case study.
10. The algorithm’s details are beyond this book’s scope. For more information, see https://scikit-learn.org/stable/modules/manifold.html#t-sne.

Let’s create a TSNE object for reducing a dataset’s features to two dimensions, as specified by the keyword argument n_components. As with the other estimators we’ve presented, we used the random_state keyword argument to ensure the reproducibility of the “render sequence” when we display the digit clusters:

In [3]: from sklearn.manifold import TSNE

In [4]: tsne = TSNE(n_components=2, random_state=11)

Transforming the Digits Dataset’s Features into Two Dimensions

Dimensionality reduction in scikit-learn typically involves two steps—training the estimator with the dataset, then using the estimator to transform the data into the specified number of dimensions. These steps can be performed separately with the TSNE methods fit and transform, or they can be performed in one statement using the fit_transform method:11
11. Every call to fit_transform trains the estimator. If you intend to reuse the estimator to reduce the dimensions of samples multiple times, use fit to once train the estimator, then use transform to perform the reductions. We’ll use this technique with PCA later in this case study.

In [5]: reduced_data = tsne.fit_transform(digits.data)

TSNE’s fit_transform method takes some time to train the estimator then perform the reduction. On our system, this took about 20 seconds. When the method completes its task, it returns an array with the same number of rows as digits.data, but only two columns. You can confirm this by checking reduced_data’s shape:

In [6]: reduced_data.shape

Out[6]: (1797, 2)

Visualizing the Reduced Data

Now that we’ve reduced the original dataset to only two dimensions, let’s use a scatter plot to display the data. In this case, rather than Seaborn’s scatterplot function, we’ll use Matplotlib’s scatter function, because it returns a collection of the plotted items. We’ll use that feature in a second scatter plot momentarily:

In [7]: import matplotlib.pyplot as plt

In [8]: dots = plt.scatter(reduced_data[:, 0], reduced_data[:, 1],

...: c='black')

...:

Function scatter’s first two arguments are reduced_data’s columns (0 and 1) containing the data for the x- and y-axes. The keyword argument c='black' specifies the color of the dots. We did not label the axes, because they do not correspond to specific features of the original dataset. The new features produced by the TSNE estimator could be quite different from the dataset’s original features.

The following diagram shows the resulting scatter plot:

[image: A scatter plot graph.]

15.6-15 Full Alternative Text

There are clearly clusters of related data points, though there appear to be 11 main clusters, rather than 10. There also are “loose” data points that do not appear to be part of specific clusters. Based on our earlier study of the Digits dataset this makes sense because some digits were difficult to classify.

Visualizing the Reduced Data with Different Colors for Each Digit

Though the preceding diagram shows clusters, we do not know whether all the items in each cluster represent the same digit. If they do not, then the clusters are not helpful. Let’s use the known targets in the Digits dataset to color all the dots so we can see whether these clusters indeed represent specific digits:

In [9]: dots = plt.scatter(reduced_data[:, 0], reduced_data[:, 1],

 ...: c=digits.target, cmap=plt.cm.get_cmap('nipy_spectral_r', 10))

 ...:

 ...:

In this case, scatter’s keyword argument c=digits.target specifies that the target values determine the dot colors. We also added the keyword argument

cmap=plt.cm.get_cmap('nipy_spectral_r', 10)

which specifies a color map to use when coloring the dots. In this case, we know we’re coloring 10 digits, so we use get_cmap method of Matplotlib’s cm object (from module matplotlib.pyplot) to load a color map ('nipy_spectral_r') and select 10 distinct colors from the color map.

The following statement adds a color bar key to the right of the diagram so you can see which digit each color represents:

In [10]: colorbar = plt.colorbar(dots)

Voila! We see 10 clusters corresponding to the digits 0–9. Again, there are a few smaller groups of dots standing alone. Based on this, we might decide that a supervised-learning approach like k-nearest neighbors would work well with this data. In the exercises, you’ll reimplement the colored clusters in a three-dimensional graph.

[image: A version of the previous scatter plot graph using color. A scale at the right depicts the value of each color.]

[image: tick mark] Self Check

	(Fill-In) With dimensionality reduction training the estimator, then using the estimator to transform the data into the specified number of dimensions can be performed separately with the TSNE methods ___________ and ___________, or in one statement using the fit_transform method.

Answer: fit, transform.

	(True/False) Unsupervised machine learning and visualization can help you get to know your data by finding patterns and relationships among unlabeled samples.

Answer: True.

15.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering

In this section, we introduce perhaps the simplest unsupervised machine learning algorithms—k-means clustering. This algorithm analyzes unlabeled samples and attempts to place them in clusters that appear to be related. The k in “k-means” represents the number of clusters you’d like to see imposed on your data.

The algorithm organizes samples into the number of clusters you specify in advance, using distance calculations similar to the k-nearest neighbors clustering algorithm. Each cluster of samples is grouped around a centroid—the cluster’s center point. Initially, the algorithm chooses k centroids at random from the dataset’s samples. Then the remaining samples are placed in the cluster whose centroid is the closest. The centroids are iteratively recalculated and the samples re-assigned to clusters until, for all clusters, the distances from a given centroid to the samples in its cluster are minimized. The algorithm’s results are:

	a one-dimensional array of labels indicating the cluster to which each sample belongs and

	a two-dimensional array of centroids representing the center of each cluster.

Iris Dataset

We’ll work with the popular Iris dataset12 bundled with scikit-learn, which is commonly analyzed with both classification and clustering. Although this dataset is labeled, we’ll ignore those labels here to demonstrate clustering. Then, we’ll use the labels to determine how well the k-means algorithm clustered the samples.
12. Fisher, R.A., “The use of multiple measurements in taxonomic problems,” Annual Eugenics, 7, Part II, 179-188 (1936); also in “Contributions to Mathematical Statistics” (John Wiley, NY, 1950).

The Iris dataset is referred to as a “toy dataset” because it has only 150 samples and four features. The dataset describes 50 samples for each of three Iris flower species—Iris setosa, Iris versicolor and Iris virginica. Photos of these are shown below. Each sample’s features are the sepal length, sepal width, petal length and petal width, all measured in centimeters. The sepals are the larger outer parts of each flower that protect the smaller inside petals before the flower buds bloom.

[image: A photo of an iris blossom. The sepals are larger petals on the outside of the blossom, and the petals surround the center.]

Iris setosa: https://commons.wikimedia.org/wiki/File:Wild_iris_KEFJ_(9025144383).jpg.

Credit: Courtesy of Nation Park services.

[image: A photo of an iris blossom. The sepals are larger petals on the outside of the blossom, and the petals surround the center.]

Iris versicolor: https://commons.wikimedia.org/wiki/Iris_versicolor#/media/

File:IrisVersicolor-FoxRoost-Newfoundland.jpg.

Credit: Courtesy of Jefficus,

https://commons.wikimedia.org/w/index.php?title=User:Jefficus&action=edit&redlink=1

[image: A photo of an iris blossom. The sepals are larger petals on the outside of the blossom, and the petals surround the center.]

Iris virginica: https://commons.wikimedia.org/wiki/File:IMG_7911-Iris_virginica.jpg.

Credit: Christer T Johansson.

[image: tick mark] Self Check

	(Fill-In) Each cluster of samples is grouped around a(n) ___________—the cluster’s center point.

Answer: centroid.

	(True/False) The k-means clustering algorithm studies the dataset then automatically determines the appropriate number of clusters.

Answer: False. The algorithm organizes samples into the number of clusters you specify in advance.

15.7.1 Loading the Iris Dataset

Launch IPython with ipython --matplotlib, then use the sklearn.datasets module’s load_iris function to get a Bunch containing the dataset:

In [1]: from sklearn.datasets import load_iris

In [2]: iris = load_iris()

The Bunch’s DESCR attribute indicates that there are 150 samples (Number of Instances), each with four features (Number of Attributes). There are no missing values in this dataset. The dataset classifies the samples by labeling them with the integers 0, 1 and 2, representing Iris setosa, Iris versicolor and Iris virginica, respectively. We’ll ignore the labels and let the k-means clustering algorithm try to determine the samples’ classes. We show some key DESCR information in bold.:

In [3]: print(iris.DESCR)

.. _iris_dataset:

Iris plants dataset

Data Set Characteristics:

 :Number of Instances: 150 (50 in each of three classes)

 :Number of Attributes: 4 numeric, predictive attributes and the class

 :Attribute Information:

 - sepal length in cm

 - sepal width in cm

 - petal length in cm

 - petal width in cm

 - class:

 - Iris-Setosa

 - Iris-Versicolour

 - Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================

 Min Max Mean SD Class Correlation

============== ==== ==== ======= ===== ====================

sepal length: 4.3 7.9 5.84 0.83 0.7826

sepal width: 2.0 4.4 3.05 0.43 -0.4194

petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)

petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)

============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None

:Class Distribution: 33.3% for each of 3 classes.

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is

taken from Fisher's paper. Note that it's the same as in R, but not as in

the UCI Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the pattern

recognition literature. Fisher's paper is a classic in the field and

is referenced frequently to this day. (See Duda & Hart, for example.)

The data set contains 3 classes of 50 instances each, where each class

refers to a type of iris plant. One class is linearly separable from the

other 2; the latter are NOT linearly separable from each other.

.. topic:: References

 - Fisher, R.A. "The use of multiple measurements in taxonomic

 problems"

 Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions

 to Mathematical Statistics" (John Wiley, NY, 1950).

 - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene

 Analysis.

 (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

 - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System

 Structure and Classification Rule for Recognition in Partially

 Exposed Environments". IEEE Transactions on Pattern Analysis and

 Machine Intelligence, Vol. PAMI-2, No. 1, 67-71.

 - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE

 Transactions on Information Theory, May 1972, 431-433.

 - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS

 II conceptual clustering system finds 3 classes in the data.

 - Many, many more ...

Checking the Numbers of Samples, Features and Targets

You can confirm the number of samples and features per sample via the data array’s shape, and you can confirm the number of targets via the target array’s shape:

In [4]: iris.data.shape

Out[4]: (150, 4)

In [5]: iris.target.shape

Out[5]: (150,)

The array target_names contains the names for the target array’s numeric labels—dtype='<U10' indicates that the elements are strings with a maximum of 10 characters:

In [6]: iris.target_names

Out[6]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

The array feature_names contains a list of string names for each column in the data array:

In [7]: iris.feature_names

Out[7]:

['sepal length (cm)',

 'sepal width (cm)',

 'petal length (cm)',

 'petal width (cm)']

15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas

Let’s use a DataFrame to explore the Iris dataset. As we did in the California Housing case study, let’s set the pandas options for formatting the column-based outputs:

In [8]: import pandas as pd

In [9]: pd.set_option('max_columns', 5)

In [10]: pd.set_option('display.width', None)

Create a DataFrame containing the data array’s contents, using the contents of the feature_names array as the column names:

In [11]: iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

Next, add a column containing each sample’s species name. The list comprehension in the following snippet uses each value in the target array to look up the corresponding species name in the target_names array:

In [12]: iris_df['species'] = [iris.target_names[i] for i in iris.target]

Let’s use pandas’ to look at a few samples. Once again notice that pandas displays a \ to the right of the column heads to indicate that there are more columns displayed below:

In [13]: iris_df.head()

Out[13]:

 sepal length (cm) sepal width (cm) petal length (cm) \

0 5.1 3.5 1.4

1 4.9 3.0 1.4

2 4.7 3.2 1.3

3 4.6 3.1 1.5

4 5.0 3.6 1.4

 petal width (cm) species

0 0.2 setosa

1 0.2 setosa

2 0.2 setosa

3 0.2 setosa

4 0.2 setosa

Let’s calculate some descriptive statistics for the numerical columns:

In [14]: pd.set_option('precision', 2)

In [15]: iris_df.describe()

Out[15]:

 sepal length (cm) sepal width (cm) petal length (cm) \

count 150.00 150.00 150.00

mean 5.84 3.06 3.76

std 0.83 0.44 1.77

min 4.30 2.00 1.00

25% 5.10 2.80 1.60

50% 5.80 3.00 4.35

75% 6.40 3.30 5.10

max 7.90 4.40 6.90

 petal width (cm)

count 150.00

mean 1.20

std 0.76

min 0.10

25% 0.30

50% 1.30

75% 1.80

max 2.50

Calling the describe method on the 'species' column confirms that it contains three unique values. Here, we know in advance of working with this data that there are three classes to which the samples belong, though this is not always the case in unsupervised machine learning.

In [16]: iris_df['species'].describe()

Out[16]:

count 150

unique 3

top setosa

freq 50

Name: species, dtype: object

15.7.3 Visualizing the Dataset with a Seaborn pairplot

Let’s visualize the features in this dataset. One way to learn more about your data is to see how the features relate to one another. The dataset has four features. We cannot graph one against the other three in a single graph. However, we can plot pairs of features against one another. Snippet [20] uses Seaborn function pairplot to create a grid of graphs plotting each feature against itself and the other specified features:

In [17]: import seaborn as sns

In [18]: sns.set(font_scale=1.1)

In [19]: sns.set_style('whitegrid')

In [20]: grid = sns.pairplot(data=iris_df, vars=iris_df.columns[0:4],

 ...: hue='species')

 ...:

The keyword arguments are:

	data—The DataFrame13 containing the data to plot.
13. This also may be a two-dimensional array or list.

	vars—A sequence containing the names of the variables to plot. For a DataFrame, these are the names of the columns to plot. Here, we use the first four DataFrame columns, representing the sepal length, sepal width, petal length and petal width, respectively.

	hue—The DataFrame column that’s used to determine colors of the plotted data. In this case, we’ll color the data by Iris species.

The preceding call to pairplot produces the following 4-by-4 grid of graphs:

[image: A grid of 4 rows and 4 columns of line and scatter plot graphs comparing sepal length and petal width in centimeters.]

The graphs along the top-left-to-bottom-right diagonal, show the distribution of just the feature plotted in that column, with the range of values (left-to-right) and the number of samples with those values (top-to-bottom). For example, consider the sepal-length distributions:

[image: A line graph with 3 different colored lines depict sepal length in centimeters.]

The blue shaded area indicates that the range of sepal length values (shown along the x-axis) for Iris setosa is approximately 4–6 centimeters and that most Iris setosa samples are in the middle of that range (approximately 5 centimeters). Similarly, the green shaded area indicates that the range of sepal length values for Iris virginica is approximately 4–8.5 centimeters and that the majority of Iris virginica samples have sepal length values between 6 and 7 centimeters.

The other graphs in a column show scatter plots of the other features against the feature on the x-axis. In the first column, the other three graphs plot the sepal width, petal length and petal width, respectively, along the y-axis and the sepal length along the x-axis.

Using separate colors for each Iris species, shows how the species relate to one another on a feature-by-feature basis. Interestingly, all the scatter plots clearly separate the Iris setosa blue dots from the other species’ orange and green dots, indicating that Iris setosa is indeed in a “class by itself.” We also can see that the other two species can sometimes be confused with one another, as indicated by the overlapping orange and green dots. For example, if you look at the scatter plot for sepal width vs. sepal length, you’ll see the Iris versicolor and Iris virginica dots are intermixed. This indicates that it would be difficult to distinguish between these two species if we had only the sepal measurements available to us.

Displaying the pairplot in One Color

If you remove the hue keyword argument, pairplot function uses only one color to plot all the data because it does not know how to distinguish the species:

In [21]: grid = sns.pairplot(data=iris_df, vars=iris_df.columns[0:4])

As you can see in the resulting pair plot that follows, in this case, the graphs along the diagonal are histograms showing the distributions of all the values for that feature, regardless of the species. As you study each scatter plot, it appears that there may be only two distinct clusters, even though for this dataset we know there are three species. If you do not know the number of clusters in advance, you might ask a domain expert who is thoroughly familiar with the data. Such a person might know that there are three species in the dataset, which would be valuable information as we try to perform machine learning on the data.

[image: A grid of 4 rows and 4 columns of bar and scatter plot graphs comparing sepal length and petal width in centimeters.]

The preceding pairplot diagrams work well for a small number of features or a subset of features so that you have a small number of rows and columns, and for a relatively small number of samples so you can see the data points. As the number of features and samples increases, each scatter plot quickly becomes too small to read. For larger datasets, you may choose to plot a subset of the features and potentially a randomly selected subset of the samples to get a feel for your data.

[image: tick mark] Self Check

	(Fill-In) Seaborn’s ___________ function creates a grid of scatter plots showing features against one another.

Answer: pairplot.

	(True/False) A plot of a feature’s distribution shows the feature’s range of values (left-to-right) and the number of samples with those values (top-to-bottom).

Answer: True.

15.7.4 Using a KMeans Estimator

In this section, we’ll use k-means clustering via scikit-learn’s KMeans estimator (from the sklearn.cluster module) to place each sample in the Iris dataset into a cluster. As with the other estimators you’ve used, the KMeans estimator hides from you the algorithm’s complex mathematical details, making it straightforward to use.

Creating the Estimator

Let’s create the KMeans object:

In [22]: from sklearn.cluster import KMeans

In [23]: kmeans = KMeans(n_clusters=3, random_state=11)

The keyword argument n_clusters specifies the k-means clustering algorithm’s hyperparameter k, which KMeans requires to calculate the clusters and label each sample. When you train a KMeans estimator, the algorithm calculates for each cluster a centroid representing the cluster’s center data point.

The default value for the n_clusters parameter is 8. Often, you’ll rely on domain experts knowledgeable about the data to help choose an appropriate k value. However, with hyperparameter tuning, you can estimate the appropriate k, as we’ll do later. In this case, we know there are three species, so we’ll use n_clusters=3 to see how well KMeans does in labeling the Iris samples. Once again, we used the random_state keyword argument for reproducibility.

Fitting the Model

Next, we’ll train the estimator by calling the KMeans object’s fit method. This step performs the k-means algorithm discussed earlier:

In [24]: kmeans.fit(iris.data)

Out[24]: KMeans(algorithm='auto',

 copy_x=True, init='k-means++', max_iter=300,

 n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto', random_state=11, tol=0.0001, verbose=0)

As with the other estimator’s, the fit method returns the estimator object and IPython displays its string representation. You can see learn about the KMeans default arguments at:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

When the training completes, the KMeans object contains:

	A labels_ array with values from 0 to n_clusters - 1 (in this example, 0–2), indicating the clusters to which the samples belong.

	A cluster_centers_ array in which each row represents a centroid.

Comparing the Computer Cluster Labels to the Iris Dataset’s Target Values

Because the Iris dataset is labeled, we can look at its target array values to get a sense of how well the k-means algorithm clustered the samples for the three Iris species. With unlabeled data, we’d need to depend on a domain expert to help evaluate whether the predicted classes make sense.

In this dataset, the first 50 samples are Iris setosa, the next 50 are Iris versicolor, and the last 50 are Iris virginica. The Iris dataset’s target array represents these with the values 0–2. If the KMeans estimator chose the clusters perfectly, then each group of 50 elements in the estimator’s labels_ array should have a distinct label. As you study the results below, note that the KMeans estimator uses the values 0 through k – 1 to label clusters, but these are not related to the Iris dataset’s target array.

Let’s use slicing to see how each group of 50 Iris samples was clustered. The following snippet shows that the first 50 samples were all placed in cluster 1:

In [25]: print(kmeans.labels_[0:50])

[1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

The next 50 samples should be placed into a second cluster. The following snippet shows that most were placed in cluster 0, but two samples were placed in cluster 2:

In [26]: print(kmeans.labels_[50:100])

[0 0 2 0 2 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Similarly, the last 50 samples should be placed into a third cluster. The following snippet shows that many of these samples were placed in cluster 2, but 14 of the samples were placed in cluster 0, indicating that the algorithm thought they belonged to a different cluster:

In [27]: print(kmeans.labels_[100:150])

[2 0 2 2 2 2 0 2 2 2 2 2 2 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 2 2 2 2 0 2 2

 2 2 0 2 2 2 0 2 2 2 0 2 2 0]

The results of these three snippets confirm what we saw in the pairplot diagrams earlier in this section—that Iris setosa is “in a class by itself” and that there is some confusion between Iris versicolor and Iris virginica.

[image: tick mark] Self Check

	(IPython Session) Try k-means clustering on the Iris dataset with two clusters, then display the first 50 and the last 100 elements of the estimator’s labels_ array.

Answer:

In [28]: kmeans2 = KMeans(n_clusters=2, random_state=11)

In [29]: kmeans2.fit(iris.data)

Out[29]:

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,

 n_clusters=2, n_init=10, n_jobs=None, precompute_distances='auto',

 random_state=None, tol=0.0001, verbose=0)

In [30]: print(kmeans2.labels_[0:50])

[1

1 1 1 1 1 1 1 1 1 1 1 1 1]

In [31]: print(kmeans2.labels_[50:150])

[0 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 1 0 0 0 0 1 0

 0]

In this case, you can see that all but three of the last 100 samples were placed in a single cluster.

15.7.5 Dimensionality Reduction with Principal Component Analysis

Next, we’ll use the PCA estimator (from the sklearn.decomposition module) to perform dimensionality reduction. This estimator uses an algorithm called principal component analysis14 to analyze a dataset’s features and reduce them to the specified number of dimensions. For the Iris dataset, we first tried the TSNE estimator shown earlier but did not like the results we were getting. So we switched to PCA for the following demonstration.
14. The algorithm’s details are beyond this book’s scope. For more information, see https://scikit-learn.org/stable/modules/decomposition.html#pca.

Creating the PCA Object

Like the TSNE estimator, a PCA estimator uses the keyword argument n_components to specify the number of dimensions:

In [32]: from sklearn.decomposition import PCA

In [33]: pca = PCA(n_components=2, random_state=11)

Transforming the Iris Dataset’s Features into Two Dimensions

Let’s train the estimator and produce the reduced data by calling the PCA estimator’s methods fit and transform methods:

In [34]: pca.fit(iris.data)

Out[34]:

PCA(copy=True, iterated_power='auto', n_components=2, random_state=11,

 svd_solver='auto', tol=0.0, whiten=False)

In [35]: iris_pca = pca.transform(iris.data)

When the method completes its task, it returns an array with the same number of rows as iris.data, but only two columns. Let’s confirm this by checking iris_pca’s shape:

In [36]: iris_pca.shape

Out[36]: (150, 2)

Note that we separately called the PCA estimator’s fit and transform methods, rather than fit_transform, which we used with the TSNE estimator. In this example, we’re going to reuse the trained estimator (produced with fit) to perform a second transform to reduce the cluster centroids from four dimensions to two. This will enable us to plot the centroid locations on each cluster.

Visualizing the Reduced Data

Now that we’ve reduced the original dataset to only two dimensions, let’s use a scatter plot to display the data. In this case, we’ll use Seaborn’s scatterplot function. First, let’s transform the reduced data into a DataFrame and add a species column that we’ll use to determine the dot colors:

In [37]: iris_pca_df = pd.DataFrame(iris_pca,

 ...: columns=['Component1', 'Component2'])

 ...:

In [38]: iris_pca_df['species'] = iris_df.species

Next, let’s scatterplot the data in Seaborn:

In [39]: axes = sns.scatterplot(data=iris_pca_df, x='Component1',

 ...: y='Component2', hue='species', legend='brief',

 ...: palette='cool')

 ...:

Each centroid in the KMeans object’s cluster_centers_ array has the same number of features as the original dataset (four in this case). To plot the centroids, we must reduce their dimensions. You can think of a centroid as the “average” sample in its cluster. So each centroid should be transformed using the same PCA estimator we used to reduce the other samples in that cluster:

In [40]: iris_centers = pca.transform(kmeans.cluster_centers_)

Now, we’ll plot the centroids of the three clusters as larger black dots. Rather than transform the iris_centers array into a DataFrame first, let’s use Matplotlib’s scatter function to plot the three centroids:

In [41]: import matplotlib.pyplot as plt

In [42]: dots = plt.scatter(iris_centers[:,0], iris_centers[:,1],

 ...: s=100, c='k')

 ...:

The keyword argument s=100 specifies the size of the plotted points, and the keyword argument c='k' specifies that the points should be displayed in black.

[image: A scatter plot graph compares component 1 and component 2.]

15.7-23 Full Alternative Text

[image: tick mark] Self Check

	(True/False) Each centroid in a KMeans object’s cluster_centers_ array has the same number of features as the original dataset.

Answer: True.

	(Discussion) What is the purpose of the following statement?

iris_centers = pca.transform(kmeans.cluster_centers_)

Answer: This statement reduces the centroids to the number of dimensions specified when the pca object was created. In the Iris case study, we were able to plot the reduced centroids in two dimensions at the centers of their corresponding clusters.

15.7.6 Choosing the Best Clustering Estimator

As we did in the classification and regression case studies, let’s run multiple clustering algorithms and see how well they cluster the three species of Iris flowers. Here we’ll attempt to cluster the Iris dataset’s samples using the kmeans object we created earlier15 and objects of scikit-learn’s DBSCAN, MeanShift, SpectralClustering and AgglomerativeClustering estimators. Like KMeans, you specify the number of clusters in advance for the SpectralClustering and AgglomerativeClustering estimators:
15. We’re running KMeans here on the small Iris dataset. If you experience performance problems with KMeans on larger datasets, consider using the MiniBatchKMeans estimator. The scikit-learn documentation indicates that MiniBatchKMeans is faster on large datasets and the results are almost as good.

In [43]: from sklearn.cluster import DBSCAN, MeanShift,\

 ...: SpectralClustering, AgglomerativeClustering

In [44]: estimators = {

 ...: 'KMeans': kmeans,

 ...: 'DBSCAN': DBSCAN(),

 ...: 'MeanShift': MeanShift(),

 ...: 'SpectralClustering': SpectralClustering(n_clusters=3),

 ...: 'AgglomerativeClustering':

 ...: AgglomerativeClustering(n_clusters=3)

 ...: }

Each iteration of the following loop calls one estimator’s fit method with iris.data as an argument, then uses NumPy’s unique function to get the cluster labels and counts for the three groups of 50 samples and displays the results. Recall that for the DBSCAN and MeanShift estimators, we did not specify the number of clusters in advance. Interestingly, DBSCAN correctly predicted three clusters (labeled -1, 0 and 1), though it placed 84 of the 100 Iris virginica and Iris versicolor samples in the same cluster. The MeanShift estimator, on the other hand, predicted only two clusters (labeled as 0 and 1), and placed 99 of the 100 Iris virginica and Iris versicolor samples in the same cluster:

In [45]: import numpy as np

In [46]: for name, estimator in estimators.items():

 ...: estimator.fit(iris.data)

 ...: print(f'\n{name}:')

 ...: for i in range(0, 101, 50):

 ...: labels, counts = np.unique(

 ...: estimator.labels_[i:i+50], return_counts=True)

 ...: print(f'{i}-{i+50}:')

 ...: for label, count in zip(labels, counts):

 ...: print(f' label={label}, count={count}')

 ...:

KMeans:

0-50:

 label=1, count=50

50-100:

 label=0, count=48

 label=2, count=2

100-150:

 label=0, count=14

 label=2, count=36

DBSCAN:

0-50:

 label=-1, count=1

 label=0, count=49

50-100:

 label=-1, count=6

 label=1, count=44

100-150:

 label=-1, count=10

 label=1, count=40

MeanShift:

0-50:

 label=1, count=50

50-100:

 label=0, count=49

 label=1, count=1

100-150:

 label=0, count=50

SpectralClustering:

0-50:

 label=2, count=50

50-100:

 label=1, count=50

100-150:

 label=0, count=35

 label=1, count=15

AgglomerativeClustering:

0-50:

 label=1, count=50

50-100:

 label=0, count=49

 label=2, count=1

100-150:

 label=0, count=15

 label=2, count=35

Though these algorithms label every sample, the labels simply indicate the clusters. What do you do with the cluster information once you have it? If your goal is to use the data in supervised machine learning, typically you’d study the samples in each cluster to try to determine how they’re related and label them accordingly. As we’ll see in the next chapter, unsupervised learning is commonly used in deep-learning applications. Some examples of unlabeled data processed with unsupervised learning include tweets from Twitter, Facebook posts, videos, photos, news articles, customers’ product reviews, viewers’ movie reviews and more.

15.8 Wrap-Up

In this chapter we began our study of machine learning, using the popular scikit-learn library. We saw that machine learning is divided into two types. Supervised machine learning, which works with labeled data and unsupervised machine learning which works with unlabeled data. Throughout this chapter, we continued emphasizing visualizations using Matplotlib and Seaborn, particularly for getting to know your data.

We discussed how scikit-learn conveniently packages machine-learning algorithms as estimators. Each is encapsulated so you can create your models quickly with a small amount of code, even if you don’t know the intricate details of how these algorithms work.

We looked at supervised machine learning with classification, then regression. We used one of the simplest classification algorithms, k-nearest neighbors, to analyze the Digits dataset bundled with scikit-learn. You saw that classification algorithms predicts the classes to which samples belong. Binary classification uses two classes (such as “spam” or “not spam”) and multi-classification uses more than two classes (such as the 10 classes in the Digits dataset).

We performed the steps of a typical machine-learning case study, including loading the dataset, exploring the data with pandas and visualizations, splitting the data for training and testing, creating the model, training the model and making predictions. We discussed why you should partition your data into a training set and a testing set. You saw ways to evaluate a classification estimator’s accuracy via a confusion matrix and a classification report.

We mentioned that it’s difficult to know in advance which model(s) will perform best on your data, so you typically try many models and pick the one that performs best. We showed that it’s easy to run multiple estimators. We also used hyperparameter tuning with k-fold cross-validation to choose the best value of k for the k-NN algorithm.

We revisited the time series and simple linear regression example from Chapter 10’s Intro to Data Science section, this time implementing it using a scikit-learn LinearRegression estimator. Next, we used a LinearRegression estimator to perform multiple linear regression with the California Housing dataset that’s bundled with scikit-learn. You saw that the LinearRegression estimator, by default, uses all the numerical features in a dataset to make more sophisticated predictions than you can with simple linear regression. Again, we ran multiple scikit-learn estimators to compare how they performed and choose the best one.

Next, we introduced an unsupervised machine learning and mentioned that it’s typically accomplished with clustering algorithms. We used introduced dimensionality reduction (with scikit-learn’s TSNE estimator) and used it to compress the Digits dataset’s 64 features down to two for visualization purposes. This enabled us to see the clustering of the digits data.

We presented one of the simplest unsupervised machine learning algorithms, k-means clustering, and demonstrated clustering on the Iris dataset that’s also bundled with scikit-learn. We used dimensionality reduction (with scikit-learn’s PCA estimator) to compress the Iris dataset’s four features to two for visualization purposes to show the clustering of the three Iris species in the dataset and their centroids. Finally, we ran multiple clustering estimators to compare their ability to label the Iris dataset’s samples into three clusters.

In the next chapter, we’ll continue our study of machine learning technologies with discussions of deep learning and reinforcement learning. We’ll tackle some fascinating and challenging problems.

Exercises

	15.1 (Using PCA to Help Visualize the Digits Dataset) In this chapter, we visualized the Digits dataset’s clusters. To do so, we first used scikit-learn’s TSNE estimator to reduce the dataset’s 64 features down to two, then plotted the results using Seaborn. Reimplement that example to perform dimensionality reduction using scikit-learn’s PCA estimator, then graph the results. How do the clusters compare to the diagram you created in the clustering case study?

	15.2 (Using TSNE to Help Visualize the Iris Dataset) In this chapter, we visualized the Iris dataset’s clusters. To do so, we first used scikit-learn’s PCA estimator to reduce the dataset’s four features down to two, then plotted the results using Seaborn. Reimplement that example to perform dimensionality reduction using scikit-learn’s TSNE estimator, then graph the results. How do the clusters compare to the diagram you created in the clustering case study?

	15.3 (Seaborn pairplot Graph) Create a Seaborn pairplot graph (like we showed for Iris) for the California Housing dataset. Try the Matplotlib features for panning and zooming the diagram. These are accessible via the icons in the Matplotlib window.

	15.4 (Human Recognition of Handwritten Digits) In this chapter, we analyzed the Digits dataset and used scikit-learn’s kNeighborsClassifier to recognize the digits with high accuracy. Can humans recognize digit images as well as the kNeighborsClassifier did? Create a script that randomly selects and displays individual images and asks the user to enter a digit from 0 through 9 specifying the digit the image represents. Keep track of the user’s accuracy. How does the user compare to the k-nearest neighbors machine-learning algorithm?

	15.5 (Using TSNE to Visualize the Digits Dataset in 3D) In Section 15.6, you visualized the Digits dataset’s clusters in two dimensions. In this exercise, you’ll create a 3D scatter plot using TSNE and Matplotlib’s Axes3D, which provides x-, y- and z-axes for plotting in three dimensions. To do so, load the Digits dataset, create a TSNE estimator that reduces data to three dimensions and call the estimator’s fit_transform method to reduce the dataset’s dimensions. Store the result in reduced_data. Next, execute the following code:

from mpl_toolkits.mplot3d import Axes3D

figure = plt.figure(figsize=(9, 9))

axes = figure.add_subplot(111, projection='3d')

dots = axes.scatter(xs=reduced_data[:, 0],

 ys=reduced_data[:, 1], zs=reduced_data[:, 2], c=digits.target,

 cmap=plt.cm.get_cmap('nipy_spectral_r', 10))

The preceding code imports Axes3D, creates a Figure and calls its add_subplot method to get an Axes3D object for creating a three-dimensional graph. In the call to the Axes3D scatter method, the keyword arguments xs, ys and zs specify one-dimensional arrays of values to plot along the x-, y- and z-axes. Once the graph is displayed, be sure to drag the mouse on the image to rotate it left, right, up and down so you can see the clusters from various angles. The following images show the initial 3D graph and two rotated views:

[image: 3 examples of color 3 D scatter plot graphs.]

	15.6 (Simple Linear Regression with Average Yearly NYC Temperatures Time Series) Go to NOAA’s Climate at a Glance page (https://www.ncdc.noaa.gov/cag) and download the available time series data for the New York City average annual temperatures from 1895 through present (1895–2017 at the time of this writing). For your convenience, we provided the data in the file ave_yearly_temp_nyc_1895-2017.csv. Reimplement the simple linear regression case study of Section 15.4 using the average yearly temperature data. How does the temperature trend compare to the average January high temperatures?

	15.7 (Classification with the Iris Dataset) We used unsupervised learning with the Iris dataset to cluster its samples. This dataset is in fact labeled so it can be used with scikit-learn’s supervised machine learning estimators. Use the techniques you learned in the Digits dataset classification case study to load the Iris dataset and perform classification on it with the k-nearest neighbors algorithm. Use a KNeighborsClassifier with the default k value. What is the prediction accuracy?

	15.8 (Classification with the Iris Dataset: Hyperparameter Tuning) Using scikit-learn’s KFold class and cross_val_score function, determine the optimal k value for classifying Iris samples using a KNeighborsClassifier.

	15.9 (Classification with the Iris Dataset: Choosing the Best Estimator) As we did in the digits case study, run multiple classification estimators for the Iris dataset and compare the results to see which one performs best.

	15.10 (Clustering the Digits Dataset with DBSCAN and MeanShift) Recall that when using the DBSCAN and MeanShift clustering estimators you do not specify the number of clusters in advance. Use each of these estimators with the Digits dataset to determine whether each estimator recognizes 10 clusters of digits.

	15.11 (Using %timeit to Time Training and Prediction) In the k-nearest neighbors algorithm, the computation time for classifying samples increases with the value of k. Use %timeit to calculate the run time of the KNeighborsClassifier cross-validation for the Digits dataset. Use values of 1, 10 and 20 for k. Compare the results.

	15.12 (Using cross_validate) In this chapter, we used the cross_val_score function and the KFold class to perform k-fold cross-validation of the KNeighborsClassifier and the Digits dataset. In the k-nearest neighbors algorithm, the computation time for classifying samples increases with the value of k. Investigate the sklearn.model_selection module’s cross_validate function, then use it in the loop of Section 15.3.4 both to perform the cross-validation and to calculate the computation times. Display the computation times as part of the loop’s output.

	15.13 (Linear Regression with Sea Level Trends) NOAA’s Sea Level Trends website

https://tidesandcurrents.noaa.gov/sltrends/

provides time series data for sea levels worldwide. Use their Trend Tables link to access tables listing sea-level time series for cities in the U.S. and worldwide. The date ranges available vary by city. Choose several cities for which 100% of the data is available (as shown in the % Complete column). Clicking the link in the Station ID column displays a table of time series data, which you can then export to your system as a CSV file. Use the techniques you learned in this chapter to load and plot each dataset on the same diagram using Seaborn’s regplot function. In IPython interactive mode, each call to regplot uses the same diagram by default and adds data in a new color. Do the sea level rises match in each location?

	15.14 (Linear Regression with Sea Temperature Trends) Ocean temperatures are changing fish migratory patterns. Download NOAA’s global average surface temperature anomalies time series data for 1880–2018 from

https://www.ncdc.noaa.gov/cag/global/time-series/globe/ocean/ytd/12/1880-2018

then load and plot the dataset using Seaborn’s regplot function. What trend do you see?

	15.15 (Linear Regression with the Diabetes Dataset) Investigate the Diabetes dataset bundled with scikit-learn

https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset

The dataset contains 442 samples, each with 10 features and a label indicating the “disease progression one year after baseline.” Using this dataset, reimplement the steps of this chapter’s multiple linear regression case study in Section 15.5.

	15.16 (Simple Linear Regression with the California Housing Dataset) In the text, we performed multiple linear regression using the California Housing dataset. When you have meaningful features available and you have the choice between running simple and multiple linear regression, you’ll generally choose multiple linear regression to get more sophisticated predictions. As you saw, scikit-learn’s LinearRegression estimator uses all the numerical features by default to perform linear regressions.

In this exercise, you’ll perform single linear regressions with each feature and compare the prediction results to the multiple linear regression in the chapter. To do so, first split the dataset into training and testing sets, then select one feature, as we did with the DataFrame in this chapter’s simple linear regression case study. Train the model using that one feature and make predictions as you did in the multiple linear regression case study. Do this for each of the eight features. Compare each simple linear regression’s R2 score with that of the multiple linear regression. What produced the best results?

	15.17 (Binary Classification with the Breast Cancer Dataset) Check out the Breast Cancer Wisconsin Diagnostic dataset that’s bundled with scikit-learn

https://scikit-learn.org/stable/datasets/index.html#breast-cancer-dataset

The dataset contains 569 samples, each with 30 features and a label indicating whether a tumor was malignant (0) or benign (1). There are only two labels, so this dataset is commonly used to perform binary classification. Using this dataset, reimplement the steps of this chapter’s classification case study in Sections 15.2–15.3. Use the GaussianNB (short for Gaussian Naive Bayes) estimator. When you execute multiple classifiers (as in Section 15.3.3) to determine which one is best for the Breast Cancer Wisconsin Diagnostic dataset, include a LogisticRegression classifier in the estimators dictionary. Logistic regression is another popular algorithm for binary classification.

	15.18 (Project: Determine k in k-Means Clustering) In the k-NN classification example, we demonstrated hyperparameter tuning to choose the best value of k. In k-means clustering, a challenge is determining the appropriate k value for clustering the data. One technique for determining k is called the elbow method. Investigate the elbow method, then use it with the Digits and Iris datasets to determine whether this technique yields the correct number of classes for each dataset.

	15.19 (Project: Automated Hyperparameter Tuning) It’s relatively easy to tune one hyperparameter using the looping technique we presented in Section 15.3.4 for determining k value in k-nearest neighbors algorithm. What if you need to tune more than one hyperparameter? Scikit-learn’s sklearn.model_selection module provides tools for automated hyperparameter tuning to help you with this task. Class GridSearchCV uses a brute-force approach to hyperparameter tuning by trying every possible combination of the hyperparameters and value ranges for each that you specify. Class RandomizedSearchCV improves tuning performance by using random samples of the hyperparameter values you specify. Investigate these classes then reimplement the hyperparameter tuning in Section 15.3.4 using each class. Time the results of each approach.

	15.20 (Quandl Financial Time Series) Quandl offers an enormous number of financial time series and a Python library for loading them as pandas DataFrames, making them easy to use in your machine learning studies. Many of the time series are free. Explore Quandl’s financial data search engine at

https://www.quandl.com/search

to see the range of time series data they offer. Investigate and install their Python module

conda install -c conda-forge quandl

then use it to download their 'YALE/SPCOMP' time series for the S&P Composite index (or another time series of your choice). Next, using time series data you downloaded, perform the steps in the linear regression case study of Section 15.5. Use only rows for which all the features have values.

	15.21 (Project: Multi-Classification of Digits with the MNIST Dataset) In this chapter, we analyzed the Digits dataset that’s bundled with scikit-learn. This is a subset and simplified version of the original MNIST dataset, which provides 70,000 digit-image samples and targets. Each sample represents a 28-by-28 image (784 features). Reimplement this chapter’s digits classification case study using MNIST. You can download MNIST in scikit-learn using the following statements:

from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', version=1, return_X_y=True)

Function fetch_mldata downloads datasets from mldata.org, which contains nearly 900 machine learning datasets and various ways to search them.

	15.22 (Project: Multi-Classification of Digits with the EMNIST Dataset) The EMNIST dataset contains over 800,000 digit and character images. You can work with all 800,000 characters or subsets. One subset has 280,000 digits with approximately 28,000 of each digit (0–9). When the samples are divided evenly among the classes, the dataset is said to have balanced classes. You can download the dataset from

https://www.nist.gov/itl/iad/image-group/emnist-dataset

in a format used with software called MATLAB, then use SciPy’s loadmat function (module scipy.io) to load the data. The downloaded dataset contains several files—one for the entire dataset and several for various subsets. Load the digits subset, then transform the loaded data into a format usable for use with scikit-learn. Next, reimplement this chapter’s digits classification case study using the 280,000 EMNIST digits.

	15.23 (Project: Multi-Classification of Letters with the EMNIST Dataset) In the previous exercise, you downloaded the EMNIST dataset and worked with the digits subset. Another subset contains 145,600 letters with approximately 5600 of each letter (A–Z). Reimplement the preceding exercise using letter images rather than digits.

	15.24 (Try It: Clustering) Acxiom is a marketing technology company. Their Personicx marketing software identifies clusters of people for marketing purposes. Try their “What’s My Cluster?” tool

https://isapps.acxiom.com/personicx/personicx.aspx

to see the marketing cluster to which they feel you belong.

	15.25 (Project: AutoML.org and Auto-Sklearn) There are various ongoing efforts to simplify machine learning and make it available “to the masses.” One such effort comes from AutoML.org, which provides tools for automating machine-learning tasks. Their auto-sklearn library at

https://automl.github.io/auto-sklearn

inspects the dataset you wish to use, “automatically searches for the right learning algorithm” and “optimizes its hyperparameters.” Investigate auto-sklearn’s capabilities then:

	Reimplement the Digits classification case study (Sections 15.2–15.3) using the AutoSklearnClassifier in place of the KNeighborsClassifier estimator.

	Reimplement the California Housing dataset regression case study (Section 15.5) using the AutoSklearnRegressor in place of the LinearRegression estimator.

In each case, how do auto-sklearn’s results compare to those in the original case studies? Does auto-sklearn choose the same models?

	15.26 (Research: Support Vector Machines) Many books and articles indicate that support vector machines often yield the best supervised machine learning results. Research support vector machines vs. other machine learning algorithms. What are the primary reasons offered for why support vector machines perform best?

	15.27 (Research: Machine Learning Ethics and Bias) Machine learning and artificial intelligence raise many ethics and bias issues. Should an AI algorithm be allowed to fire a company employee without human input? Should an AI-based military weapon, be allowed to make kill decisions without human input? AI algorithms often learn from data collected by humans. What if the data contains human biases regarding race, religion, gender and more? Some AI programs have already been proven to learn such human biases.16 Research machine learning ethics and bias issues and make a top-10 list of the most common issues you encounter.
16. https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning#human-biases.

	15.28 (Project: Feature Selection) Feature selection17 involves choosing which dataset features to use when training a machine learning model. Research feature selection and scikit-learn’s feature selection capabilities
17. https://en.wikipedia.org/wiki/Feature_selection.

https://scikit-learn.org/stable/modules/feature_selection.html

Apply scikit-learn’s feature selection capabilities to the Digits dataset, then reimplement the classification case study in Sections 15.2–15.3. Next, apply scikit-learn’s feature selection capabilities to the California Housing dataset, then reimplement the linear regression case study in Section 15.5. In each case, do you get better results?

	15.29 (Research: Feature Engineering) Feature engineering18 involves creating new features based on existing features in a dataset. For example, you might transform a feature into a different format (such as transforming textual data to numeric data or transforming a date-time stamp into just a time of day), or you might combine multiple features into a single feature (such as combining latitude and longitude features into a location feature). Research feature engineering and explain how it might be used to improve supervised machine learning prediction performance.
18. https://en.wikipedia.org/wiki/Feature_engineering.

	15.30 (Project: Desktop Machine Learning Workbench—KNIME Analytics Platform) There are many free and paid machine learning software packages (both web-based and desktop) for performing machine learning studies with little or no coding. Such tools are known as workbenches. KNIME is an open source desktop machine learning and analytics workbench available at

https://www.knime.com/knime-software/knime-analytics-platform

Investigate KNIME, then install it and use it to implement this chapter’s machine learning studies.

	15.31 (Project: Exploring Web-Based Machine Learning Tools—Microsoft Azure Learning Studio, IBM Watson Studio and Google Cloud AI Platform) Microsoft’s Azure Learning Studio, IBM’s Watson Studio and Google’s Cloud AI Platform are all web-based machine learning tools. Microsoft and IBM provide free tiers and Google provides an extended free trial. Research each of these web-based tools, then use one or more of interest to you to implement this chapter’s machine learning studies.

	15.32 (Research Project: Binary Classification with the Titanic Dataset and the Scikit-Learn DecisionTreeClassifier) Decision trees are a popular means of visualizing decision structures in business applications. Research “decision trees” online. Use the techniques you learned in the “Files and Exceptions” chapter to load the Titanic Disaster dataset from the RDatasets repository. One popular type of analysis on this dataset uses decision trees to predict whether a particular passenger survived or died in the tragedy. The DecisionTreeClassifier builds a decision tree internally which you can output in the DOT graphing language with the export_graphviz function (module sklearn.tree). You can use the open source Graphviz visualization software to create a decision-tree graphic from the DOT file.

16 Deep Learning

Objectives

In this chapter you’ll:

	Understand what a neural network is and how it enables deep learning.

	Create Keras neural networks.

	Understand Keras layers, activation functions, loss functions and optimizers.

	Use a Keras convolutional neural network (CNN) trained on the MNIST dataset to recognize handwritten digits.

	Use a Keras recurrent neural network (RNN) trained on the IMDb dataset to perform binary classification of positive and negative movie reviews.

	Use TensorBoard to visualize the progress of training deep-learning networks.

	Learn what reinforcement learning, Q-learning and OpenAI Gym are and investigate them in exercises.

	Learn which pretrained neural networks come with Keras.

	Understand the value of using models pretrained on the massive ImageNet dataset for computer vision apps.

Outline

	16.1 Introduction

	16.1.1 Deep Learning Applications

	16.1.2 Deep Learning Demos

	16.1.3 Keras Resources

	16.2 Keras Built-In Datasets

	16.3 Custom Anaconda Environments

	16.4 Neural Networks

	16.5 Tensors

	16.6 Convolutional Neural Networks for Vision; Multi-Classification with the MNIST Dataset

	16.6.1 Loading the MNIST Dataset

	16.6.2 Data Exploration

	16.6.3 Data Preparation

	16.6.4 Creating the Neural Network

	16.6.5 Training and Evaluating the Model

	16.6.6 Saving and Loading a Model

	16.7 Visualizing Neural Network Training with TensorBoard

	16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization

	16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis with the IMDb Dataset

	16.9.1 Loading the IMDb Movie Reviews Dataset

	16.9.2 Data Exploration

	16.9.3 Data Preparation

	16.9.4 Creating the Neural Network

	16.9.5 Training and Evaluating the Model

	16.10 Tuning Deep Learning Models

	16.11 Convnet Models Pretrained on ImageNet

	16.12 Reinforcement Learning

	16.12.1 Deep Q-Learning

	16.12.2 OpenAI Gym

	16.13 Wrap-Up

	Exercises

16.1 Introduction

One of AI’s most exciting areas is deep learning, a powerful subset of machine learning that has produced impressive results in computer vision and many other areas over the last few years. The availability of big data, significant processor power, faster Internet speeds and advancements in parallel computing hardware and software are making it possible for more organizations and individuals to pursue resource-intensive deep-learning solutions.

Keras and TensorFlow

In the previous chapter, Scikit-learn enabled you to define machine-learning models conveniently with one statement. Deep learning models require more sophisticated setups, typically connecting multiple objects, called layers. We’ll build our deep learning models with Keras, which offers a friendly interface to Google’s TensorFlow—the most widely used deep-learning library.1 François Chollet of the Google Mind team developed Keras to make deep-learning capabilities more accessible. His book Deep Learning with Python is a must read.2 Google has thousands of TensorFlow and Keras projects underway internally and that number is growing quickly.3,4
1. Keras also serves as a friendlier interface to Microsoft’s CNTK and the Université de Montréal’s Theano (which ceased development in 2017). Other popular deep learning frameworks include Caffe (http://caffe.berkeleyvision.org/), Apache MXNet (https://mxnet.apache.org/) and PyTorch (https://pytorch.org/).
2. Chollet, François. Deep Learning with Python. Shelter Island, NY: Manning Publications, 2018.
3. http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelligence-projects-works.
4. https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/.

Models

Deep learning models are complex and require an extensive mathematical background to understand their inner workings. As we’ve done throughout the book, we’ll avoid heavy mathematics here, preferring English explanations.

Keras is to deep learning as Scikit-learn is to machine learning. Each encapsulates the sophisticated mathematics, so developers need only define, parameterize and manipulate objects. With Keras, you build your models from pre-existing components and quickly parameterize those components to your unique requirements. This is what we’ve been referring to as object-based programming throughout the book.

Experiment with Your Models

Machine learning and deep learning are empirical rather than theoretical fields. You’ll experiment with many models, tweaking them in various ways until you find the models that perform best for your applications. Keras facilitates such experimentation.

Dataset Sizes

Deep learning works well when you have lots of data, but it also can be effective for smaller datasets when combined with techniques like transfer learning5,6 and data augmentation7

,8. Transfer learning uses existing knowledge from a previously trained model as the foundation for a new model. Data augmentation adds data to a dataset by deriving new data from existing data. For example, in an image dataset, you might rotate the images left and right so the model can learn about objects in different orientations. In general, though, the more data you have, the better you’ll be able to train a deep learning model.
5. https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751.
6. https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab.
7. https://towardsdatascience.com/data-augmentation-and-images-7aca9bd0dbe8.
8. https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced.

Processing Power

Deep learning can require significant processing power. Complex models trained on big-data datasets can take hours, days or even more to train. The models we present in this chapter can be trained in minutes to just less than an hour on computers with conventional CPUs. You’ll need only a reasonably current personal computer. We’ll discuss the special high-performance hardware called GPUs (Graphics Processing Units) and TPUs (Tensor Processing Units) developed by NVIDIA and Google to meet the extraordinary processing demands of edge-of-the-practice deep-learning applications.

Bundled Datasets

Keras comes packaged with some popular datasets. You’ll work with two of these datasets in the chapter’s examples and several more in the exercises. You can find many Keras studies online for each of these datasets, including ones that take different approaches.

In the “Machine Learning” chapter, you worked with Scikit-learn’s Digits dataset, which contained 1797 handwritten-digit images that were selected from the much larger MNIST dataset (60,000 training images and 10,000 test images).9 In this chapter you’ll work with the full MNIST dataset. You’ll build a Keras convolutional neural network (CNN or convnet) model that will achieve high performance recognizing digit images in the test set. Convnets are especially appropriate for computer vision tasks, such as recognizing handwritten digits and characters or recognizing objects (including faces) in images and videos. You’ll also work with a Keras recurrent neural network. In that example, you’ll perform sentiment analysis using the IMDb Movie reviews dataset, in which the reviews in the training and testing sets are labeled as positive or negative.
9. “The MNIST Database.” MNIST Handwritten Digit Database, Yann LeCun, Corinna Cortes and Chris Burges. http://yann.lecun.com/exdb/mnist/.

Future of Deep Learning

Newer automated deep learning capabilities are making it even easier to build deep-learning solutions. These include Auto-Keras10 from Texas A&M University’s DATA Lab, Baidu’s EZDL11 and Google’s AutoML12. You’ll explore Auto-Keras in the exercises.
10. https://autokeras.com/.
11. https://ai.baidu.com/ezdl/.
12. https://cloud.google.com/automl/.

[image: tick mark] Self Check

	(Fill-In) _______ was developed by François Chollet of the Google Mind team as a friendly interface to Google’s TensorFlow.

Answer: Keras.

	(Fill-In) _______ are appropriate for computer vision tasks, such as recognizing handwritten digits and characters or recognizing objects (including faces) in images and video.

Answer: Convnets.

16.1.1 Deep Learning Applications

Deep learning is being used in a wide range of applications, such as:

	Game playing

	Computer vision: Object recognition, pattern recognition, facial recognition

	Self-driving cars

	Robotics

	Improving customer experiences

	Chatbots

	Diagnosing medical conditions

	Google Search

	Facial recognition

	Automated image captioning and video closed captioning

	Enhancing image resolution

	Speech recognition

	Language translation

	Predicting election results

	Predicting earthquakes and weather

	Google Sunroof to determine whether you can put solar panels on your roof

	Generative applications—Generating original images, processing existing images to look like a specified artist’s style, adding color to black-and-white images and video, creating music, creating text (books, poetry) and much more.

16.1.2 Deep Learning Demos

Check out these four deep-learning demos and search online for lots more, including practical applications like we mentioned in the preceding section:

	DeepArt.io—Turn a photo into artwork by applying an art style to the photo. https://deepart.io/.

	DeepWarp Demo—Analyzes a person’s photo and makes the person’s eyes move in different directions. https://sites.skoltech.ru/sites/compvision_wiki/static_pages/projects/deepwarp/.

	Image-to-Image Demo—Translates a line drawing into a picture. https://affinelayer.com/pixsrv/.

	Google Translate Mobile App (download from an app store to your smartphone)—Translate text in a photo to another language (e.g., take a photo of a sign or a restaurant menu in Spanish and translate the text to English).

16.1.3 Keras Resources

Here are some resources you might find valuable as you study deep learning:

	To get your questions answered, go to the Keras team’s slack channel at https://kerasteam.slack.com.

	For articles and tutorials, visit https://blog.keras.io.

	The Keras documentation is at http://keras.io.

	If you’re looking for term projects, directed study projects, capstone course projects or thesis topics, visit arXiv (pronounced “archive,” where the X represents the Greek letter “chi”) at https://arXiv.org. People post their research papers here in parallel with going through peer review for formal publication, hoping for fast feedback. So, this site gives you access to extremely current research.

16.2 Keras Built-In Datasets

Here are some of Keras’s datasets (from the module tensorflow.keras.datasets13) for practicing deep learning. We’ll use these in the chapter’s examples, exercises and projects:
13. In the standalone Keras library, the module names begin with keras rather than tensorflow.keras.

	MNIST14database of handwritten digits—Used for classifying handwritten digit images, this dataset contains 28-by-28 grayscale digit images labeled as 0 through 9 with 60,000 images for training and 10,000 for testing. We use this dataset in Section 16.6, where we study convolutional neural networks.
14. “The MNIST Database.” MNIST Handwritten Digit Database, Yann LeCun, Corinna Cortes and Chris Burges. http://yann.lecun.com/exdb/mnist/.

	Fashion-MNIST15 database of fashion articles—Used for classifying clothing images, this dataset contains 28-by-28 grayscale images of clothing labeled in 10 categories16 with 60,000 for training and 10,000 for testing. Once you build a model for use with MNIST, you’ll be able to reuse that model with Fashion-MNIST by changing a few statements. You’ll use this dataset in the exercises.
15. Han Xiao and Kashif Rasul and Roland Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms, arXiv, cs.LG/1708.07747.
16. https://keras.io/datasets/#fashion-mnist-database-of-fashion-articles.

	IMDb Movie reviews17—Used for sentiment analysis, this dataset contains reviews labeled as positive (1) or negative (0) sentiment with 25,000 reviews for training and 25,000 for testing. We use this dataset in Section 16.9, where we study recurrent neural networks.
17. Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).

	CIFAR1018 small image classification—Used for small-image classification, this dataset contains 32-by-32 color images labeled in 10 categories with 50,000 images for training and 10,000 for testing. You’ll analyze this dataset with a convnet in the exercises.
18. https://www.cs.toronto.edu/~kriz/cifar.html.

	CIFAR10019small image classification—Also, used for small-image classification, this dataset contains 32-by-32 color images labeled in 100 categories with 50,000 images for training and 10,000 for testing. If you do the CIFAR10 exercise, you should be able to tweak your convnet model quickly for use with CIFAR100.
19. https://www.cs.toronto.edu/~kriz/cifar.html.

16.3 Custom Anaconda Environments

Before running this chapter’s examples, you’ll need to install the libraries we use. In this chapter’s examples, we’ll use the TensorFlow deep-learning library’s version of Keras.20 At the time of this writing, TensorFlow does not yet support Python 3.7. So, you’ll need Python 3.6.x to execute this chapter’s examples. We’ll show you how to set up a custom environment for working with Keras and TensorFlow.
20. There’s also a standalone version that enables you to choose between TensorFlow, Microsoft’s CNTK or the Université de Montréal’s Theano (which ceased development in 2017).

Environments in Anaconda

The Anaconda Python distribution makes it easy to create custom environments. These are separate configurations in which you can install different libraries and different library versions. This can help with reproducibility if your code depends on specific Python or library versions.21
21. In the next chapter, we’ll introduce Docker as another reproducibility mechanism and as a convenient way to install complex environments for use on your local computer.

The default environment in Anaconda is called the base environment. This is created for you when you install Anaconda. All the Python libraries that come with Anaconda are installed into the base environment and, unless you specify otherwise, any additional libraries you install also are placed there. Custom environments give you control over the specific libraries you wish to install for your specific tasks.

Creating an Anaconda Environment

The conda create command creates an environment. Let’s create a TensorFlow environment and name it tf_env (you can name it whatever you like). Run the following command in your Terminal, shell or Anaconda Command Prompt:22,23
22. Windows users should run the Anaconda Command Prompt as Administrator,
23. If you have a computer with an NVIDIA GPU that’s compatible with TensorFlow, you can replace the tensorflow library with tensorflow-gpu to get better performance. For more information, see https://www.tensorflow.org/install/gpu. Some AMD GPUs also can be used with TensorFlow: http://timdettmers.com/2018/11/05/which-gpu-for-deep-learning/.

conda create -n tf_env tensorflow anaconda ipython jupyterlab

 scikit-learn matplotlib seaborn h5py pydot graphviz

This will determine the listed libraries’ dependencies, then display all the libraries that will be installed in the new environment. There are many dependencies, so this may take a few minutes. When you see the prompt:

Proceed ([y]/n)?

press Enter to create the environment and install the libraries.24
24. When we created our custom environment, conda installed Python 3.6.7, which was the most recent Python version compatible with the tensorflow library.

Activating an Alternate Anaconda Environment

To use a custom environment, execute the conda activate command:

conda activate tf_env

This affects only the current Terminal, shell or Anaconda Command Prompt. When a custom environment is activated and you install more libraries, they become part of the activated environment, not the base environment. If you open separate Terminals, shells or Anaconda Command Prompts, they’ll use Anaconda’s base environment by default.

Deactivating an Alternate Anaconda Environment

When you’re done with a custom environment, you can return to the base environment in the current Terminal, shell or Anaconda Command Prompt by executing:

conda deactivate

Jupyter Notebooks and JupyterLab

This chapter’s examples are provided only as Jupyter Notebooks, which will make it easier for you to experiment with the examples. You can tweak the options we present and re-execute the notebooks. For this chapter, you should launch JupyterLab from the ch16 examples folder (as discussed in Section 1.10.3).

[image: tick mark] Self Check

	(Fill-In) The default environment in Anaconda is called the _______ environment.

Answer: base.

16.4 Neural Networks

Deep learning is a form of machine learning that uses artificial neural networks to learn. An artificial neural network (or just neural network) is a software construct that operates similarly to how scientists believe our brains work. Our biological nervous systems are controlled via neurons25 that communicate with one another along pathways called synapses26. As we learn, the specific neurons that enable us to perform a given task, like walking, communicate with one another more efficiently. These neurons activate anytime we need to walk.27
25. https://en.wikipedia.org/wiki/Neuron.
26. https://en.wikipedia.org/wiki/Synapse.
27. https://www.sciencenewsforstudents.org/article/learning-rewires-brain.

Artificial Neurons

In a neural network, interconnected artificial neurons simulate the human brain’s neurons to help the network learn. The connections between specific neurons are reinforced during the learning process with the goal of achieving a specific result. In supervised deep learning—which we’ll use in this chapter—we aim to predict the target labels supplied with data samples. To do this, we’ll train a general neural network model that we can then use to make predictions on unseen data.28
28. As in machine learning, you can create unsupervised deep learning networks—these are beyond this chapter’s scope.

Artificial Neural Network Diagram

The following diagram shows a three-layer neural network. Each circle represents a neuron, and the lines between them simulate the synapses. The output of a neuron becomes the input of another neuron, hence the term neural network. This particular diagram shows a fully connected network—every neuron in a given layer is connected to all the neurons in the next layer:

[image: An example of a fully connected network.]

16.4-1 Full Alternative Text

Learning Is an Iterative Process

When you were a baby, you did not learn to walk instantaneously. You learned that process over time with repetition. You built up the smaller components of the movements that enabled you to walk—learning to stand, learning to balance to remain standing, learning to lift your foot and move it forward, etc. And you got feedback from your environment. When you walked successfully your parents smiled and clapped. When you fell, you might have bumped your head and felt pain.

Similarly, we train neural networks iteratively over time. Each iteration is known as an epoch and processes every sample in the training dataset once. There’s no “correct” number of epochs. This is a hyperparameter that may need tuning, based on your training data and your model. The inputs to the network are the features in the training samples. Some layers learn new features from previous layers’ outputs and others interpret those features to make predictions.

How Artificial Neurons Decide Whether to Activate Synapses

During the training phase, the network calculates values called weights for every connection between the neurons in one layer and those in the next. On a neuron-by-neuron basis, each of its inputs is multiplied by that connection’s weight, then the sum of those weighted inputs is passed to the neuron’s activation function. This function’s output determines which neurons to activate based on the inputs—just like the neurons in your brain passing information around in response to inputs coming from your eyes, nose, ears and more. The following diagram shows a neuron receiving three inputs (the black dots) and producing an output (the hollow circle) that would be passed to all or some of neurons in the next layer, depending on the types of the neural network’s layers:

[image: A diagram depicts a neuron receiving three inputs.]

16.4-2 Full Alternative Text

The values w1, w2 and w3 are weights. In a new model that you train from scratch, these values are initialized randomly by the model. As the network trains, it tries to minimize the error rate between the network’s predicted labels and the samples’ actual labels. The error rate is known as the loss, and the calculation that determines the loss is called the loss function. Throughout training, the network determines the amount that each neuron contributes to the overall loss, then goes back through the layers and adjusts the weights in an effort to minimize that loss. This technique is called backpropagation. Optimizing these weights occurs gradually—typically via a process called gradient descent.

[image: tick mark] Self Check

	(True/False) Deep learning supports only supervised learning with labeled datasets.

Answer: False. As in machine learning, you can create unsupervised deep learning networks.

	(Fill-In) In a(n) _______ neural network, every neuron in a given layer is connected to all the neurons in the next layer.

Answer: fully connected.

	(Fill-In) We train neural networks iteratively over time. Each iteration is known as an _______ and processes every sample in the training dataset once.

Answer: epoch.

	(Fill-In) As a neural network trains, it tries to minimize the error rate between the network’s predicted labels and the samples’ actual labels. The error rate is known as the _______.

Answer: loss.

16.5 Tensors

Deep learning frameworks generally manipulate data in the form of tensors. A “tensor” is basically a multidimensional array. Frameworks like TensorFlow pack all your data into one or more tensors, which they use to perform the mathematical calculations that enable neural networks to learn. These tensors can become quite large as the number of dimensions increases and as the richness of the data increases (for example, images, audios and videos are richer than text). Chollet discusses the types of tensors typically encountered in deep learning:29
29. Chollet, François. Deep Learning with Python. Section 2.2. Shelter Island, NY: Manning Publications, 2018.

	0D (0-dimensional) tensor—This is one value and is known as a scalar.

	1D tensor—This is similar to a one-dimensional array and is known as a vector. A 1D tensor might represent a sequence, such as hourly temperature readings from a sensor or the words of one movie review.

	2D tensor—This is similar to a two-dimensional array and is known as a matrix. A 2D tensor could represent a grayscale image in which the tensor’s two dimensions are the image’s width and height in pixels, and the value in each element is the intensity of that pixel.

	3D tensor—This is similar to a three-dimensional array and could be used to represent a color image. The first two dimensions would represent the width and height of the image in pixels and the depth at each location might represent the red, green and blue (RGB) components of a given pixel’s color. A 3D tensor also could represent a collection of 2D tensors containing grayscale images.

	4D tensor—A 4D tensor could be used to represent a collection of color images in 3D tensors. It also could be used to represent one video. Each frame in a video is essentially a color image.

	5D tensor—This could be used to represent a collection of 4D tensors containing videos.

A tensor’s shape typically is represented as a tuple of values in which the number of elements specifies the tensor’s number of dimensions and each value in the tuple specifies the size of the tensor’s corresponding dimension.

Let’s assume we’re creating a deep-learning network to identify and track objects in 4K (high-resolution) videos that have 30 frames-per-second. Each frame in a 4K video is 3840-by-2160 pixels. Let’s also assume the pixels are presented as red, green and blue components of a color. So each frame would be a 3D tensor containing a total of 24,883,200 elements (3840 * 2160 * 3) and each video would be a 4D tensor containing the sequence of frames. If the videos are one minute long, you’d have 44,789,760,000 elements per tensor!

Over 600 hours of video are uploaded to YouTube every minute30 so, in just one minute of uploads, Google could have a tensor containing 1,612,431,360,000,000 elements to use in training deep-learning models—that’s big data. As you can see, tensors can quickly become enormous, so manipulating them efficiently is crucial. This is one of the key reasons that most deep learning is performed on GPUs. More recently Google created TPUs (Tensor Processing Units) that are specifically designed to perform tensor manipulations, executing faster than GPUs.
30. https://www.inc.com/tom-popomaronis/youtube-analyzed-trillions-of-data-points-in-2018-revealing-5-eye-opening-behavioral-statistics.html.

High-Performance Processors

Powerful processors are needed for real-world deep learning because the size of tensors can be enormous and large-tensor operations can place crushing demands on processors. The processors most commonly used for deep learning are:

	NVIDIA GPUs (Graphics Processing Units)—Originally developed by companies like NVIDIA for computer gaming, GPUs are much faster than conventional CPUs for processing large amounts of data, thus enabling developers to train, validate and test deep-learning models more efficiently—and thus experiment with more of them. GPUs are optimized for the mathematical matrix operations typically performed on tensors, an essential aspect of how deep learning works “under the hood.” NVIDIA’s Volta Tensor Cores are specifically designed for deep learning.31

,32 Many NVIDIA GPUs are compatible with TensorFlow, and hence Keras, and can enhance the performance of your deep-learning models.33
31. https://www.nvidia.com/en-us/data-center/tensorcore/.
32. https://devblogs.nvidia.com/tensor-core-ai-performance-milestones/.
33. https://www.tensorflow.org/install/gpu.

	Google TPUs (Tensor Processing Units)—Recognizing that deep learning is crucial to its future, Google developed TPUs (Tensor Processing Units), which they now use in their Cloud TPU service, which “can provide up to 11.5 petaflops of performance in a single pod”34 (that’s 11.5 quadrillion floating-point operations per second). Also, TPUs are designed to be especially energy efficient. This is a key concern for companies like Google with already massive computing clusters that are growing exponentially and consuming vast amounts of energy.
34. https://cloud.google.com/tpu/.

[image: tick mark] Self Check

	(Fill-In) Deep learning frameworks generally manipulate data in the form of _______.

Answer: tensors.

	(True/False) Tensors can always be processed on standard CPUs.

Answer: False. Tensors can quickly become enormous and place crushing demands on processors. For this reason, most deep learning is performed on GPUs or Google’s TPUs (Tensor Processing Units).

	(Fill-In) A(n) _______-dimensional tensor could represent a collection of grayscale images.

Answer: three.

16.6 Convolutional Neural Networks for Vision; Multi-Classification with the MNIST Dataset

In the “Machine Learning” chapter, we classified handwritten digits using the 8-by-8-pixel, low-resolution images from the Digits dataset bundled with Scikit-learn. That dataset is based on a subset of the higher-resolution MNIST handwritten digits dataset. Here, we’ll use MNIST to explore deep learning with a convolutional neural network35 (also called a convnet or CNN). Convnets are common in computer-vision applications, such as recognizing handwritten digits and characters, and recognizing objects in images and video. They’re also used in non-vision applications, such as natural-language processing and recommender systems.
35. https://en.wikipedia.org/wiki/Convolutional_neural_network.

The Digits dataset has only 1797 samples, whereas MNIST has 70,000 labeled digit image samples—60,000 for training and 10,000 for testing. Each sample is a grayscale 28-by-28 pixel image (784 total features) represented as a NumPy array. Each pixel is a value from 0 to 255 representing the intensity (or shade) of that pixel—the Digits dataset uses less granular shading with values from 0 to 16. MNIST’s labels are integer values in the range 0 through 9, indicating the digit each image represents.

The machine-learning model you used in the previous chapter produced as its output a digit image’s predicted class—an integer in the range 0–9. The convnet model we’ll build will perform probabilistic classification.36 For each digit image, the model will output an array of 10 probabilities, each indicating the likelihood that the digit belongs to a particular one of the classes 0 through 9. The class with the highest probability is the predicted value.
36. https://en.wikipedia.org/wiki/Probabilistic_classification.

Reproducibility in Keras and Deep Learning

We’ve discussed the importance of reproducibility throughout the book. In deep learning, reproducibility is more difficult because the libraries heavily parallelize operations that perform floating-point calculations. Each time operations execute, they may execute in a different order. This can produce differences in your results. Getting reproducible results in Keras requires a combination of environment settings and code settings that are described in the Keras FAQ:

https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development

Basic Keras Neural Network

A Keras neural network consists of the following components:

	A network (also called a model)—A sequence of layers containing the neurons used to learn from the samples. Each layer’s neurons receive inputs, process them (via an activation function) and produce outputs. The data is fed into the network via an input layer that specifies the dimensions of the sample data. This is followed by hidden layers of neurons that implement the learning and an output layer that produces the predictions. The more layers you stack, the deeper the network is, hence the term deep learning.

	A loss function—This produces a measure of how well the network predicts the target values. Lower loss values indicate better predictions.

	An optimizer—This attempts to minimize the values produced by the loss function to tune the network to make better predictions.

Launch JupyterLab

This section assumes that you’ve activated the tf_env Anaconda environment you created in Section 16.3 and launched JupyterLab from the ch16 examples folder. You can either open the MNIST_CNN.ipynb file in JupyterLab and execute the code in the cells we provided, or you can create a new notebook and enter the code on your own. If you prefer, you can work at the command line in IPython, however, placing your code in a Jupyter Notebook makes it significantly easier for you to re-execute this chapter’s examples.

As a reminder, you can reset a Jupyter Notebook and remove its outputs by selecting Restart Kernel and Clear All Outputs… from JupyterLab’s Kernel menu. This terminates the notebook’s execution and removes its outputs. You might do this if your model is not performing well and you want to try different hyperparameters or possibly restructure your neural network.37 You can then re-execute the notebook one cell at a time or execute the entire notebook by selecting Run All from JupyterLab’s Run menu.
37. We found that we sometimes had to execute this menu option twice to clear the outputs.

[image: tick mark] Self Check

	(Fill-In) Convnets are common in _______ applications, such as recognizing handwritten digits and characters, and recognizing objects in images and video.

Answer: computer vision.

	(Fill-In) _______ classification indicates the likelihoods that a sample belongs to each one of the classes the model predicts.

Answer: Probabilistic.

	(True/False) An optimizer produces a measure of how well the network predicts the target values.

Answer: False. A loss function produces a measure of how well the network predicts the target values. An optimizer attempts to minimize the values produced by the loss function to tune the network to make better predictions.

16.6.1 Loading the MNIST Dataset

Let’s import the tensorflow.keras.datasets.mnist module so we can load the dataset:

[1]: from tensorflow.keras.datasets import mnist

Note that because we’re using the version of Keras built into TensorFlow, the Keras module names begin with "tensorflow.". In the standalone Keras version, the module names begin with "keras.", so keras.datasets would be used above. Keras uses TensorFlow to execute the deep-learning models.

The mnist module’s load_data function loads the MNIST training and testing sets:

[2]: (X_train, y_train), (X_test, y_test) = mnist.load_data()

When you call load_data it will download the MNIST data to your system. The function returns a tuple of two elements containing the training and testing sets. Each element is itself a tuple containing the samples and labels, respectively.

[image: tick mark] Self Check

	(Fill-In) By Default, Keras uses _______ as its backend to execute deep-learning models.

Answer: TensorFlow.

16.6.2 Data Exploration

Let’s get to know the data before working with it. First, we check the dimensions of the training set images (X_train), training set labels (y_train), testing set images (X_test) and testing set labels (y_test):

[3]: X_train.shape

[3]: (60000, 28, 28)

[4]: y_train.shape

[4]: (60000,)

[5]: X_test.shape

[5]: (10000, 28, 28)

[6]: y_test.shape

[6]: (10000,)

You can see from X_train’s and X_test’s shapes that the images are higher resolution than those in Scikit-learn’s Digits dataset (which are 8-by-8).

Visualizing Digits

Let’s visualize some of the digit images. First, enable Matplotlib in the notebook, import Matplotlib and Seaborn and set the font scale:

[7]: %matplotlib inline

[8]: import matplotlib.pyplot as plt

[9]: import seaborn as sns

[10]: sns.set(font_scale=2)

The IPython magic

%matplotlib inline

indicates that Matplotlib-based graphics should be displayed in the notebook rather than in separate windows. For more IPython magics, you can use in Jupyter Notebooks, see:

https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development

Next, we’ll display a randomly selected set of 24 MNIST training set images. Recall from the “Array-Oriented Programming with NumPy” chapter that you can pass a sequence of indexes as a NumPy array’s subscript to select only the array elements at those indexes. We’ll use that capability here to select the elements at the same indexes in both the X_train and y_train arrays. This ensures that we display the correct label for each randomly selected image.

NumPy’s choice function (from the numpy.random module) randomly selects the number of elements specified in its second argument (24) from the array of values in its first argument (in this case, an array containing X_train’s range of indices). The function returns an array containing the selected values, which we store in index. The expressions X_train[index] and y_train[index] use index to get the corresponding elements from both arrays. The rest of this cell is the visualization code from the previous chapter’s Digits case study:

[11]: import numpy as np

 index = np.random.choice(np.arange(len(X_train)), 24, replace=False)

 figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(16, 9))

 for item in zip(axes.ravel(), X_train[index], y_train[index]):

 axes, image, target = item

 axes.imshow(image, cmap=plt.cm.gray_r)

 axes.set_xticks([]) # remove x-axis tick marks

 axes.set_yticks([]) # remove y-axis tick marks

 axes.set_title(target)

 plt.tight_layout()

You can see in the output below that MNIST’s digit images have higher resolution than those in Scikit-learn’s Digits dataset.

[image: 4 rows of 6 handwritten digits 0 to 9 in a random order, each marked with a digital version of the numeral.]

Looking at the digits, you can see why handwritten digit recognition is a challenge:

	Some people write “open” 4s (like the ones in the first and third rows), and some write “closed” 4s (like the one in the second row). Though each 4 has some similar features, they’re all different from one another.

	The 3 in the second row looks strange—more like a merged 6 and 7. Compare this to the much clearer 3 in the fourth row.

	The 5 in the second row could easily be confused with a 6.

	Also, people write their digits at different angles, as you can see with the four 6s in the third and fourth rows—two are upright, one leans left and one leans right.

If you run the preceding snippet multiple times, you can see additional randomly selected digits.38 You’ll probably find that—if not for the labels displayed above each digit—it would be difficult for you to identify some of the digits. We’ll soon see how accurately our first convnet will predict the digits in the MNIST test set.
38. If you do run the cell multiple times, the snippet number next to the cell will increment each time, as it does in IPython at the command line.

16.6.3 Data Preparation

Recall from the “Machine Learning” chapter that Scikit-learn’s bundled datasets were preprocessed into the shapes its models required. In real-world studies, you’ll generally have to do some or all of the data preparation. The MNIST dataset requires some preparation for use in a Keras convnet.

Reshaping the Image Data

Keras convnets require NumPy array inputs in which each sample has the shape:

(width, height, channels)

For MNIST, each image’s width and height are 28 pixels, and each pixel has one channel (the grayscale shade of the pixel from 0 to 255), so each sample’s shape will be:

(28, 28, 1)

Full-color images with RGB (red/green/blue) values for each pixel, would have three channels—one channel each for the red, green and blue components of a color.

As the neural network learns from the images, it creates many more channels. Rather than shade or color, the learned channels will represent more complex features, like edges, curves and lines, that will eventually enable the network to recognize digits based on these additional features and how they’re combined.

Let’s reshape the 60,000 training and 10,000 testing set images into the correct dimensions for use in our convnet and confirm their new shapes. Recall that NumPy array method reshape receives a tuple representing the array’s new shape:

[12]: X_train = X_train.reshape((60000, 28, 28, 1))

[13]: X_train.shape

[13]: (60000, 28, 28, 1)

[14]: X_test = X_test.reshape((10000, 28, 28, 1))

[15]: X_test.shape

[15]: (10000, 28, 28, 1)

Normalizing the Image Data

Numeric features in data samples may have value ranges that vary widely. Deep learning networks perform better on data that is scaled either into the range 0.0 to 1.0, or to a range for which the data’s mean is 0.0 and its standard deviation is 1.0.39 Getting your data into one of these forms is known as normalization.
39. S. Ioffe and Szegedy, C.. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” https://arxiv.org/abs/1502.03167.

In MNIST, each pixel is an integer in the range 0–255. The following statements convert the values to 32-bit (4-byte) floating-point numbers using the NumPy array method astype, then divide every element in the resulting array by 255, producing normalized values in the range 0.0–1.0:

[16]: X_train = X_train.astype('float32') / 255

[17]: X_test = X_test.astype('float32') / 255

One-Hot Encoding: Converting the Labels From Integers to Categorical Data

As we mentioned, the convnet’s prediction for each digit will be an array of 10 probabilities, indicating the likelihood that the digit belongs to a particular one of the classes 0 through 9. When we evaluate the model’s accuracy, Keras compares the model’s predictions to the labels. To do that, Keras requires both to have the same shape. The MNIST label for each digit, however, is one integer value in the range 0–9. So, we must transform the labels into categorical data—that is, arrays of categories that match the format of the predictions. To do this, we’ll use a process called one-hot encoding,40 which converts data into arrays of 1.0s and 0.0s in which only one element is 1.0 and the rest are 0.0s. For MNIST, the one-hot-encoded values will be 10-element arrays representing the categories 0 through 9. One-hot encoding also can be applied to other types of data.
40. This term comes from certain digital circuits in which a group of bits is allowed to have only one bit turned on (that is, to have the value 1). https://en.wikipedia.org/wiki/One-hot.

We know precisely which category each digit belongs to, so the categorical representation of a digit label will consist of a 1.0 at that digit’s index and 0.0s for all the other elements (again, Keras uses floating-point numbers internally). So, a 7’s categorical representation is:

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

and a 3’s representation is:

[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

The tensorflow.keras.utils module provides function to_categorical to perform one-hot encoding. The function counts the unique categories then, for each item being encoded, creates an array of that length with a 1.0 in the correct position. Let’s transform y_train and y_test from one-dimensional arrays containing the values 0–9 into two-dimensional arrays of categorical data. After doing so, the rows of these arrays will look like those shown above. Snippet [21] outputs one sample’s categorical data for the digit 5 (recall that NumPy shows the decimal point, but not trailing 0s on floating-point values):

[18]: from tensorflow.keras.utils import to_categorical

[19]: y_train = to_categorical(y_train)

[20]: y_train.shape

[20]: (60000, 10)

[21]: y_train[0]

[21]: array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], dtype=float32)

[22]: y_test = to_categorical(y_test)

[23]: y_test.shape

[23]: (10000, 10)

[image: tick mark] Self Check

	(Fill-In) Deep learning networks perform better on data that is scaled either into the range 0.0 to 1.0, or to a range for which the data’s mean is 0.0 and its standard deviation is 1.0. Getting your data into one of these forms is known as _______.

Answer: normalization.

	(What Does This Code Do?) Assuming y_train contains integer labels 0–9 for the MNIST dataset’s training data, what does the following statement do?

y_train = to_categorical(y_train)

Answer: This statement one-hot encodes the data in y_train, converting each element from an individual integer label in the range 0–9 to an array of 1.0s and 0.0s in which only the element representing the digit’s label is 1.0 and the rest are 0.0s.

16.6.4 Creating the Neural Network

Now that we’ve prepared the data, we’ll configure a convolutional neural network. We begin with the Keras Sequential model from the tensorflow.keras.models module:

[24]: from tensorflow.keras.models import Sequential

[25]: cnn = Sequential()

The resulting network will execute its layers sequentially—the output of one layer becomes the input to the next. This is known as a feed-forward network. As you’ll see when we discuss recurrent neural networks, not all neural network operate this way.

Adding Layers to the Network

A typical convolutional neural network consists of several layers—an input layer that receives the training samples, hidden layers that learn from the samples and an output layer that produces the prediction probabilities. We’ll create a basic convnet here. Let’s import from the tensorflow.keras.layers module the layer classes we’ll use in this example:

[26]: from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D

We discuss each below.

Convolution

We’ll begin our network with a convolution layer, which uses the relationships between pixels that are close to one another to learn useful features (or patterns) in small areas of each sample. These features become inputs to subsequent layers.

The small areas that convolution learns from are called kernels or patches. Let’s examine convolution on a 6-by-6 image. Consider the following diagram in which the 3-by-3 shaded square represents the kernel—the numbers are simply position numbers showing the order in which the kernels are visited and processed:

[image: An example of convolution on a 6 by 6 image.]

16.6-4 Full Alternative Text

You can think of the kernel as a “sliding window” that the convolution layer moves one pixel at a time left-to-right across the image. When the kernel reaches the right edge, the convolution layer moves the kernel one pixel down and repeats this left-to-right process. Kernels typically are 3-by-3,41 though we found convnets that used 5-by-5 and 7-by-7 for higher-resolution images. Kernel-size is a tunable hyperparameter.
41. https://www.quora.com/How-can-I-decide-the-kernel-size-output-maps-and-layers-of-CNN.

Initially, the kernel is in the upper-left corner of the original image—kernel position 1 (the shaded square) in the input layer above. The convolution layer performs mathematical calculations using those nine features to “learn” about them, then outputs one new feature to position 1 in the layer’s output. By looking at features near one another, the network begins to recognize features like edges, straight lines and curves.

Next, the convolution layer moves the kernel one pixel to the right (known as the stride) to position 2 in the input layer. This new position overlaps with two of the three columns in the previous position, so that the convolution layer can learn from all the features that touch one another. The layer learns from the nine features in kernel position 2 and outputs one new feature in position 2 of the output, as in:

[image: An example of convolution on a 6 by 6 image.]

16.6-5 Full Alternative Text

For a 6-by-6 image and a 3-by-3 kernel, the convolution layer does this two more times to produce features for positions 3 and 4 of the layer’s output. Then, the convolution layer moves the kernel one pixel down and begins the left-to-right process again for the next four kernel positions, producing outputs in positions 5–8, then 9–12 and finally 13–16. The complete pass of the image left-to-right and top-to-bottom is called a filter. For a 3-by-3 kernel, the filter dimensions (4-by-4 in our sample above) will be two less than the input dimensions (6-by-6). For each 28-by-28 MNIST image, the filter will be 26-by-26.

The number of filters in the convolutional layer is commonly 32 or 64 when processing small images like those in MNIST, and each filter produces different results. The number of filters depends on the image dimensions—higher-resolution images have more features, so they require more filters. If you study the code the Keras team used to produce their pretrained convnets,42 you’ll find that they used 64, 128 or even 256 filters in their first convolutional layers. Based on their convnets and the fact that the MNIST images are small, we’ll use 64 filters in our first convolutional layer. The set of filters produced by a convolution layer is called a feature map.
42. https://github.com/keras-team/keras-applications/tree/master/keras_applications.

Subsequent convolution layers combine features from previous feature maps to recognize larger features and so on. If we were doing facial recognition, early layers might recognize lines, edges and curves, and subsequent layers might begin combining those into larger features like eyes, eyebrows, noses, ears and mouths. Once the network learns a feature, because of convolution, it can recognize that feature anywhere in the image. This is one of the reasons that convnets are used for object recognition in images.

Adding a Convolution Layer

Let’s add a Conv2D convolution layer to our model:

[27]: cnn.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))

The Conv2D layer is configured with the following arguments:

	filters=64—The number of filters in the resulting feature map.

	kernel_size=(3, 3)—The size of the kernel used in each filter.

	activation='relu'—The 'relu' (Rectified Linear Unit) activation function is used to produce this layer’s output. 'relu' is the most widely used activation function in today’s deep learning networks43 and is good for performance because it’s easy to calculate.44 It’s commonly recommended for convolutional layers.45
43. Chollet, François. Deep Learning with Python. p. 72. Shelter Island, NY: Manning Publications, 2018.
44. https://towardsdatascience.com/exploring-activation-functions-for-neural-networks-73498da59b02.
45. https://www.quora.com/How-should-I-choose-a-proper-activation-function-for-the-neural-network.

Because this is the first layer in the model, we also pass the input_shape=(28, 28,1) argument to specify the shape of each sample. This automatically creates an input layer to load the samples and pass them into the Conv2D layer, which is actually the first hidden layer. In Keras, each subsequent layer infers its input_shape from the previous layer’s output shape, making it easy to stack layers.

Dimensionality of the First Convolution Layer’s Output

In the preceding convolutional layer, the input samples are 28-by-28-by-1—that is, 784 features each. We specified 64 filters and a 3-by-3 kernel size for the layer, so the output for each image is 26-by-26-by-64 for a total of 43,264 features in the feature map—a significant increase in dimensionality and an enormous number compared to the numbers of features we processed in the “Machine Learning” chapter’s models. As each layer adds more features, the resulting feature maps’ dimensionality becomes significantly larger. This is one of the reasons that deep learning studies often require tremendous processing power.

Overfitting

Recall from the previous chapter, that overfitting can occur when your model is too complex compared to what it is modeling. In the most extreme case, a model memorizes its training data. When you make predictions with an overfit model, they will be accurate if new data matches the training data, but the model could perform poorly with data it has never seen.

Overfitting tends to occur in deep learning as the dimensionality of the layers becomes too large.46,47,48 This causes the network to learn specific features of the training-set digit images, rather than learning the general features of digit images. Some techniques to prevent overfitting include training for fewer epochs, data augmentation, dropout and L1 or L2 regularization.49,50 We’ll discuss dropout later in the chapter.
46. https://cs231n.github.io/convolutional-networks/.
47. https://medium.com/@cxu24/why-dimensionality-reduction-is-important-dd60b5611543.
48. https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a.
49. https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-overfitting-2bd5d99abe5d.
50. https://www.kdnuggets.com/2015/04/preventing-overfitting-neural-networks.html.

Higher dimensionality also increases (and sometimes explodes) computation time. If you’re performing the deep learning on CPUs rather than GPUs or TPUs, the training could become intolerably slow.

Adding a Pooling Layer

To reduce overfitting and computation time, a convolution layer is often followed by one or more layers that reduce the dimensionality of the convolution layer’s output. A pooling layer compresses (or down-samples) the results by discarding features, which helps make the model more general. The most common pooling technique is called max pooling, which examines a 2-by-2 square of features and keeps only the maximum feature. To understand pooling, let’s once again assume a 6-by-6 set of features. In the following diagram, the numeric values in the 6-by-6 square represent the features that we wish to compress and the 2-by-2 blue square in position 1 represents the initial pool of features to examine:

[image: An example of convolution on a 6 by 6 image.]

16.6-6 Full Alternative Text

The max pooling layer first looks at the pool in position 1 above, then outputs the maximum feature from that pool—9 in our diagram. Unlike convolution, there’s no overlap between pools. The pool moves by its width—for a 2-by-2 pool, the stride is 2. For the second pool, represented by the orange 2-by-2 square, the layer outputs 7. For the third pool, the layer outputs 9. Once the pool reaches the right edge, the pooling layer moves the pool down by its height—2 rows—then continues from left-to-right. Because every group of four features is reduced to one, 2-by-2 pooling compresses the number of features by 75%.

Let’s add a MaxPooling2D layer to our model:

[28]: cnn.add(MaxPooling2D(pool_size=(2, 2)))

This reduces the previous layer’s output from 26-by-26-by-64 to 13-by-13-by-64. In the exercises, we’ll ask you to research and use Dropout layers, which provide another technique for reducing overfitting.

Though pooling is a common technique to reduce overfitting, some research suggests that additional convolutional layers which use larger strides for their kernels can reduce dimensionality and overfitting without discarding features.51
51. Tobias, Jost, Dosovitskiy, Alexey, Brox, Thomas, Riedmiller, and Martin. “Striving for Simplicity: The All Convolutional Net.” April 13, 2015. https://arxiv.org/abs/1412.6806.

Adding Another Convolutional Layer and Pooling Layer

Convnets often have many convolution and pooling layers. The Keras team’s convnets tend to double the number of filters in subsequent convolutional layers to enable the model to learn more relationships between the features.52 So, let’s add a second convolution layer with 128 filters, followed by a second pooling layer to once again reduce the dimensionality by 75%:
52. https://github.com/keras-team/keras-applications/tree/master/keras_applications.

[29]: cnn.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu'))

[30]: cnn.add(MaxPooling2D(pool_size=(2, 2)))

The input to the second convolution layer is the 13-by-13-by-64 output of the first pooling layer. So, the output of snippet [29] will be 11-by-11-by-128. For odd dimensions like 11-by-11, Keras pooling layers round down by default (in this case to 10-by-10), so this pooling layer’s output will be 5-by-5-by-128.

Flattening the Results

At this point, the previous layer’s output is three-dimensional (5-by-5-by-128), but the final output of our model will be a one-dimensional array of 10 probabilities that classify the digits. To prepare for the one-dimensional final predictions, we first need to flatten the previous layer’s three-dimensional output. A Keras Flatten layer reshapes its input to one dimension. In this case, the Flatten layer’s output will be 1-by-3200 (that is, 5 * 5 * 128):

[31]: cnn.add(Flatten())

Adding a Dense Layer to Reduce the Number of Features

The layers before the Flatten layer learned digit features. Now we need to take all those features and learn the relationships among them so our model can classify which digit each image represents. Learning the relationships among features and performing classification is accomplished with fully connected Dense layers, like those shown in the neural network diagram earlier in the chapter. The following Dense layer creates 128 neurons (units) that learn from the 3200 outputs of the previous layer:

[32]: cnn.add(Dense(units=128, activation='relu'))

Many convnets contain at least one Dense layer like the one above. Convnets geared to more complex image datasets with higher-resolution images like ImageNet—a dataset of over 14 million images53—often have several Dense layers, commonly with 4096 neurons. You can see such configurations in several of Keras’s pretrained ImageNet convnets54—we list these in Section 16.11.
53. http://www.image-net.org.
54. https://github.com/keras-team/keras-applications/tree/master/keras_applications.

Adding Another Dense Layer to Produce the Final Output

Our final layer is a Dense layer that classifies the inputs into neurons representing the classes 0 through 9. The softmax activation function converts the values of these remaining 10 neurons into classification probabilities. The neuron that produces the highest probability represents the prediction for a given digit image:

[33]: cnn.add(Dense(units=10, activation='softmax'))

Printing the Model’s Summary

A model’s summary method shows you the model’s layers. Some interesting things to note are the output shapes of the various layers and the number of parameters. The parameters are the weights that the network learns during training.55,56 This is a relatively small network, yet it will need to learn nearly 500,000 parameters! And this is for tiny images that have less than one quarter of the resolution of the icons on most smartphone home screens. Imagine how many features a network would have to learn to process high-resolution 4K video frames or the super-high-resolution images produced by today’s digital cameras. In the Output Shape, None simply means that the model does not know in advance how many training samples you’re going to provide—this is known only when you start the training.
55. https://hackernoon.com/everything-you-need-to-know-about-neural-networks-8988c3ee4491.
56. https://www.kdnuggets.com/2018/06/deep-learning-best-practices-weight-initialization.html.

[image: A sample summary method.]

16.6-7 Full Alternative Text

Also, note that there are no “non-trainable” parameters. By default, Keras trains all parameters, but it is possible to prevent training for specific layers, which is typically done when you’re tuning your networks or using another model’s learned parameters in a new model (a process called transfer learning that you’ll explore in the exercises).57
57. https://keras.io/getting-started/faq/#how-can-i-freeze-keras-layers.

Visualizing a Model’s Structure

You can visualize the model summary using the plot_model function from the module tensorflow.keras.utils:

[35]: from tensorflow.keras.utils import plot_model

 from IPython.display import Image

 plot_model(cnn, to_file='convnet.png', show_shapes=True,

 show_layer_names=True)

 Image(filename='convnet.png')

After storing the visualization in convnet.png, we use module IPython.display’s Image class to show the image in the notebook. Keras assigns the layer names in the image:58
58. The node with the large integer value 112430057960 at the top of the diagram appears to be a bug in the current version of Keras. This node represents the input layer and should say “InputLayer”.

[image: An example of a vertical classification model with 8 layers, each leading to the next.]

16.6-8 Full Alternative Text

Compiling the Model

Once you’ve added all the layers you complete the model by calling its compile method:

[36]: cnn.compile(optimizer='adam',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

The arguments are:

	optimizer='adam'—The optimizer this model will use to adjust the weights throughout the neural network as it learns. There are many optimizers59— 'adam' performs well across a wide variety of models.60,61
59. For more Keras optimizers, see https://keras.io/optimizers/.
60. https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2.
61. https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f.

	loss='categorical_crossentropy'—This is the loss function used by the optimizer in multi-classification networks like our convnet, which will predict 10 classes. As the neural network learns, the optimizer attempts to minimize the values returned by the loss function. The lower the loss, the better the neural network is at predicting what each image is. For binary classification (which we’ll use later in this chapter), Keras provides 'binary_crossentropy', and for regression, 'mean_squared_error'. For other loss functions, see https://keras.io/losses/.

	metrics=['accuracy']—This is a list of the metrics that the network will produce to help you evaluate the model. Accuracy is a commonly used metric in classification models. In this example, we’ll use the accuracy metric to check the percentage of correct predictions. For a list of other metrics, see https://keras.io/metrics/.

[image: tick mark] Self Check

	(Fill-In) A(n) _______ network passes the output of one layer as the input to the next layer in sequence.

Answer: feed-forward.

	(Fill-In) A(n) _______ layer uses the relationships between pixels that are close to one another to learn useful features (or patterns), such as edges, straight lines and curves.

Answer: convolution.

	(Fill-In) A problem called _______ tends to occur in deep learning as the dimensionality of the layers becomes too large.

Answer: Overfitting.

	(True/False) In Keras, you must specify the input shape for each new layer you add to your neural network model.

Answer: False. You specify the input shape only for the first layer. Keras infers the input shape for each subsequent layer, based on the output shape of the previous layer.

	(True/False) In a convnet, learning the relationships among features and performing classification is accomplished with convolution layers.

Answer: False. Convolution layers learn features. Dense layers learn the relationships among features and perform classification.

	(Fill-In) The _______ activation function converts neuron outputs into classification probabilities for multiple-classification.

Answer: softmax.

	(What Does This Code Do?) Assuming cnn is a Keras convolutional neural network model, what does the following statement do?

cnn.add(MaxPooling2D(pool_size=(2, 2)))

Answer: This adds a new MaxPooling2D layer to an existing neural network model named cnn. Because the pool_size is specified as 2-by-2, each 2-by-2 square in the preceding layer’s output will be reduced to a single value, compressing the previous layer’s output by 75%.

	(What Does This Code Do?) Assuming cnn is a Keras convolutional neural network model, what does the following statement do?

cnn.compile(optimizer='adam',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

Answer: This statement configures the model to use the 'adam' optimizer, the categorical_crossentropy loss function to perform multi-classification and the 'accuracy' metric to indicate how well the network predicts the samples’ classes.

16.6.5 Training and Evaluating the Model

Similar to Scikit-learn’s models, we train a Keras model by calling its fit method:

	As in Scikit-learn, the first two arguments are the training data and the categorical target labels.

	epochs specifies the number of times the model should process the entire set of training data. As we mentioned earlier, neural networks are trained iteratively.

	batch_size specifies the number of samples to process at a time during each epoch. Most models specify a power of 2 from 32 to 512. Larger batch sizes can decrease model accuracy.62 We chose 64. In the exercises, you’ll try different values to see how they affect the model’s performance.
62. Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy and Ping Tak Peter Tang. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” CoRR abs/1609.04836 (2016). https://arxiv.org/abs/1609.04836.

	In general, some samples should be used to validate the model. If you specify validation data, after each epoch, the model will use it to make predictions and display the validation loss and accuracy. You can study these values to tune your layers and the fit method’s hyperparameters, or possibly change the layer composition of your model. Here, we used the validation_split argument to indicate that the model should reserve the last 10% (0.1) of the training samples for validation63—in this case, 6000 samples will be used for validation. If you have separate validation data, you can use the validation_data argument (as you’ll see in Section 16.9) to specify a tuple containing arrays of samples and target labels. In general, it’s better to get randomly selected validation data. You can use scikit-learn’s train_test_split function for this purpose (as we’ll do later in this chapter), then pass the randomly selected data with the validation_data argument.
63. https://keras.io/getting-started/faq/#how-is-the-validation-split-computed.

In the following output, we highlighted the training accuracy (acc) and validation accuracy (val_acc) in bold:

[37]: cnn.fit(X_train, y_train, epochs=5, batch_size=64,

 validation_split=0.1)

Train on 54000 samples, validate on 6000 samples

Epoch 1/5

54000/54000 [==============================] - 68s 1ms/step - loss:

0.1407 - acc: 0.9580 - val_loss: 0.0452 - val_acc: 0.9867

Epoch 2/5

54000/54000 [==============================] - 64s 1ms/step - loss:

0.0426 - acc: 0.9867 - val_loss: 0.0409 - val_acc: 0.9878

Epoch 3/5

54000/54000 [==============================] - 69s 1ms/step - loss:

0.0299 - acc: 0.9902 - val_loss: 0.0325 - val_acc: 0.9912

Epoch 4/5

54000/54000 [==============================] - 70s 1ms/step - loss:

0.0197 - acc: 0.9935 - val_loss: 0.0335 - val_acc: 0.9903

Epoch 5/5

54000/54000 [==============================] - 63s 1ms/step - loss:

0.0155 - acc: 0.9948 - val_loss: 0.0297 - val_acc: 0.9927

[37]: <tensorflow.python.keras.callbacks.History at 0x7f105ba0ada0>

In Section 16.7, we’ll introduce TensorBoard—a TensorFlow tool for visualizing data from your deep-learning models. In particular, we’ll view charts showing how the training and validation accuracy and loss values change through the epochs. In Section 16.8, we’ll demonstrate Andrej Karpathy’s ConvnetJS tool, which trains convnets in your web browser and dynamically visualizes the layers’ outputs, including what each convolutional layer “sees” as it learns. In the exercises, you’ll run his MNIST and CIFAR10 models. These will help you better understand neural networks’ complex operations.

As the training proceeds, the fit method outputs information showing you the progress of each epoch, how long the epoch took to execute (in this case, each took 63–70 seconds), and the evaluation metrics for that pass. During the last epoch of this model, the accuracy reached 99.48% for the training samples (acc) and 99.27% for the validation samples (val_acc). Those are impressive numbers, given that we have not yet tried to tune the hyperparameters or tweak the number and types of the layers, which could lead to even better (or worse) results. Like machine learning, deep learning is an empirical science that benefits from lots of experimentation.

Evaluating the Model

Now we can check the accuracy of the model on data the model has not yet seen. To do so, we call the model’s model’s evaluate method, which displays as its output, how long it took to process the test samples (four seconds and 366 microseconds in this case):

[38]: loss, accuracy = cnn.evaluate(X_test, y_test)

10000/10000 [==============================] - 4s 366us/step

[39]: loss

[39]: 0.026809450998473768

[40]: accuracy

[40]: 0.9917

According to the preceding output, our convnet model is 99.17% accurate when predicting the labels for unseen data—and, at this point, we have not tried to tune the model. With a little online research, you can find models that can predict MNIST with nearly 100% accuracy. The end-of-chapter exercises ask you to experiment with different numbers of layers, types of layers and layer parameters and observe how those changes affect your results.

Making Predictions

The model’s predict method predicts the classes of the digit images in its argument array (X_test):

[41]: predictions = cnn.predict(X_test)

We can check what the first sample digit should be by looking at y_test[0]:

[42]: y_test[0]

[42]: array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.], dtype=float32)

According to this output, the first sample is the digit 7, because the categorical representation of the test sample’s label specifies a 1.0 at index 7—recall that we created this representation via one-hot encoding.

Let’s check the probabilities returned by the predict method for the first test sample:

[43]: for index, probability in enumerate(predictions[0]):

 print(f'{index}: {probability:.10%}')

0: 0.0000000201%

1: 0.0000001355%

2: 0.0000186951%

3: 0.0000015494%

4: 0.0000000003%

5: 0.0000000012%

6: 0.0000000000%

7: 99.9999761581%

8: 0.0000005577%

9: 0.0000011416%

According to the output, predictions[0] indicates that our model believes this digit is a 7 with nearly 100% certainty. Not all predictions have this level of certainty.

Locating the Incorrect Predictions

Next, we’d like to view some of the incorrectly predicted images to get a sense of the ones our model has trouble with. For example, if it’s always mispredicting 8s, perhaps we need more 8s in our training data.

Before we can view incorrect predictions, we need to locate them. Consider predictions[0] above. To determine whether the prediction was correct, we must compare the index of the largest probability in predictions[0] to the index of the element containing 1.0 in y_test[0]. If these index values are the same, then the prediction was correct; otherwise, it was incorrect. NumPy’s argmax function determines the index of the highest valued element in its array argument. Let’s use that to locate the incorrect predictions. In the following snippet, p is the predicted value array, and e is the expected value array (the expected values are the labels for the dataset’s test images):

[44]: images = X_test.reshape((10000, 28, 28))

 incorrect_predictions = []

 for i, (p, e) in enumerate(zip(predictions, y_test)):

 predicted, expected = np.argmax(p), np.argmax(e)

 if predicted != expected:

 incorrect_predictions.append(

 (i, images[i], predicted, expected))

In this snippet, we first reshape the samples from the shape (28, 28, 1) that Keras required for learning back to (28, 28), which Matplotlib requires to display the images. Next, we populate the list incorrect_predictions using the for statement. We zip the rows that represent each sample in the arrays predictions and y_test, then enumerate those so we can capture their indexes. If the argmax results for p and e are different, then the prediction was incorrect, and we append a tuple to incorrect_predictions containing that sample’s index, image, the predicted value and the expected value. We can confirm the total number of incorrect predictions (out of 10,000 images in the test set) with:

[45]: len(incorrect_predictions)

[45]: 83

Visualizing Incorrect Predictions

The following snippet displays 24 of the incorrect images labeled with each image’s index, predicted value (p) and expected value (e):

[46]: figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(16, 12))

 for axes, item in zip(axes.ravel(), incorrect_predictions):

 index, image, predicted, expected = item

 axes.imshow(image, cmap=plt.cm.gray_r)

 axes.set_xticks([]) # remove x-axis tick marks

 axes.set_yticks([]) # remove y-axis tick marks

 axes.set_title(

 f'index: {index}\np: {predicted}; e: {expected}')

 plt.tight_layout()

Before reading the expected values, look at each digit and write down what digit you think it is. This is an important part of getting to know your data:

[image: A question asks the student to guess the identity of handwritten numerals marked above with their expected values.]

Displaying the Probabilities for Several Incorrect Predictions

Let’s look at the probabilities of some incorrect predictions. The following function displays the probabilities for the specified prediction array:

[47]: def display_probabilities(prediction):

 for index, probability in enumerate(prediction):

 print(f'{index}: {probability:.10%}')

Though the 8 (at index 495) in the first line of the image output looks like an 8, our model had trouble with it. As you can see in the following output, the model predicted this image as a 0, but also thought there was 16% chance it was a 6 and a 23% chance it was an 8:

[48]: display_probabilities(predictions[495])

0: 59.7235262394%

1: 0.0000015465%

2: 0.8047289215%

3: 0.0001740813%

4: 0.0016636326%

5: 0.0030567855%

6: 16.1390662193%

7: 0.0000001781%

8: 23.3022540808%

9: 0.0255270657%

The 2 (at index 583) in the first row was predicted to be a 7 with 62.7% certainty, but the model also thought there was a 36.4% chance it was a 2:

[49]: display_probabilities(predictions[583])

0: 0.0000003016%

1: 0.0000005715%

2: 36.4056706429%

3: 0.0176281916%

4: 0.0000561930%

5: 0.0000000003%

6: 0.0000000019%

7: 62.7455413342%

8: 0.8310816251%

9: 0.0000114385%

The 6 (at index 625) at the beginning of the second row was predicted to be a 4, though that was far from certain. In this case, the probability of a 4 (51.6%) was only slightly higher than the probability of a 6 (48.38%):

[50]: display_probabilities(predictions[625])

0: 0.0008245181%

1: 0.0000041209%

2: 0.0012774357%

3: 0.0000000009%

4: 51.6223073006%

5: 0.0000001779%

6: 48.3754962683%

7: 0.0000000085%

8: 0.0000048182%

9: 0.0000785786%

[image: tick mark] Self Check

	(True/False) The validation_split argument of a Keras model’s fit method tells it to randomly select a percentage of the training samples to use as validation data.

Answer: False. The fit method takes the validation samples from the end of the training samples. For randomly selected validation samples, you can use train_test_split from Scikit-learn and pass the selected data to the fit method’s validation_data argument.

	(Fill-In) _______ tends to occur in deep learning as the dimensionality of the layers becomes too large.

Answer: Overfitting.

16.6.6 Saving and Loading a Model

Neural network models can require significant training time. Once you’ve designed and tested a model that suits your needs, you can save its state. This allows you to load it later to make more predictions. Sometimes models are loaded and further trained for new problems. For example, layers in our model already know how to recognize features such as lines and curves, which could be useful in handwritten character recognition (as in the EMNIST dataset) as well. So you could potentially load the existing model and use it as the basis for a more robust model. This process is called transfer learning64,65—you transfer an existing model’s knowledge into a new model. A Keras model’s save method stores the model’s architecture and state information in a format called Hierarchical Data Format (HDF5). Such files use the .h5 file extension by default:
64. https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751.
65. https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab.

[51]: cnn.save('mnist_cnn.h5')

You can load a saved model with the load_model function from the tensorflow.keras.models module:

from tensorflow.keras.models import load_model

cnn = load_model('mnist_cnn.h5')

You can then invoke its methods. For example, if you’ve acquired more data, you could call predict to make additional predictions on new data, or you could call fit to start training with the additional data.

Keras provides several additional functions that enable you to save and load various aspects of your models. For more information, see

https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

[image: tick mark] Self Check

	(Fill-In) You can load a previously saved model and use it as the basis for a more robust model. This process is called _______—you transfer an existing model’s knowledge into a new model.

Answer: transfer learning.

16.7 Visualizing Neural Network Training with TensorBoard

With deep learning networks, there’s so much complexity and so much going on internally that’s hidden from you that it’s difficult to know and fully understand all the details. This creates challenges in testing, debugging and updating models and algorithms. Deep learning learns the features but there may be enormous numbers of them, and they may not be apparent to you.

Google provides the TensorBoard66,67 tool for visualizing neural networks implemented in TensorFlow and Keras. Just as a car’s dashboard visualizes data from your car’s sensors, such as your speed, engine temperature and the amount of gas remaining, a TensorBoard dashboard visualizes data from a deep learning model that can give you insights into how well your model is learning and potentially help you tune its hyperparameters. Here, we’ll introduce TensorBoard. We encourage you to explore it more in the exercises.
66. https://github.com/tensorflow/tensorboard/blob/master/README.md.
67. https://www.tensorflow.org/guide/summaries_and_tensorboard.

Executing TensorBoard

TensorBoard monitors a folder on your system looking for files containing the data it will visualize in a web browser. Here, you’ll create that folder, execute the TensorBoard server, then access it via a web browser. Perform the following steps:

	Change to the ch16 folder in your Terminal, shell or Anaconda Command Prompt.

	Ensure that your custom Anaconda environment tf_env is activated:

conda activate tf_env

	Execute the following command to create a subfolder named logs in which your deep-learning models will write the information that TensorBoard will visualize:

mkdir logs

	Execute TensorBoard

tensorboard --logdir=logs

	You can now access TensorBoard in your web browser at

http://localhost:6006

If you connect to TensorBoard before executing any models, it will initially display a page indicating “No dashboards are active for the current data set.”68
68. TensorBoard does not currently work with Microsoft’s Edge browser.

The TensorBoard Dashboard

TensorBoard monitors the folder you specified looking for files output by the model during training. When TensorBoard sees updates, it loads the data into the dashboard:

[image: A screen shot of a tensor board.]

16.7-10 Full Alternative Text

You can view the data as you train or after training completes. The dashboard above shows the TensorBoard SCALARS tab, which displays charts for individual values that change over time, such as the training accuracy (acc) and training loss (loss) shown in the first row, and the validation accuracy (val_acc) and validation_loss (val_loss) shown in the second row. The diagrams visualize a 10-epoch run of our MNIST convnet, which we provided in the notebook MNIST_CNN_TensorBoard.ipynb. The epochs are displayed along the x-axes starting from 0 for the first epoch. The accuracy and loss values are displayed on the y-axes. Looking at the training and validation accuracies, you can see in the first 5 epochs similar results to the five-epoch run in the previous section.

For the 10-epoch run, the training accuracy continued to improve through the 9th epoch, then decreased slightly. This might be the point at which we’re starting to overfit, but we might need to train longer to find out. For the validation accuracy, you can see that it jumped up quickly, then was relatively flat for five epochs before jumping up then decreasing. For the training loss, you can see that it drops quickly, then continuously declines through the ninth epoch, before a slight increase. The validation loss dropped quickly then bounced around. We could run this model for more epochs to see whether results improve, but based on these diagrams, it appears that around the sixth epoch we get a nice combination of training and validation accuracy with minimal validation loss.

Normally these diagrams are stacked vertically in the dashboard. We used the search field (above the diagrams) to show any that had the name “mnist” in their folder name—we’ll configure that in a moment. TensorBoard can load data from multiple models at once and you can choose which to visualize. This makes it easy to compare several different models or multiple runs of the same model.

Copy the MNIST Convnet’s Notebook

To create the new notebook for this example:

	Right-click the MNIST_CNN.ipynb notebook in JupyterLab’s File Browser tab and select Duplicate to make a copy of the notebook.

	Right-click the new notebook named MNIST_CNN-Copy1.ipynb, then select Rename, enter the name MNIST_CNN_TensorBoard.ipynb and press Enter.

Open the notebook by double-clicking its name.

Configuring Keras to Write the TensorBoard Log Files

To use TensorBoard, before you fit the model, you need to configure a TensorBoard object (module tensorflow.keras.callbacks), which the model will use to write data into a specified folder that TensorBoard monitors. This object is known as a callback in Keras. In the notebook, click to the left of snippet that calls the model’s fit method, then type a, which is the shortcut for adding a new code cell above the current cell (use b for below). In the new cell, enter the following code to create the TensorBoard object:

from tensorflow.keras.callbacks import TensorBoard

import time

tensorboard_callback = TensorBoard(log_dir=f'./logs/mnist{time.time()}',

 histogram_freq=1, write_graph=True)

The arguments are:

	log_dir—The name of the folder in which this model’s log files will be written. The notation './logs/' indicates that we’re creating a new folder within the logs folder you created previously, and we follow that with 'mnist' and the current time. This ensures that each new execution of the notebook will have its own log folder. That will enable you to compare multiple executions in TensorBoard.

	histogram_freq—The frequency in epochs that Keras will output to the model’s log files. In this case, we’ll write data to the logs for every epoch.

	write_graph—When this is true, a graph of the model will be output. You can view the graph in the GRAPHS tab in TensorBoard.

Updating Our Call to fit

Finally, we need to modify the original fit method call in snippet 37. For this example, we set the number of epochs to 10, and we added the callbacks argument, which is a list of callback objects69:
69. You can view Keras’s other callbacks at https://keras.io/callbacks/.

cnn.fit(X_train, y_train, epochs=10, batch_size=64,

 validation_split=0.1, callbacks=[tensorboard_callback])

You can now re-execute the notebook by selecting Kernel > Restart Kernel and Run All Cells in JupyterLab. After the first epoch completes, you’ll start to see data in TensorBoard.

[image: tick mark] Self Check

	(Fill-In) _______ visualizes Keras and TensorFlow neural networks, giving you insights into how well your model is learning and potentially helping you tune its hyperparameters.

Answer: TensorBoard.

16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization

In this section, we’ll overview Andrej Karpathy’s JavaScript-based ConvnetJS tool for training and visualizing convolutional neural networks in your web browser:70
70. You also can download ConvnetJS from GitHub at https://github.com/karpathy/convnetjs.

https://cs.stanford.edu/people/karpathy/convnetjs/

You can run the ConvnetJS sample convolutional neural networks or create your own. We’ve used the tool on several desktop, tablet and phone browsers.

The ConvnetJS MNIST demo—which you’ll run and explore in the exercises—trains a convolutional neural network using the MNIST dataset we presented in Section 16.6. The demo presents a scrollable dashboard that updates dynamically as the model trains and contains several sections:

Training Stats

This section contains a Pause button that enables you to stop the learning and “freeze” the current dashboard visualizations. Once you pause the demo, the button text changes to resume. Clicking the button again continues training. This section also presents training statistics, including the training and validation accuracy and a graph of the training loss.

Instantiate a Network and Trainer

In this section, you’ll find the JavaScript code that creates the convolutional neural network. The default network has similar layers to the convnet in Section 16.6. The ConvnetJS documentation71 shows the supported layer types and how to configure them. You can experiment with different layer configurations in the provided textbox and begin training an updated network by clicking the change network button.
71. https://cs.stanford.edu/people/karpathy/convnetjs/docs.html.

Network Visualization

This key section shows one training image at a time and how the network processes that image through each layer. Click the Pause button to inspect all the layers’ outputs for a given digit to get a sense of what the network “sees” as it learns. The network’s last layer produces the probabilistic classifications. It shows 10 squares—9 black and one white, indicating the predicted class of the current digit image.

Example predictions on Test set

The final section shows a random selection of the test set images and the top three possible classes for each digit. The one with the highest probability is shown on a green bar and the other two are displayed on red bars. The length of each bar is a visual indication of that class’s probability.

Exercises

In the exercises, experiment with the MNIST and CIFAR10 dataset demos, which classifies 32-by-32 color images in the 10 categories airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis with the IMDb Dataset

In the MNIST CNN network, we focused on stacked layers that were applied sequentially. Non-sequential models are possible, as you’ll see here with recurrent neural networks. In this section, we use Keras’s bundled IMDb (the Internet Movie Database) movie reviews dataset72 to perform binary classification, predicting whether a given review’s sentiment is positive or negative.
72. Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher, "Learning Word Vectors for Sentiment Analysis," Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, June 2011. Portland, Oregon, USA. Association for Computational Linguistics, pp. 142–150. http://www.aclweb.org/anthology/P11-1015.

We’ll use a recurrent neural network (RNN), which processes sequences of data, such as time series or text in sentences. The term “recurrent” comes from the fact that the neural network contains loops in which the output of a given layer becomes the input to that same layer in the next time step. In a time series, a time step is the next point in time. In a text sequence, a “time step” would be the next word in a sequence of words.

The looping in RNNs enables them to learn and remember relationships among the data in the sequence. For example, consider the following sentences we used in the “Natural Language Processing” chapter. The sentence

The food is not good.

clearly has negative sentiment. Similarly, the sentence

The movie was good.

has positive sentiment, though not as positive as

The movie was excellent!

In the first sentence, the word “good” on its own has positive sentiment. However, when preceded by “not,” which appears earlier in the sequence, the sentiment becomes negative. RNNs take into account the relationships among the earlier and later parts of a sequence.

In the preceding example, the words that determined sentiment were adjacent. However, when determining the meaning of text there can be many words to consider and an arbitrary number of words in between them. In this section, we’ll use a Long Short-Term Memory (LSTM) layer, which makes the neural network recurrent and is optimized to handle learning from sequences like the ones we described above.

RNNs have been used for many tasks including:73,74,75
73. https://www.analyticsindiamag.com/overview-of-recurrent-neural-networks-and-their-applications/.
74. https://en.wikipedia.org/wiki/Recurrent_neural_network#Applications.
75. http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

	predictive text input—displaying possible next words as you type,

	sentiment analysis,

	responding to questions with the predicted best answers from a corpus,

	inter-language translation, and

	automated closed captioning in video.

[image: tick mark] Self Check

	(Fill-In) _______ is used to predict two possible classes—such as positive or negative sentiment in sentiment analysis.

Answer: binary classification.

	(True/False) Neural networks always execute their layers sequentially, such that a given layer’s output is passed immediately to the next layer.

Answer: False. The output of a recurrent layer in a recurrent neural network can be passed back as the input to that same layer, effectively creating a loop.

	(Fill-In) A Long Short-Term Memory (LSTM) layer makes a neural network _______ and is optimized to handle learning from sequences.

Answer: recurrent.

16.9.1 Loading the IMDb Movie Reviews Dataset

The IMDb movie reviews dataset included with Keras contains 25,000 training samples and 25,000 testing samples, each labeled with its positive (1) or negative (0) sentiment. Let’s import the tensorflow.keras.datasets.imdb module so we can load the dataset:

[1]: from tensorflow.keras.datasets import imdb

The imdb module’s load_data function returns the IMDb training and testing sets. There are over 88,000 unique words in the dataset. The load_data function enables you to specify the number of unique words to import as part of the training and testing data. In this case, we loaded only the top 10,000 most frequently occurring words due to the memory limitations of our system and the fact that we’re (intentionally) training on a CPU rather than a GPU (because most of our readers will not have access to systems with GPUs and TPUs). The more data you load, the longer training will take, but more data may help produce better models:

[2]: number_of_words = 10000

[3]: (X_train, y_train), (X_test, y_test) = imdb.load_data(

 num_words=number_of_words)

The load_data function returns a tuple of two elements containing the training and testing sets. Each element is itself a tuple containing the samples and labels, respectively. In a given review, load_data replaces any words outside the top 10,000 with a placeholder value, which we’ll discuss shortly.

[image: tick mark] Self Check

	(Discussion) What is the purpose of the num_words argument to the Keras IMDb dataset’s load_data function?

Answer: This argument enables you to specify the number of most frequently occurring words you’d like to load and process. This can be helpful if you’re training on a CPU and have memory limitations.

16.9.2 Data Exploration

Let’s check the dimensions of the training set samples (X_train), training set labels (y_train), testing set samples (X_test) and testing set labels (y_test):

[4]: X_train.shape

[4]: (25000,)

[5]: y_train.shape

[5]: (25000,)

[6]: X_test.shape

[6]: (25000,)

[7]: y_test.shape

[7]: (25000,)

The arrays y_train and y_test are one-dimensional arrays containing 1s and 0s, indicating whether each review is positive or negative. Based on the preceding outputs, X_train and X_test also appear to be one-dimensional. However, their elements actually are lists of integers, each representing one review’s contents, as shown in snippet [9]:76
76. Here we used the %pprint magic to turn off pretty printing so the following snippet’s output could be displayed horizontally rather than vertically to save space. You can turn pretty printing back on by re-executing the %pprint magic.

[8]: %pprint

[8]: Pretty printing has been turned OFF

[9]: X_train[123]

[9]: [1, 307, 5, 1301, 20, 1026, 2511, 87, 2775, 52, 116, 5, 31, 7, 4,

91, 1220, 102, 13, 28, 110, 11, 6, 137, 13, 115, 219, 141, 35, 221, 956,

54, 13, 16, 11, 2714, 61, 322, 423, 12, 38, 76, 59, 1803, 72, 8, 2, 23,

5, 967, 12, 38, 85, 62, 358, 99]

Keras deep learning models require numeric data, so the Keras team preprocessed the IMDb dataset for you.

Movie Review Encodings

Because the movie reviews are numerically encoded, to view their original text, you need to know the word to which each number corresponds. Keras’s IMDb dataset provides a dictionary that maps the words to their indexes. Each word’s corresponding value is its frequency ranking among all the words in the entire set of reviews. So the word with the ranking 1 is the most frequently occurring word (calculated by the Keras team from the dataset), the word with ranking 2 is the second most frequently occurring word, and so on.

Though the dictionary values begin with 1 as the most frequently occurring word, in each encoded review (like X_train[123] shown previously), the ranking values are offset by 3. So any review containing the most frequently occurring word will have the value 4 wherever that word appears in the review. Keras reserves the values 0, 1 and 2 in each encoded review for the following purposes:

	The value 0 in a review represents padding. Keras deep learning algorithms expect all the training samples to have the same dimensions, so some reviews may need to be expanded to a given length and some shortened to that length. Reviews that need to be expanded are padded with 0s.

	The value 1 represents a token that Keras uses internally to indicate the start of a text sequence for learning purposes.

	The value 2 in a review represents an unknown word—typically a word that was not loaded because you called load_data with the num_words argument. In this case, any review that contained words with frequency rankings greater than num_words would have those words’ numeric values replaced with 2. This is all handled by Keras when you load the data.

Because each review’s numeric values are offset by 3, we’ll have to account for this when we decode the review.

Decoding a Movie Review

Let’s decode a review. First, get the word-to-index dictionary by calling the function get_word_index from the tensorflow.keras.datasets.imdb module:

[10]: word_to_index = imdb.get_word_index()

The word 'great' might appear in a positive movie review, so let’s see whether it’s in the dictionary:

[11]: word_to_index['great']

[11]: 84

According to the output, 'great' is the dataset’s 84th most frequent word. If you look up a word that’s not in the dictionary, you’ll get an exception.

To transform the frequency ratings into words, let’s first reverse the word_to_index dictionary’s mapping, so we can look up every word by its frequency rating. The following dictionary comprehension reverses the mapping:

[12]: index_to_word = \

 {index: word for (word, index) in word_to_index.items()}

Recall that a dictionary’s items method enables us to iterate through tuples of key–value pairs. We unpack each tuple into the variables word and index, then create an entry in the new dictionary with the expression index: word.

The following list comprehension gets the top 50 words from the new dictionary—recall that the most frequent word has the value 1:

[13]: [index_to_word[i] for i in range(1, 51)]

[13]: ['the', 'and', 'a', 'of', 'to', 'is', 'br', 'in', 'it', 'i',

'this', 'that', 'was', 'as', 'for', 'with', 'movie', 'but', 'film', 'on',

'not', 'you', 'are', 'his', 'have', 'he', 'be', 'one', 'all', 'at', 'by',

'an', 'they', 'who', 'so', 'from', 'like', 'her', 'or', 'just', 'about',

"it's", 'out', 'has', 'if', 'some', 'there', 'what', 'good', 'more']

Note that most of these are stop words. Depending on the application, you might want to remove or keep the stop words. For example, if you were creating a predictive-text application that suggests the next word in a sentence the user is typing, you’d want to keep the stop words so they can be displayed as predictions.

Now, we can decode a review. We use the index_to_word dictionary’s two-argument method get rather than the [] operator to get value for each key. If a value is not in the dictionary, the get method returns its second argument, rather than raising an exception. The argument i - 3 accounts for the offset in the encoded reviews of each review’s frequency ratings. When the Keras reserved values 0–2 appear in a review, get returns '?'; otherwise, get returns the word with the key i - 3 in the index_to_word dictionary:

[14]: ' '.join([index_to_word.get(i - 3, '?') for i in X_train[123]])

[14]: '? beautiful and touching movie rich colors great settings good

 acting and one of the most charming movies i have seen in a while i

 never saw such an interesting setting when i was in china my wife

 liked it so much she asked me to ? on and rate it so other would

 enjoy too'

We can see from the y_train array that this review is classified as positive:

[15]: y_train[123]

[15]: 1

16.9.3 Data Preparation

The number of words per review varies, but the Keras requires all samples to have the same dimensions. So, we need to perform some data preparation. In this case, we need to restrict every review to the same number of words. Some reviews will need to be padded with additional data and others will need to be truncated. The pad_sequences utility function (module tensorflow.keras.preprocessing.sequence) reshapes X_train’s samples (that is, its rows) to the number of features specified by the maxlen argument (200) and returns a two-dimensional array:

[16]: words_per_review = 200

[17]: from tensorflow.keras.preprocessing.sequence import pad_sequences

[18]: X_train = pad_sequences(X_train, maxlen=words_per_review)

If a sample has more features, pad_sequences truncates it to the specified length. If a sample has fewer features, pad_sequences adds 0s to the beginning of the sequence to pad it to the specified length. Let’s confirm X_train’s new shape:

[19]: X_train.shape

[19]: (25000, 200)

We also must reshape X_test for later in this example when we evaluate the model:

[20]: X_test = pad_sequences(X_test, maxlen=words_per_review)

[21]: X_test.shape

[21]: (25000, 200)

Splitting the Test Data into Validation and Test Data

In our convnet, we used the fit method’s validation_split argument to indicate that 10% of our training data should be set aside to validate the model as it trains. For this example, we’ll manually split the 25,000 test samples into 20,000 test samples and 5,000 validation samples. We’ll then pass the 5,000 validation samples to the model’s fit method via the argument validation_data. Let’s use Scikit-learn’s train_test_split function from the previous chapter to split the test set:

[22]: from sklearn.model_selection import train_test_split

 X_test, X_val, y_test, y_val = train_test_split(

 X_test, y_test, random_state=11, test_size=0.20)

Let’s also confirm the split by checking X_test’s and X_val’s shapes:

[23]: X_test.shape

[23]: (20000, 200)

[24]: X_val.shape

[24]: (5000, 200)

[image: tick mark] Self Check

	(What Does This Code Do?) Assuming that X_train contains training samples that are variable-length sequences, what does the following statement do?

X_test = pad_sequences(X_train, maxlen=500)

Answer: This uses function pad_sequences from the tensorflow.keras.preprocessing.sequence module to ensure that every sample in X_train has the length 500. Any samples with sequences longer than 500 will be truncated to 500, and any samples with sequences shorter than 500 will be padded with leading 0s.

	(Write a Statement) X_test and y_test represent 50,000 test samples from a dataset. Write a statement that uses train_test_split to randomly select 20,000 of these for use as validation data. Ensure that the same 20,000 elements are selected every time:

Answer:

X_test, X_val, y_test, y_val = train_test_split(

 X_test, y_test, random_state=11, test_size=0.40)

16.9.4 Creating the Neural Network

Next, we’ll configure the RNN. Once again, we begin with a Sequential model to which we’ll add the layers that compose our network:

[25]: from tensorflow.keras.models import Sequential

[26]: rnn = Sequential()

Next, let’s import the layers we’ll use in this model:

[27]: from tensorflow.keras.layers import Dense, LSTM

[28]: from tensorflow.keras.layers.embeddings import Embedding

Adding an Embedding Layer

Previously, we used one-hot encoding to convert the MNIST dataset’s integer labels into categorical data. The result for each label was a vector in which all but one element was 0. We could do that for the index values that represent our words. However, this example processes 10,000 unique words. That means we’d need a 10,000-by-10,000 array to represent all the words. That’s 100,000,000 elements, and almost all the array elements would be 0. This is not an efficient way to encode the data. If we were to process all 88,000+ unique words in the dataset, we’d need an array of nearly eight billion elements!

To reduce dimensionality, RNNs that process text sequences typically begin with an embedding layer that encodes each word in a more compact dense-vector representation. The vectors produced by the embedding layer also capture the word’s context—that is, how a given word relates to the words around it. So the embedding layer enables the RNN to learn word relationships among the training data.

There are also popular predefined word embeddings, such as Word2Vec and GloVe. These can be loaded into neural networks to save training time. They’re also sometimes used to add basic word relationships to a model when smaller amounts of training data are available. This can improve the model’s accuracy by allowing it to build upon previously learned word relationships, rather than trying to learn those relationships with insufficient amounts of data.

Let’s create an Embedding layer (module tensorflow.keras.layers):

[29]: rnn.add(Embedding(input_dim=number_of_words, output_dim=128,

 input_length=words_per_review))

The arguments are:

	input_dim—The number of unique words.

	output_dim—The size of each word embedding. If you load pre-existing embeddings77 like Word2Vec and GloVe, you must set this to match the size of the word embeddings you load.
77. https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html.

	input_length=words_per_review—The number of words in each input sample.

Adding an LSTM Layer

Next, we’ll add an LSTM layer:

[30]: rnn.add(LSTM(units=128, dropout=0.2, recurrent_dropout=0.2))

The arguments are:

	units—The number of neurons in the layer. The more neurons the more the network can remember. As a guideline, you can start with a value between the length of the sequences you’re processing (200 in this example) and the number of classes you’re trying to predict (2 in this example).78
78. https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-using-keras-f8e9ed76f046.

	dropout—The percentage of neurons to randomly disable when processing the layer’s input and output. Like the pooling layers in our convnet, dropout is a proven technique79

,80 that reduces overfitting. Keras provides a Dropout layer that you can add to your models.
79. Yarin, Ghahramani, and Zoubin. “A Theoretically Grounded Application of Dropout in Recurrent Neural Networks.” October 05, 2016. https://arxiv.org/abs/1512.05287.
80. Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of Machine Learning Research 15 (June 14, 2014): 1929-1958. http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf.

	recurrent_dropout—The percentage of neurons to randomly disable when the layer’s output is fed back into the layer again to allow the network to learn from what it has seen previously.

The mechanics of how the LSTM layer performs its task are beyond the scope of this book. Chollet says: “you don’t need to understand anything about the specific architecture of an LSTM cell; as a human, it shouldn’t be your job to understand it. Just keep in mind what the LSTM cell is meant to do: allow past information to be reinjected at a later time.”81
81. Chollet, François. Deep Learning with Python. p.204. Shelter Island, NY: Manning Publications, 2018.

Adding a Dense Output Layer

Finally, we need to take the LSTM layer’s output and reduce it to one result indicating whether a review is positive or negative, thus the value 1 for the units argument. Here we use the 'sigmoid' activation function, which is preferred for binary classification.82 It reduces arbitrary values into the range 0.0–1.0, producing a probability:
82. Chollet, François. Deep Learning with Python. p.114. Shelter Island, NY: Manning Publications, 2018.

[31]: rnn.add(Dense(units=1, activation='sigmoid'))

Compiling the Model and Displaying the Summary

Next, we compile the model. In this case, there are only two possible outputs, so we use the binary_crossentropy loss function:

[32]: rnn.compile(optimizer='adam',

 loss='binary_crossentropy',

 metrics=['accuracy'])

The following is the summary of our model. Notice that even though we have fewer layers than our convnet, the RNN has nearly three times as many trainable parameters (the network’s weights) as the convnet and more parameters means more training time. The large number of parameters primarily comes from the number of words in the vocabulary (we loaded 10,000) times the number of neurons in the Embedding layer’s output (128):

[image: A summary of the model.]

16.9-11 Full Alternative Text

[image: tick mark] Self Check

	(True/False) When performing deep learning on text sequences, you must create your own word embeddings to learn relationships among the words in your dataset.

Answer: False. There are predefined word embeddings, such as Word2Vec and GloVe, that you can load into neural networks to save training time or to add basic word relationships to a model when smaller amounts of training data are available.

	(Write a Statement) Assuming that your dataset has 100,000 unique words and that the sequences in the dataset are 500 words long, write a statement that creates a Keras embedding layer with an output size of 256 and adds it to an existing Sequential object named network.

Answer:

network.add(Embedding(input_dim=100000, output_dim=256,

 input_length=500))

	(Write a Statement) Write a statement that creates a Keras LSTM with 256 units and 50% dropout.

Answer:

network.add(LSTM(units=256, dropout=0.5, recurrent_dropout=0.5))

16.9.5 Training and Evaluating the Model

Let’s train our model.83 Notice for each epoch that the model takes significantly longer to train than our convnet did. This is due to the larger numbers of parameters (weights) our RNN model needs to learn. We bolded the accuracy (acc) and validation accuracy (val_acc) values for readability—these represent the percentage of training samples and the percentage of validation_data samples that the model predicts correctly.
83. At the time of this writing, TensorFlow displayed a warning when we executed this statement. This is a known TensorFlow issue and, according to the forums, you can safely ignore the warning.

[34]: rnn.fit(X_train, y_train, epochs=10, batch_size=32,

 validation_data=(X_test, y_test))

Train on 25000 samples, validate on 5000 samples

Epoch 1/5

25000/25000 [==============================] - 299s 12ms/step - loss:

0.6574 - acc: 0.5868 - val_loss: 0.5582 - val_acc: 0.6964

Epoch 2/5

25000/25000 [==============================] - 298s 12ms/step - loss:

0.4577 - acc: 0.7786 - val_loss: 0.3546 - val_acc: 0.8448

Epoch 3/5

25000/25000 [==============================] - 296s 12ms/step - loss:

0.3277 - acc: 0.8594 - val_loss: 0.3207 - val_acc: 0.8614

Epoch 4/5

25000/25000 [==============================] - 307s 12ms/step - loss:

0.2675 - acc: 0.8864 - val_loss: 0.3056 - val_acc: 0.8700

Epoch 5/5

25000/25000 [==============================] - 310s 12ms/step - loss:

0.2217 - acc: 0.9083 - val_loss: 0.3264 - val_acc: 0.8704

[34]: <tensorflow.python.keras.callbacks.History object at 0xb3ba882e8>

Finally, we can evaluate the results using the test data. Function evaluate returns the loss and accuracy values. In this case, the model was 85.99% accurate:

[35]: results = rnn.evaluate(X_test, y_test)

20000/20000 [==============================] - 42s 2ms/step

[36]: results

[36]: [0.3415240607559681, 0.8599]

Note that the accuracy of this model seems low compared to our MNIST convnet’s results, but this is a much more difficult problem. If you search online for other IMDb sentiment-analysis binary-classification studies, you’ll find lots of results in the high 80s. So we did reasonably well with our small recurrent neural network of only three layers. In the exercises, you’ll be asked to study some online models and produce a better model.

16.10 Tuning Deep Learning Models

In Section 16.9.5, notice in the fit method’s output that both the testing accuracy (85.99%) and validation accuracy (87.04%) were significantly less than the 90.83% training accuracy. Such disparities are usually the result of overfitting, so there is plenty of room for improvement in our model.84,85 If you look at the output of each epoch, you’ll notice both the training and validation accuracy continue to increase. Recall that training for too many epochs can lead to overfitting, but it’s possible we have not yet trained enough. Perhaps one hyperparameter tuning option for this model would be to increase the number of epochs.
84. https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24.
85. https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42.

Some variables that affect your models’ performance include:

	having more or less data to train with

	having more or less to test with

	having more or less to validate with

	having more or fewer layers

	the types of layers you use

	the order of the layers

In our IMDb RNN example, some things we could tune include:

	trying different amounts of the training data—we used only the top 10,000 words

	different numbers of words per review—we used only 200,

	different numbers of neurons in our layers,

	more layers or

	possibly loading pre-trained word vectors rather than having our Embedding layer learn them from scratch.

The compute time required to train models multiple times is significant so, in deep learning, you generally do not tune hyperparameters with techniques like k-fold cross-validation or grid search.86 There are various tuning techniques,87,88,89,90 but one particularly promising area is automated machine learning (AutoML). For example, the Auto-Keras91 library is specifically geared to automatically choosing the best configurations for your Keras models. Google’s Cloud AutoML and Baidu’s EZDL are among various other automated machine learning efforts.
86. https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-too-expensive-to-be-used.
87. https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a.
88. https://medium.com/machine-learning-bites/deeplearning-series-deep-neural-networks-tuning-and-optimization-39250ff7786d.
89. https://flyyufelix.github.io/2016/10/03/fine-tuning-in-keras-part1.html and https://flyyufelix.github.io/2016/10/08/fine-tuning-in-keras-part2.html.
90. https://towardsdatascience.com/a-comprehensive-guide-on-how-to-fine-tune-deep-neural-networks-using-keras-on-google-colab-free-daaaa0aced8f.
91. https://autokeras.com/.

[image: tick mark] Self Check

	(True/False) Overfitting occurs if you train your model for too few epochs.

Answer: False. Overfitting typically occurs when you train your model for too many epochs. This is one of the ways in which visualizing your model with TensorBoard can be helpful.

16.11 Convnet Models Pretrained on ImageNet

With deep learning, rather than starting fresh on every project with costly training, validating and testing, you can use pretrained deep neural network models to:

	make new predictions,

	continue training them further with new data or

	transfer the weights learned by a model for a similar problem into a new model—this is called transfer learning.

Keras Pretrained Convnet Models

Keras comes bundled with the following pretrained convnet models,92 each pretrained on ImageNet93—a growing dataset of 14+ million images:
92. https://keras.io/applications/.
93. http://www.image-net.org.

	Xception

	VGG16

	VGG19

	ResNet50

	Inception v3

	Inception-ResNet v2

	MobileNet v1

	DenseNet

	NASNet

	MobileNet v2

Reusing Pretrained Models

ImageNet is too big for efficient training on most computers, so most people interested in using it start with one of the smaller pretrained models.

You can reuse just the architecture of each model and train it with new data, or you can reuse the pretrained weights. For a few simple examples, see:

https://keras.io/applications/

ImageNet Challenge

In the end-of-chapter projects, you’ll research and use some of these bundled models. You’ll also investigate the ImageNet Large Scale Visual Recognition Challenge for evaluating object-detection and image-recognition models.94 This competition ran from 2010 through 2017. ImageNet now has a continuously running challenge on the Kaggle competition site called the ImageNet Object Localization Challenge.95 The goal is to identify “all objects within an image, so those images can then be classified and annotated.” ImageNet releases the current participants leaderboard once per quarter.
94. http://www.image-net.org/challenges/LSVRC/.
95. https://www.kaggle.com/c/imagenet-object-localization-challenge.

A lot of what you’ve seen in the machine learning and deep learning chapters is what the Kaggle competition website is all about. There’s no obvious optimal solution for many machine learning and deep learning tasks. People’s creativity is really the only limit. On Kaggle, companies and organizations fund competitions where they encourage people worldwide to develop better-performing solutions than they’ve been able to do for something that’s important to their business or organization. Sometimes companies offer prize money, which has been as high as $1,000,000 on the famous Netflix competition. Netflix wanted to get a 10% or better improvement in their model for determining whether people will like a movie, based on how they rated previous ones.96 They used the results to help make better recommendations to members. Even if you do not win a Kaggle competition, it’s a great way to get experience working on problems of current interest.
96. https://netflixprize.com/rules.html.

16.12 Reinforcement Learning

Reinforcement learning is a form of machine learning in which algorithms learn from their environment, similar to how humans learn—for example, a video game enthusiast learning a new game, or a baby learning to walk or recognize its parents.

The algorithm implements an agent that learns by trying to perform a task, receiving feedback about success or failure, making adjustments then trying again. The goal is to maximize the reward. The agent receives a positive reward for doing a right thing and a negative reward (that is, a punishment) for doing a wrong thing. The agent uses this information to determine the next action to perform and must try to maximize the reward.

Reinforcement learning was used in some key artificial-intelligence milestones that captured people’s attention and imagination. In 2011, IBM’s Watson beat the world’s two best human Jeopardy! players in a $1 million match. Watson simultaneously executed hundreds of language-analysis algorithms to locate correct answers in 200 million pages of content (including all of Wikipedia) requiring four terabytes of storage.97,98 Watson was trained with machine learning and used reinforcement learning techniques to learn the game-playing strategies (such as when to answer, which square to pick and how much money to risk on daily doubles).99,100
97. https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/.
98. https://en.wikipedia.org/wiki/Watson_(computer).
99. https://www.aaai.org/Magazine/Watson/watson.php, AI Magazine, Fall 2010.
100. https://developer.ibm.com/articles/cc-reinforcement-learning-train-software-agent/.

Mastering the Chinese Board Game Go

Go—a board game created in China thousands of years ago101—is widely considered to be one of the most complex games ever invented with 10170 possible board configurations.102 To give you a sense of how large a number that is, it’s believed that there are (only) between 1078 and 1087 atoms in the known universe!103,104 In 2015, AlphaGo—created by Google’s DeepMind group—used deep learning with two neural networks to beat the European Go champion Fan Hui. Go is considered to be a far more complex game than chess.
101. http://www.usgo.org/brief-history-go.
102. https://www.pbs.org/newshour/science/google-artificial-intelligence-beats-champion-at-worlds-most-complicated-board-game.
103. https://www.universetoday.com/36302/atoms-in-the-universe/.
104. https://en.wikipedia.org/wiki/Observable_universe#Matter_content.

AlphaZero

More recently, Google generalized its AlphaGo AI to create AlphaZero—a game-playing AI that uses reinforcement learning to teach itself to play other games. In December 2017, AlphaZero learned the rules of and taught itself to play chess in less than four hours. It then beat the world champion chess program, Stockfish 8, in a 100-game match—winning or drawing every game. After training itself in Go for just eight hours, AlphaZero was able to play Go vs. its AlphaGo predecessor, winning 60 of 100 games.105
105. https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours.

16.12.1 Deep Q-Learning

One of the most popular reinforcement learning techniques is Deep Q-Learning, which was originally described in the Google DeepMind team’s paper “Playing Atari with Deep Reinforcement Learning.”106 Using Deep Q-Learning, they were able to develop an agent that learned to play Atari video games by observing changes in the pixels on the screen.
106. Volodymyr, Koray, David, Alex, Ioannis, Daan, Riedmiller, and Martin. "Playing Atari with Deep Reinforcement Learning." December 19, 2013. https://arxiv.org/abs/1312.5602.

Deep Q-Learning combines Q-learning with deep learning. In Q-Learning a Q function determines the reward using a combination of the environment’s current state and the action the agent performs. For example, if the agent is trying to learn how to avoid obstacles, every move the agent makes that does not hit an obstacle would get a positive reward and every move that collides with an obstacle would get a negative reward (that is, a punishment).

16.12.2 OpenAI Gym

Game playing is a key application of reinforcement learning. A tool called OpenAI Gym (https://gym.openai.com) has become popular for reinforcement learning research. It comes with several games environments that you can use to experiment with reinforcement learning and to develop your own algorithms. There are many additional environments (from Atari and others) that you can download and install into OpenAI Gym. In one of this chapter’s project exercises, you’ll research OpenAI Gym and experiment with its CartPole environment (shown below). This is a simple game with a cart (the black rectangle) that can move left or right on a track in one dimension and a pole (the vertical line) that’s hinged to the cart. The goal of the game is to keep the pole vertical. As it falls, the algorithm moves the cart left or right to restore the pole to the vertical position.

[image: 3 illustrations depict the cart pole environment.]

16.12-12 Full Alternative Text

16.13 Wrap-Up

In Chapter 16, you peered into the future of AI. Deep Learning and reinforcement learning have captured the imagination of the computer-science and data science-communities. This may be the most important AI chapter in the book.

We mentioned the key deep-learning platforms, indicating that Google’s TensorFlow is the most widely used. We discussed why Keras, which presents a friendly interface to TensorFlow, has become so popular.

We set up a custom Anaconda environment for TensorFlow, Keras and JupyterLab, then used the environment to implement the Keras examples.

We explained what tensors are and why they’re crucial to deep learning. We discussed the basics of neurons and multi-layered neural networks for building Keras deep-learning models. We considered some popular types of layers and how to order them.

We introduced convolutional neural networks (convnets) and indicated that they’re especially appropriate for computer-vision applications. We then built, trained, validated and tested a convnet using the MNIST database of handwritten digits for which we achieved 99.17% prediction accuracy. This is remarkable, given that we achieved it by working with a only a basic model and without doing any hyperparameter tuning. In the exercises, you can try more sophisticated models and tune the hyperparameters to try to achieve better performance. We listed a variety of intriguing computer vision tasks, many of which you can investigate in the exercises.

We introduced TensorBoard for visualizing TensorFlow and Keras neural network training and validation. We also discussed ConvnetJS, a browser-based convnet training and visualization tool, which enables you to peek inside the training process.

Next, we presented recurrent neural networks (RNNs) for processing sequences of data, such as time series or text in sentences. We used an RNN with the IMDb movie reviews dataset to perform binary classification, predicting whether each review’s sentiment was positive or negative. We also discussed tuning deep learning models and how high-performance hardware, like NVIDIA’s GPUs and Google’s TPUs, is making it possible for more people to tackle more substantial deep-learning studies.

Given how costly and time-consuming it is to train deep-learning models, we explained the strategy of using pretrained models. We listed various Keras convnet image-processing models that were trained on the massive ImageNet dataset, and discussed how transfer learning enables you to use these models to create new ones quickly and effectively.

We briefly introduced reinforcement learning, Deep Q-Learning and OpenAI Gym. In the exercises, you can investigate applications of each.

Deep learning and reinforcement learning are large, complex topics. We focused on the basics in the chapter. In the exercises, you can explore additional intriguing topics. Many of these would make nice term projects, directed study topics, capstone project topics and thesis topics at all levels.

In the next chapter, we present the big data infrastructure that supports the kinds of AI technologies we’ve discussed in Chapters 12 through 16. We’ll consider the Hadoop and Spark platforms for big data batch processing and real-time streaming applications. We’ll look at relational databases and the SQL language for querying them—these have dominated the database field for many decades. We’ll discuss how big data presents challenges that relational databases don’t handle well, and consider how NoSQL databases are designed to handle those challenges. We’ll conclude the book with a discussion of the Internet of Things (IoT), which will surely be the world’s largest big-data source and will present many opportunities for entrepreneurs to develop leading-edge businesses that will truly make a difference in people’s lives.

Exercises

Convolutional Neural Networks

	16.1 (Image Recognition: The Fashion-MNIST Dataset) Keras comes bundled with the Fashion-MNIST database of fashion articles which, like the MNIST digits dataset, provides 28-by-28 grayscale images. Fashion-MNIST contains clothing-article images labeled in 10 categories—0 (T-shirt/top), 1 (Trouser), 2 (Pullover), 3 (Dress), 4 (Coat), 5 (Sandal), 6 (Shirt), 7 (Sneaker), 8 (Bag), 9 (Ankle boot)—with 60,000 training samples and 10,000 testing samples. Modify this chapter’s convnet example to load and process Fashion-MNIST rather than MNIST—this requires simply importing the correct module, loading the data then running the model with these images and labels, then re-run the entire example. How well does the model perform on Fashion-MNIST compared to MNIST? How do the training times compare?

	16.2 (MNIST Handwritten Digits Hyperparameter Tuning: Changing the Kernel Size) In the MNIST convnet we presented, change the kernel size from 3-by-3 to 5-by-5. Re-execute the model. How does this change the prediction accuracy?

	16.3 (MNIST Handwritten Digits Hyperparameter Tuning: Changing the Batch Size) In the MNIST convnet we presented, we used a training batch size of 64. Larger batch sizes can decrease model accuracy. Re-execute the model for batch sizes of 32 and 128. How do these values change the prediction accuracy?

	16.4 (Convnet Layers) Remove the first Dense layer in this chapter’s convnet model. How does this change the prediction accuracy? Several Keras pretrained convnets contain Dense layers with 4096 neurons. Add such a layer before the two Dense layers in this chapter’s convnet model. How does this change the prediction accuracy?

	16.5 (Does the Size of the Training Data Set Matter?) Rerun the MNIST convnet model with only 25% of the original training dataset, then 50%, then 75%. Use scikit-learn’s train_test_split function to randomly select the training dataset items. Compare the results to when you trained the model with the complete training dataset.

	16.6 (Overfitting) If you train and test on the same data, then the model might overfit the data. Train the MNIST model using all 70,000 training and testing samples, then evaluate the model on the test data and observe the results.

Recurrent Neural Networks

	16.7 (TensorBoard: Visualizing Deep Learning) Use TensorBoard (Section 16.7) to visualize the training and validation accuracy and loss values for this chapter’s recurrent neural network. Modify the example to try fewer and more epochs. How does this affect the prediction accuracy?

	16.8 (IMDb Sentiment Analysis: Removing Stop Words) In Section 16.9’s recurrent neural network example, use the techniques you learned in the “Natural Language Processing” chapter to remove the stop words from the reviews in the training and testing sets. Does this affect our RNN model’s prediction accuracy?

	16.9 (IMDb Sentiment Analysis: Loading Pre-Trained Word Embeddings) Modify the IMDb RNN in Section 16.9 to use pre-trained Word2Vec embeddings, rather than an Embedding layer. For details on how to do this, see https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html. Re-execute the RNN. Does loading pre-trained word embeddings improve the model’s performance?

ConvnetJS Visualization

	16.10 (Run the Demo: Using the ConvnetJS Tool to Visualize an MNIST Convnet) Section 16.8 introduced Andrej Karpathy’s ConvnetJS browser-based deep-learning tool for training convolutional neural networks and observing their results. Visit the ConvnetJS website at https://cs.stanford.edu/people/karpathy/convnetjs/ and research its capabilities. Run the demo “Classify MNIST digits with a Convolutional Neural Network” and study the dashboard outputs described in Section 16.8 to get a better sense of what a convnet sees as it learns. Observe how changing the hyperparameters affects the model’s statistics, by modifying the layer parameters in the Instantiate a Network and Trainer section, then click the change network button to begin training with the updated model.

	16.11 (Run the Demo: Using the ConvnetJS Tool to Visualize a CIFAR10 Convnet) Keras’s bundled CIFAR10 dataset contains 32-by-32 color images. Repeat the preceding exercise for the demo “Classify CIFAR-10 with Convolutional Neural Network” which classifies the color images into the categories airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships and trucks.

Convolutional Neural Network Projects and Research

	16.12 (Project: Best MNIST Convnet Architectures) Research the best MNIST convnet architectures and implement them using Keras. How do the results compare with this chapter’s MNIST convnet?

	16.13 (Project: CIFAR10 Convnet) Keras’s bundled CIFAR10 dataset contains 32-by-32 color images labeled in 10 categories with 50,000 images for training and 10,000 for testing. Using the convnet techniques you learned in the MNIST case study, build, train and evaluate a convnet for CIFAR10. How accurate are the predictions compared to those you experienced with MNIST?

	16.14 (Research: Doppelganger—Find Someone Who Looks Just Like You) It’s often said that everyone has a doppelganger—that is, a look-alike. Research how deep learning convnets might be used to analyze images to find people who look alike. Find a Keras convnet that finds doppelgangers. Locate image datasets of people for training the model. Using a celebrity’s photo see what image(s) the model predicts as that celebrity’s doppelganger(s).

	16.15 (Project: Using Scikit-Learn to Evaluate the MNIST Model’s Performance) Use Scikit-learn’s classification report and confusion matrix to check this chapter’s MNIST model accuracy. Use Seaborn to visualize the confusion matrix.

	16.16 (Project: MNIST Handwritten Digits Model Tuning) Try adding a third pair of Conv2D and Pooling layers to this chapter’s convnet just before the Flatten layer. Use 256 neurons in the new Conv2D layer. How does this affect the model’s performance?

	16.17 (Project: Convnets and Dropout) Dropout layers have been shown to reduce overfitting and improve prediction performance. Generally they do this by randomly deactivating a percentage of the neurons in a given layer each time the weights are about to be updated. Dropout following convolutional layers is commonly set to 20–50%.107

,108 However, the optimal settings vary for each model and dataset.109 Also, dropout can be applied to other layers. Research the optimal settings for dropout layers and where they’re typically placed in a Keras model, then use at least one Dropout layer in this chapter’s convnet. Does it improve the model’s performance?
107. https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/.
108. http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf.
109. http://micsymposium.org/mics2018/proceedings/MICS_2018_paper_27.pdf.

	16.18 (Project: Replacing Pooling Layers with Additional Convnet Layers) Though pooling is a common technique to reduce overfitting, some research suggests that additional convolutional layers which use larger strides for their kernels can reduce dimensionality and overfitting without discarding features. Read the research paper “Striving for Simplicity: The All Convolutional Net” at https://arxiv.org/abs/1412.6806, then reimplement this chapter’s convnet using only Conv2D and Dense layers. How does this affect the model’s performance?

	16.19 (Project: EMNIST Handwritten Digits and Characters) The EMNIST dataset (https://www.nist.gov/itl/iad/image-group/emnist-dataset) is a more recent version of MNIST. EMNIST has 814,255 digit and character images in 62 unbalanced classes, meaning the dataset’s samples are not evenly split across the A–Z, a–z and 0–9 classes. The data is provided in a format used by software called Matlab. You can load it into Python via SciPy’s loadmat function (module scipy.io). The downloaded dataset contains several files—one for the entire dataset and several for various subsets.

Research EMNIST and search for and study existing Python EMNIST deep-learning models. Load the EMNIST data and prepare it for use with Keras. Use scikit-learn’s train_test_split function to split the data into training, validation and testing sets. Use 70% of the data for training, 10% for validation and 20% for testing. Reimplement this chapter’s MNIST convnet for use with EMNIST and its 62 classes. What prediction accuracy do you get?

	16.20 (Project: Predicting EMNIST Digits with a Pretrained MNIST Model) For this exercise, load the digits subset of EMNIST, which contains 280,000 digit images. Load the MNIST convnet model you trained in this chapter then use it to evaluate the prediction accuracy for the EMNIST digits. How accurate is your model with EMNIST?

	16.21 (Project: Predicting MNIST Digits with a Pretrained EMNIST Model) For this exercise, load Keras’s MNIST dataset and the EMNIST convnet model for both characters and digits you trained in Exercise 16.19. How accurate is your EMNIST model at predicting MNIST’s digits?

	16.22 (Project: Transfer Learning with MNIST and EMNIST Digits) Use scikit-learn’s train_test_split function to split the digits subset of EMNIST into training (70%), validation (10%) and testing (20%) sets. Load the MNIST convnet model you trained in this chapter, then use its fit method to continue training the model with the EMNIST training set you created. Pass the validation set to fit via the validation_data argument. Evaluate the updated model with the testing data. How accurate is your model compared to the previous exercise?

	16.23 (Project: Binary Classification—Cats vs. Dogs) Research and download Kaggle’s Cats vs. Dogs dataset (https://www.kaggle.com/c/dogs-vs-cats) and study deep learning models that use it. Implement your own deep-learning convnet that performs binary-classification using the techniques presented in this chapter. How well does your convnet predict whether an image is a cat or a dog compared to the other Cats vs. Dogs convnets you studied?

	16.24 (Project: Predicting Image Classes with Pretrained Keras Convnet Models) As we mentioned in Section 16.11, Keras comes with several pretrained convnet models. Investigate these online. Load one or more of the models as shown at https://keras.io/ and use them to predict the classes of objects in your own images.

	16.25 (Research: Image Captioning with Keras) Research how automated image captioning is accomplished. Investigate how to use Keras’s pretrained models to create image captions. Locate, study and execute existing Keras image-captioning models. Try them with your own images.

	16.26 (Research: Video Closed Captioning with Keras) Research how automated video closed captioning is accomplished. Investigate using Keras to implement a video closed-captioning system. Locate, study and execute existing Keras closed-captioning models. Try them with your own videos.

	16.27 (Research: OpenCV Object Detection, Face Detection and Facial Recognition) Research how OpenCV is being used to implement computer-vision systems for object detection, face detection, facial recognition and more. Try several Python-based OpenCV examples. Try these models on your own image data.

	16.28 (Research: Lip Reading with a Convolutional Neural Network) Research how deep learning and computer vision are being used to implement lip-reading systems. Locate, study and execute existing Keras lip-reading implementations. Try these on videos of your choice.

	16.29 (Research: Sign Language Recognition with Convnets) Research how deep learning is being used to implement sign-language recognition systems. Locate, study and execute existing Keras sign-language recognition implementations.

Recurrent Neural Network Projects and Research

	16.30 (Project: Improving the IMDb RNN) Our RNN example was 85.99% accurate. Try to improve our model’s performance by increasing the number of words per review to 500 and increasing the number of neurons in the LSTM layer to 256. How do these changes affect the accuracy of the model? Research RNN models online for additional ways to potentially improve performance.

	16.31 (Project: Spam Detector with LSTM) According to statista.com, over 50% of all emails are SPAM.110 Research SPAM email detection with deep learning and Keras. Use the Spambase Dataset (https://archive.ics.uci.edu/ml/datasets/spambase), Keras and the recurrent-neural-network techniques you learned in this chapter to implement a deep-learning binary-classification model that predicts whether or not emails are SPAM. Investigate other SPAM email datasets and try them with your model.
110. https://www.statista.com/statistics/420391/spam-email-traffic-share/.

	16.32 (Research: Recommendation Engines and Collaborative Filtering) Companies like Amazon, Netflix and Spotify use recommendation engines and collaborative filtering to help consumers make decisions, such as which products to purchase, music to listen to or movies to watch. Research recommendation engines, collaborative filtering and how these techniques can be implemented using Keras. One popular dataset you’ll encounter is the MovieLens 100K dataset, which has 100,000 ratings of 1700 movies from 1000 users. Locate Keras-based movie-recommendation models, study their code and try them.

	16.33 (Research: Anomaly Detection) Credit-card companies, insurance companies, cyber security companies and others use machine-learning and deep-learning techniques to detect fraud and security breaches by looking for anomalies in data. Research anomaly-detection techniques and how they can be implemented using Keras. Look for sample anomaly detection datasets. Locate, study and try existing Keras anomaly detection model.

	16.34 (Research: Time Series Forecasting with Keras and LSTM) Research time-series forecasting with Keras. Locate, study and run existing time-series forecasting examples.

	16.35 (Research: Text Summarization with RNNs) Document summarization involves analyzing a document and extracting content to produce a summary. For example, with today’s massive flow of information, this could be useful to busy doctors studying the latest medical advances in order to provide the best care. A summary could help them decide whether a paper is worth reading. Research how text summarization can be imlemented in Keras. Locate, study and try existing Keras text-summarization implementations.

	16.36 (Research: ChatBots and RNNs) Research chatbots and recurrent neural networks. Locate, study and run chatbot examples implemented with Keras RNNs.

Automated Deep Learning Project

	16.37 (Project: Auto-Keras Automated Deep Learning) Several of the preceding exercises ask you to tune your neural network architectures and hyperparameters. Research the deep-learning library Auto-Keras (https://autokeras.com/), which automates finding the appropriate deep-learning network configurations and hyperparameters. Then, use Auto-Keras to reimplement this chapter’s MNIST and IMDb examples. Compare the accuracy of the Auto-Keras models to those we presented in the chapter.

Reinforcement Learning Projects and Research

	16.38 (Research: Google’s AlphaZero) Research how Google’s AlphaZero uses reinforcement learning to learn how to play games.

	16.39 (Project: Reinforcement Learning, Deep Q-Learning, OpenAI Gym and Game Playing with the CartPole Environment) In Section 16.12, we briefly introduced reinforcement learning, Deep-Q Learning and OpenAI Gym. Research OpenAI Gym (https://gym.openai.com/), install it and execute its CartPole environment without any reinforcement learning implemented. Next, research solutions to the Cartpole problem using Deep-Q Learning and Keras, then study and run their code. Develop your own CartPole solution.

	16.40 (Research: Other OpenAI Gym Game-Playing Environments) OpenAI Gym has many Atari video-game environments (https://gym.openai.com/envs/#atari). Research and execute several of these. Locate Keras Deep Q-Learning implementations that play these games, then study and run their code.

	16.41 (Research: Pong from Pixels) Read Andrej Karpathy’s blog post “Pong from Pixels” (http://karpathy.github.io/2016/05/31/rl/). Download and try his OpenAI Gym Pong reinforcement-learning implementation at:

https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5

	16.42 (Research: Solving Mazes with Reinforcement Learning, Open AI Gym and Keras) Research how to solve mazes with reinforcement learning, OpenAI Gym and Keras. Download an OpenAI gym maze environment and try the maze reinforcement-learning solutions you find.

	16.43 (Research and Watch: Google DeepMind Agent Learning to Walk) Read the Google DeepMind team’s blog post https://deepmind.com/blog/producing-flexible-behaviours-simulated-environments/ in which they discuss teaching AI agents to walk. Watch the video of the process at: https://www.youtube.com/watch?v=hx_bgoTF7bs. For more details, see their research paper “Emergence of Locomotion Behaviours in Rich Environments” at https://arxiv.org/abs/1707.02286.

	16.44 (Research: Reinforcement Learning with Deep-Q Learning) Read the Google DeepMind team’s paper “Human-level control through deep reinforcement learning” at https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf.

	16.45 (Research: Self-Driving Cars) Research how deep-reinforcement learning is being used to help self-driving cars learn to drive.

	16.46 (Research: OpenAI Gym Retro) An emulator is software that enables your computer to emulate how a different computer system works. There are many video game emulators, for example, that allow you to execute old video games on current computers. Research OpenAI’s Gym Retro (https://github.com/openai/retro), which enables video game emulators to be used as OpenAI Gym environments. Gym Retro currently supports various Atari, NEC, Nintendo and Sega emulators. Try some of the environments. Look for and try Python reinforcement-learning solutions that use Gym Retro environments.

	16.47 (Research: Reinforcement Learning in Business and Industry) There are many use-cases for reinforcement learning in business and industry including optimizing debt collection111, self-training robots, optimizing warehouse space management, dynamic product pricing, stock trading, delivery route optimization, personalized shopping experiences, computing resource management, traffic light systems and more. Research how reinforcement learning is being used for each of these use-cases and investigate additional use-cases.
111. https://www.researchgate.net/publication/220272023_Optimizing_debt_collections_using_constrained_reinforcement_learning.

	16.48 (Research: Reinforcement Learning in Computational Neuroscience) Research how reinforcement learning is being used in computational neuroscience.112
112. http://www.princeton.edu/~yael/ICMLTutorial.pdf.

	16.49 (Research: 3D Tic-Tac-Toe) Research and try Keras Deep Q-Learning implementations of three-dimensional tic-tac-toe. Can you beat the algorithm?

Generative Deep Learning

	16.50 (Watch: Sunspring Movie Generated By an AI Bot) Research the movie Sunspring (https://en.wikipedia.org/wiki/Sunspring), which was written by an AI bot using a neural network. Watch the movie at http://www.thereforefilms.com/sunspring.html.

	16.51 (Demo: DeepDream—Psychedelic Art) Research Google’s DeepDream, which generates psychedelic images using information from their Inception convnet (which is one of the pretrained models bundled with Keras). Check out their online demo and gallery at https://deepdreamgenerator.com/. If you’re interested in the source code, see https://github.com/google/deepdream. Try your hand at developing art with this approach.

	16.52 (Research: Creative Deep Learning—Generative Adversarial Neworks) Generative Adversarial Networks (GANs)113

,114 are deep learning networks that can create realistic but fake images and video by using two competing deep-learning networks. Among their uses are creating elements and characters in video games, generating images of clothing models in different poses from an original image, applying different art styles to existing images, generating new art with the same style as existing art (neural style transfer), generating high-resolution images from low-resolution images and much more. Research applications of generative adversarial networks and try any demos you find. Investigate how such networks can be implemented in Keras.
113. https://en.wikipedia.org/wiki/Generative_adversarial_network.
114. https://skymind.ai/wiki/generative-adversarial-network-gan.

	16.53 (Research: Creative Deep Learning—Converting Your Writing to Shakespearian Style) Research how recurrent neural networks and LSTM can be used to generate text in different writing styles. Look for demos of converting your writing to Shakespearian style. Try any demos that you find.

Deep Fakes

	16.54 (Research: Detecting Deep Fakes) Artificial intelligence technologies are making it possible to create images that look like original photos of people who do not even exist and deep fakes—realistic fake videos of people that capture their look, their voice, body motions and facial expressions. Research the deep learning techniques that are being used to detect deep fakes.

	16.55 (Research: Ethics of Deep Fakes) Research the many ethical issues surrounding deep fakes.

Additional Research

	16.56 (Research: Evolutionary Learning) Research the recent developments in evolutionary learning—also called neuroevolution, evolutionary algorithms and evolutionary computation. Some people think these techniques might someday replace deep learning.

	16.57 (Research: Deep Learning in Poker) Research how deep learning is being used to implement poker-playing agents that can beat the world’s best poker players.

17 Big Data: Hadoop, Spark, NoSQL and IoT

Objectives

In this chapter you’ll:

	Understand what big data is and how quickly it’s getting bigger.

	Manipulate a SQLite relational database using Structured Query Language (SQL).

	Understand the four major types of NoSQL databases.

	Store tweets in a MongoDB NoSQL JSON document database and visualize them on a Folium map.

	Understand Apache Hadoop and how it’s used in big-data batch-processing applications.

	Build a Hadoop MapReduce application on Microsoft’s Azure HDInsight cloud service.

	Understand Apache Spark and how it’s used in high-performance, real-time big-data applications.

	Use Spark streaming to process data in mini-batches.

	Understand the Internet of Things (IoT) and the publish/subscribe model.

	Publish messages from a simulated Internet-connected device and visualize its messages in a dashboard.

	Subscribe to PubNub’s live Twitter and IoT streams and visualize the data.

Outline

	17.1 Introduction

	17.2 Relational Databases and Structured Query Language (SQL)

	17.3.1 A books Database

	17.3.2 SELECT Queries

	17.3.3 WHERE Clause

	17.3.4 ORDER BY Clause

	17.3.5 Merging Data from Multiple Tables: INNER JOIN

	17.3.6 INSERT INTO Statement

	17.3.7 UPDATE Statement

	17.3.8 DELETE FROM Statement

	17.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour

	17.3.1 NoSQL Key–Value Databases

	17.3.2 NoSQL Document Databases

	17.3.3 NoSQL Columnar Databases

	17.3.4 NoSQL Graph Databases

	17.3.5 NewSQL Databases

	17.4 Case Study: A MongoDB JSON Document Database

	17.4.1 Creating the MongoDB Atlas Cluster

	17.4.2 Streaming Tweets into MongoDB

	17.5 Hadoop

	17.5.1 Hadoop Overview

	17.6.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce

	17.5.3 Creating an Apache Hadoop Cluster in Microsoft Azure HDInsight

	17.5.4 Hadoop Streaming

	17.5.5 Implementing the Mapper

	17.5.6 Implementing the Reducer

	17.5.7 Preparing to Run the MapReduce Example

	17.5.8 Running the MapReduce Job

	17.6 Spark

	17.6.1 Spark Overview

	17.6.2 Docker and the Jupyter Docker Stacks

	17.6.3 Word Count with Spark

	17.6.4 Spark Word Count on Microsoft Azure

	17.7 Spark Streaming: Counting Twitter Hashtags Using the pyspark-notebook Docker Stack

	17.7.1 Streaming Tweets to a Socket

	17.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL

	17.8 Internet of Things and Dashboards

	17.8.1 Publish and Subscribe

	17.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard Dashboard

	17.8.3 Simulating an Internet-Connected Thermostat in Python

	17.8.4 Creating the Dashboard with Freeboard.io

	17.8.5 Creating a Python PubNub Subscriber

	17.9 Wrap-Up

	Exercises

17.1 Introduction

In Section 1.13, we introduced big data. In this capstone chapter, we discuss popular hardware and software infrastructure for working with big data, and we develop complete applications on several desktop and cloud-based big-data platforms.

Databases

Databases are critical big-data infrastructure for storing and manipulating the massive amounts of data we’re creating. They’re also critical for securely and confidentially maintaining that data, especially in the context of ever-stricter privacy laws such as HIPAA (Health Insurance Portability and Accountability Act) in the United States and GDPR (General Data Protection Regulation) for the European Union.

First, we’ll present relational databases, which store structured data in tables with a fixed-size number of columns per row. You’ll manipulate relational databases via Structured Query Language (SQL).

Most data produced today is unstructured data, like the content of Facebook posts and Twitter tweets, or semi-structured data like JSON and XML documents. Twitter processes each tweet’s contents into a semi-structured JSON document with lots of metadata, as you saw in the “Data Mining Twitter” chapter. Relational databases are not geared to the unstructured and semi-structured data in big-data applications. So, as big data evolved, new kinds of databases were created to handle such data efficiently. We’ll discuss the four major types of these NoSQL databases—key–value, document, columnar and graph databases. Also, we’ll overview NewSQL databases, which blend the benefits of relational and NoSQL databases. Many NoSQL and NewSQL vendors make it easy to get started with their products through free tiers and free trials, and typically in cloud-based environments that require minimal installation and setup. This makes it practical for you to gain big-data experience before “diving in.”

Apache Hadoop

Much of today’s data is so large that it cannot fit on one system. As big data grew, we needed distributed data storage and parallel processing capabilities to process the data more efficiently. This led to complex technologies like Apache Hadoop for distributed data processing with massive parallelism among clusters of computers where the intricate details are handled for you automatically and correctly. We’ll discuss Hadoop, its architecture and how it’s used in big-data applications. We’ll guide you through configuring a multi-node Hadoop cluster using the Microsoft Azure HDInsight cloud service, then use it to execute a Hadoop MapReduce job that you’ll implement in Python. Though HDInsight is not free, Microsoft gives you a generous new-account credit that should enable you to run the chapter’s code examples without incurring additional charges.

Apache Spark

As big-data processing needs grow, the information-technology community is continually looking for ways to increase performance. Hadoop executes tasks by breaking them into pieces that do lots of disk I/O across many computers. Spark was developed as a way to perform certain big-data tasks in memory for better performance.

We’ll discuss Apache Spark, its architecture and how it’s used in high-performance, real-time big-data applications. You’ll implement a Spark application using functional-style filter/map/reduce programming capabilities. First, you’ll build this example using a Jupyter Docker stack that runs locally on your desktop computer, then you’ll implement it using a cloud-based Microsoft Azure HDInsight multi-node Spark cluster. In the exercises, you’ll also do this example with the free Databricks Community Edition.

We’ll introduce Spark streaming for processing streaming data in mini-batches. Spark streaming gathers data for a short time interval you specify, then gives you that batch of data to process. You’ll implement a Spark streaming application that processes tweets. In that example, you’ll use Spark SQL to query data stored in a Spark DataFrame which, unlike pandas DataFrames, may contain data distributed over many computers in a cluster.

Internet of Things

We’ll conclude with an introduction to the Internet of Things (IoT)—billions of devices that are continuously producing data worldwide. We’ll introduce the publish/subscribe model that IoT and other types of applications use to connect data users with data providers. First, without writing any code, you’ll build a web-based dashboard using Free-board.io and a sample live stream from the PubNub messaging service. Next, you’ll simulate an Internet-connected thermostat which publishes messages to the free Dweet.io messaging service using the Python module Dweepy, then create a dashboard visualization of the data with Freeboard.io. Finally, you’ll build a Python client that subscribes to a sample live stream from the PubNub service and dynamically visualizes the stream with Seaborn and a Matplotlib FuncAnimation.

End-of-Chapter Exercises

The rich exercise set encourages you to work with more big-data cloud and desktop platforms, additional SQL and NoSQL databases, NewSQL databases and IoT platforms. One exercise asks you to work with Wikipedia as another popular big-data source. Another asks you to implement an IoT application with the popular Raspberry Pi device simulator.

Experience Cloud and Desktop Big-Data Software

Cloud vendors focus on service-oriented architecture (SOA) technology in which they provide “as-a-Service” capabilities that applications connect to and use in the cloud. Common services provided by cloud vendors include:1
1. For more “as-a-Service” acronyms, see https://en.wikipedia.org/wiki/Cloud_computing and https://en.wikipedia.org/wiki/As_a_service.

“As-a-Service” acronyms (note that several are the same)

	Big data as a Service (BDaaS)

Hadoop as a Service (HaaS)

Hardware as a Service (HaaS)

Infrastructure as a Service (IaaS)

	Platform as a Service (PaaS)

Software as a Service (SaaS)

Storage as a Service (SaaS)

Spark as a Service (SaaS)

You’ll get hands-on experience in this chapter with several cloud-based tools. In this chapter’s examples, you’ll use the following platforms:

	A free MongoDB Atlas cloud-based cluster.

	A multi-node Hadoop cluster running on Microsoft’s Azure HDInsight cloud-based service—for this you’ll use the credit that comes with a new Azure account.

	A free single-node Spark “cluster” running on your desktop computer, using a Jupyter Docker-stack container.

	A multi-node Spark cluster, also running on Microsoft’s Azure HDInsight—for this you’ll continue using your Azure new-account credit.

In the project exercises, you can explore various other options, including cloud-based services from Amazon Web Services, Google Cloud and IBM Watson, and the free desktop versions of the Hortonworks and Cloudera platforms (there also are cloud-based paid versions of these). You’ll also explore and use a single-node Spark cluster running on the free cloud-based Databricks Community Edition. Spark’s creators founded Databricks.

Always check the latest terms and conditions of each service you use. Some require you to enable credit-card billing to use their clusters. Caution: Once you allocate Microsoft Azure HDInsight clusters (or other vendors’ clusters), they incur costs. When you complete the case studies using services such as Microsoft Azure, be sure to delete your cluster(s) and their other resources (like storage). This will help extend the life of your Azure new-account credit.

Installation and setups vary across platforms and over time. Always follow each vendor’s latest steps. If you have questions, the best sources for help are the vendor’s support capabilities and forums. Also, check sites such as stackoverflow.com—other people may have asked questions about similar problems and received answers from the developer community.

Algorithms and Data

Algorithms and data are the core of Python programming. The first few chapters of this book were mostly about algorithms. We introduced control statements and discussed algorithm development. Data was small—primarily individual integers, floats and strings. Chapters 5–9 emphasized structuring data into lists, tuples, dictionaries, sets, arrays and files. In Chapter 11, we refocused on algorithms, using Big-O notation to help us quantify how hard algorithms work to do their jobs.

Data’s Meaning

But, what about the meaning of the data? Can we use the data to gain insights to better diagnose cancers? Save lives? Improve patients’ quality of life? Reduce pollution? Conserve water? Increase crop yields? Reduce damage from devastating storms and fires? Develop better treatment regimens? Create jobs? Improve company profitability?

The data-science case studies of Chapters 12–16 all focused on AI. In this chapter, we focus on the big-data infrastructure that supports AI solutions. As the data used with these technologies continues growing exponentially, we want to learn from that data and do so at blazing speed. We’ll accomplish these goals with a combination of sophisticated algorithms, hardware, software and networking designs. We’ve presented various machine-learning technologies, seeing that there are indeed great insights to be mined from data. With more data, and especially with big data, machine learning can be even more effective.

Big-Data Sources

The following articles and sites provide links to hundreds of free big data sources:

Big-data sources

	“Awesome-Public-Datasets,” GitHub.com, https://github.com/caesar0301/awesome-public-datasets

“AWS Public Datasets,” https://aws.amazon.com/public-datasets/

“Big Data And AI: 30 Amazing (And Free) Public Data Sources For 2018,” by B. Marr, https://www.forbes.com/sites/bernardmarr/2018/02/26/big-data-and-ai-30-amazing-and-free-public-data-sources-for-2018/

“Datasets for Data Mining and Data Science,” http://www.kdnuggets.com/datasets/index.html

“Exploring Open Data Sets,” https://datascience.berkeley.edu/open-data-sets/

“Free Big Data Sources,” Datamics, http://datamics.com/free-big-data-sources/

Hadoop Illuminated, Chapter 16. Publicly Available Big Data Sets, http://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html

“List of Public Data Sources Fit for Machine Learning,” https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/

“Open Data,” Wikipedia, https://en.wikipedia.org/wiki/Open_data

“Open Data 500 Companies,” http://www.opendata500.com/us/list/

“Other Interesting Resources/Big Data and Analytics Educational Resources and Research,” B. Marr, http://computing.derby.ac.uk/bigdatares/?page_id=223

“6 Amazing Sources of Practice Data Sets,” https://www.jigsawacademy.com/6-amazing-sources-of-practice-data-sets/

“20 Big Data Repositories You Should Check Out,” M. Krivanek, http://www.datasciencecentral.com/profiles/blogs/20-free-big-data-sources-everyone-should-check-out

“70+ Websites to Get Large Data Repositories for Free,” http://bigdata-madesimple.com/70-websites-to-get-large-data-repositories-for-free/

“Ten Sources of Free Big Data on Internet,” A. Brown, https://www.linkedin.com/pulse/ten-sources-free-big-data-internet-alan-brown

“Top 20 Open Data Sources,” https://www.linkedin.com/pulse/top-20-open-data-sources-zygimantas-jacikevicius

“We’re Setting Data, Code and APIs Free,” NASA, https://open.nasa.gov/open-data/

“Where Can I Find Large Datasets Open to the Public?” Quora, https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public

[image:] Self Check for Section 17.1

	(Fill-In) databases store structured data in tables with a fixed-size number of columns per row and are manipulated via Structured Query Language (SQL).

Answer: Relational.

	(Fill-In) Most data produced today is data, like the content of Facebook posts and Twitter tweets, or data like JSON and XML documents.

Answer: unstructured, semi-structured.

	(Fill-In) Cloud vendors focus on technology in which they provide “as-a-Service” capabilities that applications connect to and use in the cloud.

Answer: service-oriented architecture (SOA).

17.2 Relational Databases and Structured Query Language (SQL)

Databases are crucial, especially for big data. In Chapter 9, “Files and Exceptions,” we demonstrated sequential text-file processing, working with data from CSV files and working with JSON. Both are useful when most or all of a file’s data is to be processed. On the other hand, in transaction processing it is crucial to locate and, possibly, update an individual data item quickly.

A database is an integrated collection of data. A database management system (DBMS) provides mechanisms for storing and organizing data in a manner consistent with the database’s format. Database management systems allow for convenient access and storage of data without concern for the internal representation of databases.

Relational database management systems (RDBMSs) store data in tables and define relationships among the tables. Structured Query Language (SQL) is used almost universally with relational database systems to manipulate data and perform queries, which request information that satisfies given criteria.2
2. The writing in this chapter assumes that SQL is pronounced as “see-quel.” Some prefer “ess que el.”

Popular open-source RDBMSs include SQLite, PostgreSQL, MariaDB and MySQL. These can be downloaded and used freely by anyone. All have support for Python. We’ll use SQLite, which is bundled with Python. Some popular proprietary RDBMSs include Microsoft SQL Server, Oracle, Sybase and IBM Db2.

Tables, Rows and Columns

A relational database is a logical table-based representation of data that allows the data to be accessed without consideration of its physical structure. The following diagram shows a sample Employee table that might be used in a personnel system:

[image: An example of a table with a primary key, rows and columns.]

17.2-1 Full Alternative Text

The table’s primary purpose is to store employees’ attributes. Tables are composed of rows, each describing a single entity. Here, each row represents one employee. Rows are composed of columns containing individual attribute values. The table above has six rows. The Number column represents the primary key—a column (or group of columns) with a value that’s unique for each row. This guarantees that each row can be identified by its primary key. Examples of primary keys are social security numbers, employee ID numbers and part numbers in an inventory system—values in each of these are guaranteed to be unique. In this case, the rows are listed in ascending order by primary key, but they could be listed in descending order or no particular order at all.

Each column represents a different data attribute. Rows are unique (by primary key) within a table, but particular column values may be duplicated between rows. For example, three different rows in the Employee table’s Department column contain number 413.

Selecting Data Subsets

Different database users are often interested in different data and different relationships among the data. Most users require only subsets of the rows and columns. Queries specify which subsets of the data to select from a table. You use Structured Query Language (SQL) to define queries. For example, you might select data from the Employee table to create a result that shows where each department is located, presenting the data sorted in increasing order by department number. This result is shown below. We’ll discuss SQL shortly.

[image: A table has 2 columns; department and location.]

17.2-2 Full Alternative Text

SQLite

The code examples in the rest of Section 17.2 use the open-source SQLite database management system that’s included with Python, but most popular database systems have Python support. Each typically provides a module that adheres to Python’s Database Application Programming Interface (DB-API), which specifies common object and method names for manipulating any database.

[image: tick mark] Self Check

	(Fill-In) A table in a relational database consists of and .

Answer: rows, columns.

	(Fill-In) The key uniquely identifies each record in a table.

Answer: primary.

	(True/False) Python’s Database Application Programming Interface (DB-API) specifies common object and method names for manipulating any database.

Answer: True.

17.2.1 A books Database

In this section, we’ll present a books database containing information about several of our books. We’ll set up the database in SQLite via the Python Standard Library’s sqlite3 module, using a script provided in the ch17 example’s folder’s sql subfolder. Then, we’ll introduce the database’s tables. We’ll use this database in an IPython session to introduce various database concepts, including operations that create, read, update and delete data—the so-called CRUD operations. As we introduce the tables, we’ll use SQL and pandas DataFrames to show you each table’s contents. Then, in the next several sections, we’ll discuss additional SQL features.

Creating the books Database

In your Anaconda Command Prompt, Terminal or shell, change to the ch17 examples folder’s sql subfolder. The following sqlite3 command creates a SQLite database named books.db and executes the books.sql SQL script, which defines how to create the database’s tables and populates them with data:

sqlite3 books.db < books.sql

The notation < indicates that books.sql is input into the sqlite3 command. When the command completes, the database is ready for use. Begin a new IPython session.

Connecting to the Database in Python

To work with the database in Python, first call sqlite3’s connect function to connect to the database and obtain a Connection object:

In [1]: import sqlite3

In [2]: connection = sqlite3.connect('books.db')

authors Table

The database has three tables—authors, author_ISBN and titles. The authors table stores all the authors and has three columns:

	id—The author’s unique ID number. This integer column is defined as autoincremented—for each row inserted in the table, SQLite increases the id value by 1 to ensure that each row has a unique value. This column is the table’s primary key.

	first—The author’s first name (a string).

	last—The author’s last name (a string).

Viewing the authors Table’s Contents

Let’s use a SQL query and pandas to view the authors table’s contents:

In [3]: import pandas as pd

In [4]: pd.options.display.max_columns = 10

In [5]: pd.read_sql('SELECT * FROM authors', connection,

 ...: index_col=['id'])

 ...:

Out[5]:

 first last

id

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Dan Quirk

5 Alexander Wald

Pandas function read_sql executes a SQL query and returns a DataFrame containing the query’s results. The function’s arguments are:

	a string representing the SQL query to execute,

	the SQLite database’s Connection object, and in this case

	an index_col keyword argument indicating which column should be used as the DataFrame’s row indices (the author’s id values in this case).

As you’ll see momentarily, when index_col is not passed, index values starting from 0 appear to the left of the DataFrame’s rows.

A SQL SELECT query gets rows and columns from one or more tables in a database. In the query:

SELECT * FROM authors

the asterisk (*) is a wildcard indicating that the query should get all the columns from the authors table. We’ll discuss SELECT queries in more detail shortly.

titles Table

The titles table stores all the books and has four columns:

	isbn—The book’s ISBN (a string) is this table’s primary key. ISBN is an abbreviation for “International Standard Book Number,” which is a numbering scheme that publishers use to give every book a unique identification number.

	title—The book’s title (a string).

	edition—The book’s edition number (an integer).

	copyright—The book’s copyright year (a string).

Let’s use SQL and pandas to view the titles table’s contents:

In [6]: pd.read_sql('SELECT * FROM titles', connection)

Out[6]:

 isbn title edition copyright

0 0135404673 Intro to Python for CS and DS 1 2020

1 0132151006 Internet & WWW How to Program 5 2012

2 0134743350 Java How to Program 11 2018

3 0133976890 C How to Program 8 2016

4 0133406954 Visual Basic 2012 How to Program 6 2014

5 0134601548 Visual C# How to Program 6 2017

6 0136151574 Visual C++ How to Program 2 2008

7 0134448235 C++ How to Program 10 2017

8 0134444302 Android How to Program 3 2017

9 0134289366 Android 6 for Programmers 3 2016

author_ISBN Table

The author_ISBN table uses the following columns to associate authors from the authors table with their books in the titles table:

	id—An author’s id (an integer).

	isbn—The book’s ISBN (a string).

The id column is a foreign key, which is a column in this table that matches a primary-key column in another table—in particular, the authors table’s id column. The isbn column also is a foreign key—it matches the titles table’s isbn primary-key column. A database might have many tables. A goal when designing a database is to minimize data duplication among the tables. To do this, each table represents a specific entity, and foreign keys help link the data in multiple tables. The primary keys and foreign keys are designated when you create the database tables (in our case, in the books.sql script).

Together the id and isbn columns in this table form a composite primary key. Every row in this table uniquely matches one author to one book’s ISBN. This table contains many entries, so let’s use SQL and pandas to view just the first five rows:

In [7]: df = pd.read_sql('SELECT * FROM author_ISBN', connection)

In [8]: df.head()

Out[8]:

 id isbn

0 1 0134289366

1 2 0134289366

2 5 0134289366

3 1 0135404673

4 2 0135404673

Every foreign-key value must appear as the primary-key value in a row of another table so the DBMS can ensure that the foreign-key value is valid. This is known as the Rule of Referential Integrity. For example, the DBMS ensures that the id value for a particular author_ISBN row is valid by checking that there is a row in the authors table with that id as the primary key.

Foreign keys also allow related data in multiple tables to be selected from those tables and combined—this is known as joining the data. There is a one-to-many relationship between a primary key and a corresponding foreign key—one author can write many books, and similarly one book can be written by many authors. So a foreign key can appear many times in its table but only once (as the primary key) in another table. For example, in the books database, the ISBN 0134289366 appears in several author_ISBN rows because this book has several authors, but it appears only once as a primary key in titles.

Entity-Relationship (ER) Diagram

The following entity-relationship (ER) diagram for the books database shows the database’s tables and the relationships among them:

[image: An entity relationship diagram for the books database.]

17.2-3 Full Alternative Text

The first compartment in each box contains the table’s name, and the remaining compartments contain the table’s columns. The names in italic are primary keys. A table’s primary key uniquely identifies each row in the table. Every row must have a primary-key value, and that value must be unique in the table. This is known as the Rule of Entity Integrity. Again, for the author_ISBN table, the primary key is the combination of both columns—this is known as a composite primary key.

The lines connecting the tables represent the relationships among the tables. Consider the line between authors and author_ISBN. On the authors end there’s a 1, and on the author_ISBN end there’s an infinity symbol (∞). This indicates a one-to-many relationship. For each author in the authors table, there can be an arbitrary number of ISBNs for books written by that author in the author_ISBN table—that is, an author can write any number of books, so an author’s id can appear in multiple rows of the author_ISBN table. The relationship line links the id column in the authors table (where id is the primary key) to the id column in the author_ISBN table (where id is a foreign key). The line between the tables links the primary key to the matching foreign key.

The line between the titles and author_ISBN tables illustrates a one-to-many relationship—one book can be written by many authors. The line links the primary key isbn in table titles to the corresponding foreign key in table author_ISBN. The relationships in the entity-relationship diagram illustrate that the sole purpose of the author_ISBN table is to provide a many-to-many relationship between the authors and titles tables—an author can write many books, and a book can have many authors.

SQL Keywords

The following subsections continue our SQL presentation in the context of our books database, demonstrating SQL queries and statements using the SQL keywords in the following table. Other SQL keywords are beyond this text’s scope:

[image: A table lists S Q L keywords and a description of each. A table lists S Q L keywords and a description of each, continued from the previous page.]

17.2-4 Full Alternative Text

[image:] Self Check

	(Fill-In) A(n) key is a field in a table for which every entry has a unique value in another table and where the field in the other table is the primary key for that table.

Answer: foreign.

	(True/False) Every foreign-key value must appear as another table’s primary-key value so the DBMS can ensure that the foreign-key value is valid—this is known as the Rule of Entity Integrity.

Answer: False. This is known as the Rule of Referential Integrity. The Rule of Entity Integrity states that every row must have a primary-key value, and that value must be unique in the table.

17.2.2 SELECT Queries

The previous section used SELECT statements and the * wildcard character to get all the columns from a table. Typically, you need only a subset of the columns, especially in big data where you could have dozens, hundreds, thousands or more columns. To retrieve only specific columns, specify a comma-separated list of column names. For example, let’s retrieve only the columns first and last from the authors table:

In [9]: pd.read_sql('SELECT first, last FROM authors', connection)

Out[9]:

 first last

0 Paul Deitel

1 Harvey Deitel

2 Abbey Deitel

3 Dan Quirk

4 Alexander Wald

17.2.3 WHERE Clause

You’ll often select rows in a database that satisfy certain selection criteria, especially in big data where a database might contain millions or billions of rows. Only rows that satisfy the selection criteria (formally called predicates) are selected. SQL’s WHERE clause specifies a query’s selection criteria. Let’s select the title, edition and copyright for all books with copyright years greater than 2016. String values in SQL queries are delimited by single (') quotes, as in '2016':

In [10]: pd.read_sql("""SELECT title, edition, copyright

 ...: FROM titles

 ...: WHERE copyright > '2016'""", connection)

Out[10]:

 title edition copyright

0 Intro to Python for CS and DS 1 2020

1 Java How to Program 11 2018

2 Visual C# How to Program 6 2017

3 C++ How to Program 10 2017

4 Android How to Program 3 2017

Pattern Matching: Zero or More Characters

The WHERE clause may can contain the operators <, >, <=, >=, =, <> (not equal) and LIKE. Operator LIKE is used for pattern matching—searching for strings that match a given pattern. A pattern that contains the percent (%) wildcard character searches for strings that have zero or more characters at the percent character’s position in the pattern. For example, let’s locate all authors whose last name starts with the letter D:

In [11]: pd.read_sql("""SELECT id, first, last

 ...: FROM authors

 ...: WHERE last LIKE 'D%'""",

 ...: connection, index_col=['id'])

 ...:

Out[11]:

 first last

id

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

Pattern Matching: Any Character

An underscore (_) in the pattern string indicates a single wildcard character at that position. Let’s select the rows of all the authors whose last names start with any character, followed by the letter b, followed by any number of additional characters (specified by %):

In [12]: pd.read_sql("""SELECT id, first, last

 ...: FROM authors

 ...: WHERE first LIKE '_b%'""",

 ...: connection, index_col=['id'])

 ...:

Out[12]:

 first last

id

3 Abbey Deitel

[image: tick mark] Self Check

	(Fill-In) SQL keyword is followed by the selection criteria that specify the records to select in a query.

Answer: WHERE.

17.2.4 ORDER BY Clause

The ORDER BY clause sorts a query’s results into ascending order (lowest to highest) or descending order (highest to lowest), specified with ASC and DESC, respectively. The default sorting order is ascending, so ASC is optional. Let’s sort the titles in ascending order:

In [13]: pd.read_sql('SELECT title FROM titles ORDER BY title ASC',

 ...: connection)

Out[13]:

 title

0 Android 6 for Programmers

1 Android How to Program

2 C How to Program

3 C++ How to Program

4 Internet & WWW How to Program

5 Intro to Python for CS and DS

6 Java How to Program

7 Visual Basic 2012 How to Program

8 Visual C# How to Program

9 Visual C++ How to Program

Sorting By Multiple Columns

To sort by multiple columns, specify a comma-separated list of column names after the ORDER BY keywords. Let’s sort the authors’ names by last name, then by first name for any authors who have the same last name:

In [14]: pd.read_sql("""SELECT id, first, last

 ...: FROM authors

 ...: ORDER BY last, first""",

 ...: connection, index_col=['id'])

 ...:

Out[14]:

 first last

id

2 Harvey Deitel

3 Abbey Deitel

1 Paul Deitel

4 Dan Quirk

5 Alexander Wald

The sorting order can vary by column. Let’s sort the authors in descending order by last name and ascending order by first name for any authors who have the same last name:

In [15]: pd.read_sql("""SELECT id, first, last

 ...: FROM authors

 ...: ORDER BY last DESC, first ASC""",

 ...: connection, index_col=['id'])

 ...:

Out[15]:

 first last

id

5 Alexander Wald

4 Dan Quirk

3 Abbey Deitel

2 Harvey Deitel

1 Paul Deitel

Combining the WHERE and ORDER BY Clauses

The WHERE and ORDER BY clauses can be combined in one query. Let’s get the isbn, title, edition and copyright of each book in the titles table that has a title ending with 'How to Program' and sort them in ascending order by title.

In [16]: pd.read_sql("""SELECT isbn, title, edition, copyright

 ...: FROM titles

 ...: WHERE title LIKE '%How to Program'

 ...: ORDER BY title""", connection)

Out[16]:

 isbn title edition copyright

0 0134444302 Android How to Program 3 2017

1 0133976890 C How to Program 8 2016

2 0134448235 C++ How to Program 10 2017

3 0132151006 Internet & WWW How to Program 5 2012

4 0134743350 Java How to Program 11 2018

5 0133406954 Visual Basic 2012 How to Program 6 2014

6 0134601548 Visual C# How to Program 6 2017

7 0136151574 Visual C++ How to Program 2 2008

[image: tick mark] Self Check

	(Fill-In) SQL keyword specifies the order in which records are sorted in a query.

Answer: ORDER BY.

17.2.5 Merging Data from Multiple Tables: INNER JOIN

Recall that the books database’s author_ISBN table links authors to their corresponding titles. If we did not separate this information into individual tables, we’d need to include author information with each entry in the titles table. This would result in storing duplicate author information for authors who wrote multiple books.

You can merge data from multiple tables, referred to as joining the tables, with INNER JOIN. Let’s produce a list of authors accompanied by the ISBNs for books written by each author—because there are many results for this query, we show just the head of the result:

In [17]: pd.read_sql("""SELECT first, last, isbn

 ...: FROM authors

 ...: INNER JOIN author_ISBN

 ...: ON authors.id = author_ISBN.id

 ...: ORDER BY last, first""", connection).head()

Out[17]:

 first last isbn

0 Abbey Deitel 0132151006

1 Abbey Deitel 0133406954

2 Harvey Deitel 0134289366

3 Harvey Deitel 0135404673

4 Harvey Deitel 0132151006

The INNER JOIN’s ON clause uses a primary-key column in one table and a foreign-key column in the other to determine which rows to merge from each table. This query merges the authors table’s first and last columns with the author_ISBN table’s isbn column and sorts the results in ascending order by last then first.

Note the syntax authors.id (table_name.column_name) in the ON clause. This qualified name syntax is required if the columns have the same name in both tables. This syntax can be used in any SQL statement to distinguish columns in different tables that have the same name. In some systems, table names qualified with the database name can be used to perform cross-database queries. As always, the query can contain an ORDER BY clause.

[image: tick mark] Self Check

	(Fill-In) A(n) specifies the fields from multiple tables that should be compared to join the tables.

Answer: qualified name.

17.2.6 INSERT INTO Statement

To this point, you’ve queried existing data. Sometimes you’ll execute SQL statements that modify the database. To do so, you’ll use a sqlite3 Cursor object, which you obtain by calling the Connection’s cursor method:

In [18]: cursor = connection.cursor()

The pandas method read_sql actually uses a Cursor behind the scenes to execute queries and access the rows of the results.

The INSERT INTO statement inserts a row into a table. Let’s insert a new author named Sue Red into the authors table by calling Cursor method execute, which executes its SQL argument and returns the Cursor:

In [19]: cursor = cursor.execute("""INSERT INTO authors (first, last)

 ...: VALUES ('Sue', 'Red')""")

 ...:

The SQL keywords INSERT INTO are followed by the table in which to insert the new row and a comma-separated list of column names in parentheses. The list of column names is followed by the SQL keyword VALUES and a comma-separated list of values in parentheses. The values provided must match the column names specified both in order and type.

We do not specify a value for the id column because it’s an autoincremented column in the authors table—this was specified in the script books.sql that created the table. For every new row, SQLite assigns a unique id value that is the next value in the autoincremented sequence (i.e., 1, 2, 3 and so on). In this case, Sue Red is assigned id number 6. To confirm this, let’s query the authors table’s contents:

In [20]: pd.read_sql('SELECT id, first, last FROM authors',

 ...: connection, index_col=['id'])

 ...:

Out[20]:

 first last

id

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Dan Quirk

5 Alexander Wald

6 Sue Red

Note Regarding Strings That Contain Single Quotes

SQL delimits strings with single quotes ('). A string containing a single quote, such as O’Malley, must have two single quotes in the position where the single quote appears (e.g., 'O''Malley'). The first acts as an escape character for the second. Not escaping single-quote characters in a string that’s part of a SQL statement is a SQL syntax error.

17.2.7 UPDATE Statement

An UPDATE statement modifies existing values. Let’s assume that Sue Red’s last name is incorrect in the database and update it to 'Black':

In [21]: cursor = cursor.execute("""UPDATE authors SET last='Black'

 ...: WHERE last='Red' AND first='Sue'""")

The UPDATE keyword is followed by the table to update, the keyword SET and a comma-separated list of column_name = value pairs indicating the columns to change and their new values. The change will be applied to every row if you do not specify a WHERE clause. The WHERE clause in this query indicates that we should update only rows in which the last name is 'Red' and the first name is 'Sue'.

Of course, there could be multiple people with the same first and last name. To make a change to only one row, it’s best to use the row’s unique primary key in the WHERE clause. In this case, we could have specified:

WHERE id = 6

For statements that modify the database, the Cursor object’s rowcount attribute contains an integer value representing the number of rows that were modified. If this value is 0, no changes were made. The following confirms that the UPDATE modified one row:

In [22]: cursor.rowcount

Out[22]: 1

We also can confirm the update by listing the authors table’s contents:

In [23]: pd.read_sql('SELECT id, first, last FROM authors',

 ...: connection, index_col=['id'])

 ...:

Out[23]:

 first last

id

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Dan Quirk

5 Alexander Wald

6 Sue Black

17.2.8 DELETE FROM Statement

A SQL DELETE FROM statement removes rows from a table. Let’s remove Sue Black from the authors table using her author ID:

In [24]: cursor = cursor.execute('DELETE FROM authors WHERE id=6')

In [25]: cursor.rowcount

Out[25]: 1

The optional WHERE clause determines which rows to delete. If WHERE is omitted, all the table’s rows are deleted. Here’s the authors table after the DELETE operation:

In [26]: pd.read_sql('SELECT id, first, last FROM authors',

 ...: connection, index_col=['id'])

 ...:

Out[26]:

 first last

id

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Dan Quirk

5 Alexander Wald

Closing the Database

When you no longer need access to the database, you should call the Connection’s close method to disconnect from the database—not yet, though, as you’ll use the database in the next Self Check exercises:

connection.close()

SQL in Big Data

SQL’s importance is growing in big data. Later in this chapter, we’ll use Spark SQL to query data in a Spark DataFrame for which the data may be distributed over many computers in a Spark cluster. As you’ll see, Spark SQL looks much like the SQL presented in this section. You’ll also use Spark SQL in the exercises.

[image:] Self Check for Section 17.2

	(IPython Session) Select from the titles table all the titles and their edition numbers in descending order by edition number. Show only the first three results.

Answer:

In [27]: pd.read_sql("""SELECT title, edition FROM titles

 ...: ORDER BY edition DESC""", connection).head(3)

Out[28]:

 title edition

0 Java How to Program 11

1 C++ How to Program 10

2 C How to Program 8

	(IPython Session) Select from the authors table all authors whose first names start with 'A'.

Answer:

In [28]: pd.read_sql("""SELECT * FROM authors

 ...: WHERE first LIKE 'A%'""", connection)

Out[28]:

 id first last

0 3 Abbey Deitel

1 5 Alexander Wald

	(IPython Session) SQL’s NOT keyword reverses the value of a WHERE clause’s condition. Select from the titles table all titles that do not end with 'How to Program'.

Answer:

In [29]: pd.read_sql("""SELECT isbn, title, edition, copyright

 ...: FROM titles

 ...: WHERE title NOT LIKE '%How to Program'

 ...: ORDER BY title""", connection)

Out[29]:

 isbn title edition copyright

0 0134289366 Android 6 for Programmers 3 2016

1 0135404673 Intro to Python for CS and DS 1 2020

17.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour

For decades, relational database management systems have been the standard in data processing. However, they require structured data that fits into neat rectangular tables. As the size of the data and the number of tables and relationships increases, relational databases become more difficult to manipulate efficiently. In today’s big-data world, NoSQL and NewSQL databases have emerged to deal with the kinds of data storage and processing demands that traditional relational databases cannot meet. Big data requires massive databases, often spread across data centers worldwide in huge clusters of commodity computers. According to statista.com, there are currently over 8 million data centers worldwide.3
3. https://www.statista.com/statistics/500458/worldwide-datacenter-and-it-sites/.

NoSQL originally meant what its name implies. With the growing importance of SQL in big data—such as SQL on Hadoop and Spark SQL—NoSQL now is said to stand for “Not Only SQL.” NoSQL databases are meant for unstructured data, like photos, videos and the natural language found in e-mails, text messages and social-media posts, and semi-structured data like JSON and XML documents. Semi-structured data often wraps unstructured data with additional information called metadata. For example, YouTube videos are unstructured data, but YouTube also maintains metadata for each video, including who posted it, when it was posted, a title, a description, tags that help people discover the videos, privacy settings and more—all returned as JSON from the YouTube APIs. This metadata adds structure to the unstructured video data, making it semi-structured.

The next several subsections overview the four NoSQL database categories—key–value, document, columnar (also called column-based) and graph. In addition, we’ll overview NewSQL databases, which blend features of relational and NoSQL databases. In Section 17.4, we’ll present a case study in which we store and manipulate a large number of JSON tweet objects in a NoSQL document database, then summarize the data in an interactive visualization displayed on a Folium map of the United States. In the exercises, you can explore other types of NoSQL databases. You also can check out an implementation of the famous “six degrees of separation” problem in a NoSQL graph database.

17.3.1 NoSQL Key–Value Databases

Like Python dictionaries, key–value databases4 store key–value pairs, but they’re optimized for distributed systems and big-data processing. For reliability, they tend to replicate data in multiple cluster nodes. Some key–value databases, such as Redis, are implemented in memory for performance, and others store data on disk, such as HBase, which runs on top of Hadoop’s HDFS distributed file system. Other popular key–value databases include Amazon DynamoDB, Google Cloud Datastore and Couchbase. DynamoDB and Couchbase are multi-model databases that also support documents. HBase is also a column-oriented database.
4. https://en.wikipedia.org/wiki/Key-value_database.

17.3.2 NoSQL Document Databases

A document database5 stores semi-structured data, such as JSON or XML documents. In document databases, you typically add indexes for specific attributes, so you can more efficiently locate and manipulate documents. For example, let’s assume you’re storing JSON documents produced by IoT devices and each document contains a type attribute. You might add an index for this attribute so you can filter documents based on their types. Without indexes, you can still perform that task, it will just be slower because you have to search each document in its entirety to find the attribute.
5. https://en.wikipedia.org/wiki/Document-oriented_database.

The most popular document database (and most popular overall NoSQL database6) is MongoDB, whose name derives from a sequence of letters embedded in the word “humongous.” In an example, we’ll store a large number of tweets in MongoDB for processing. Recall that Twitter’s APIs return tweets in JSON format, so they can be stored directly in MongoDB. After obtaining the tweets we’ll summarize them in a pandas Data-Frame and on a Folium map. Other popular document databases include Amazon DynamoDB (also a key–value database), Microsoft Azure Cosmos DB and Apache CouchDB.
6. https://db-engines.com/en/ranking.

17.3.3 NoSQL Columnar Databases

In a relational database, a common query operation is to get a specific column’s value for every row. Because data is organized into rows, a query that selects a specific column can perform poorly. The database system must get every matching row, locate the required column and discard the rest of the row’s information. A columnar database7,8, also called a column-oriented database, is similar to a relational database, but it stores structured data in columns rather than rows. Because all of a column’s elements are stored together, selecting all the data for a given column is more efficient.
7. https://en.wikipedia.org/wiki/Columnar_database.
8. https://www.predictiveanalyticstoday.com/top-wide-columnar-store-databases/.

Consider our authors table in the books database:

 first last

id

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Dan Quirk

5 Alexander Wald

In a relational database, all the data for a row is stored together. If we consider each row as a Python tuple, the rows would be represented as (1, 'Paul', 'Deitel'), (2, 'Harvey', 'Deitel'), etc. In a columnar database, all the values for a given column would be stored together, as in (1, 2, 3, 4, 5), ('Paul', 'Harvey', 'Abbey', 'Dan', 'Alexander') and ('Deitel', 'Deitel', 'Deitel', 'Quirk', 'Wald'). The elements in each column are maintained in row order, so the value at a given index in each column belongs to the same row. Popular columnar databases include MariaDB ColumnStore and HBase.

17.3.4 NoSQL Graph Databases

A graph models relationships between objects.9 The objects are called nodes (or vertices) and the relationships are called edges. Edges are directional. For example, an edge representing an airline flight points from the origin city to the destination city, but not the reverse. A graph database10 stores nodes, edges and their attributes.
9. https://en.wikipedia.org/wiki/Graph_theory.
10. https://en.wikipedia.org/wiki/Graph_database.

If you use social networks, like Instagram, Snapchat, Twitter and Facebook, consider your social graph, which consists of the people you know (nodes) and the relationships between them (edges). Every person has their own social graph, and these are interconnected. The famous “six degrees of separation” problem, which you’ll explore in the exercises, says that any two people in the world are connected to one another by following a maximum of six edges in the worldwide social graph.11 Facebook’s algorithms use the social graphs of their billions of monthly active users12 to determine which stories should appear in each user’s news feed. By looking at your interests, your friends, their interests and more, Facebook predicts the stories they believe are most relevant to you.13
11. https://en.wikipedia.org/wiki/Six_degrees_of_separation.
12. https://zephoria.com/top-15-valuable-facebook-statistics/.
13. https://newsroom.fb.com/news/2018/05/inside-feed-news-feed-ranking/.

Many companies use similar techniques to create recommendation engines. When you browse a product on Amazon, they use a graph of users and products to show you comparable products people browsed before making a purchase. When you browse movies on Netflix, they use a graph of users and movies they liked to suggest movies that might be of interest to you.

One of the most popular graph databases is Neo4j. Many real-world use-cases for graph databases are provided at:

https://neo4j.com/graphgists/

With most of the use-cases, sample graph diagrams produced by Neo4j are shown. These visualize the relationships between the graph nodes. Check out Neo4j’s free PDF book, Graph Databases.14
14. https://neo4j.com/graph-databases-book-sx2.

17.3.5 NewSQL Databases

Key advantages of relational databases include their security and transaction support. In particular, relational databases typically use ACID (Atomicity, Consistency, Isolation, Durability)15 transactions:
15. https://en.wikipedia.org/wiki/ACID_(computer_science).

	Atomicity ensures that the database is modified only if all of a transaction’s steps are successful. If you go to an ATM to withdraw $100, that money is not removed from your account unless you have enough money to cover the withdrawal and there is enough money in the ATM to satisfy your request.

	Consistency ensures that the database state is always valid. In the withdrawal example above, your new account balance after the transaction will reflect precisely what you withdrew from your account (and possibly ATM fees).

	Isolation ensures that concurrent transactions occur as if they were performed sequentially. For example, if two people share a joint bank account and both attempt to withdraw money at the same time from two separate ATMs, one transaction must wait until the other completes.

	Durability ensures that changes to the database survive even hardware failures.

If you research benefits and disadvantages of NoSQL databases, you’ll see that NoSQL databases generally do not provide ACID support. The types of applications that use NoSQL databases typically do not require the guarantees that ACID-compliant databases provide. Many NoSQL databases typically adhere to the BASE (Basic Availability, Soft-state, Eventual consistency) model, which focuses more on the database’s availability. Whereas, ACID databases guarantee consistency when you write to the database, BASE databases provide consistency at some later point in time.

NewSQL databases blend the benefits of both relational and NoSQL databases for big-data processing tasks. Some popular NewSQL databases include VoltDB, MemSQL, Apache Ignite and Google Spanner.

[image:] Self Check for Section 17.3

	(True/False) Relational databases require unstructured or semi-structured data.

Answer: False. Relational databases require structured data that fits into rectangular tables.

	(Fill-In) NoSQL is now said to stand for .

Answer: Not Only SQL.

	(True/False) A NoSQL document database stores documents full of key–value pairs.

Answer: False. A NoSQL key–value database stores key–value pairs. A NoSQL document database stores semi-structured data, such as JSON or XML documents.

	(Fill-In) Which NoSQL database type is similar to a relational database? .

Answer: A columnar (or column-oriented) database.

	(Fill-In) Which NoSQL database type stores data in nodes and edges? .

Answer: A graph database.

17.4 Case Study: A MongoDB JSON Document Database

MongoDB is a document database capable of storing and retrieving JSON documents. Twitter’s APIs return tweets to you as JSON objects, which you can write directly into a MongoDB database. In this section, you’ll:

	use Tweepy to stream tweets about the 100 U.S. senators and store them into a MongoDB database,

	use pandas to summarize the top 10 senators by tweet activity and

	display an interactive Folium map of the United States with one popup marker per state that shows the state name and both senators’ names, their political parties and tweet counts.

You’ll use a free cloud-based MongoDB Atlas cluster, which requires no installation and currently allows you to store up to 512MB of data. To store more, you can download the MongoDB Community Server from:

https://www.mongodb.com/download-center/community

and run it locally or you can sign up for MongoDB’s paid Atlas service.

Installing the Python Libraries Required for Interacting with MongoDB

You’ll use the pymongo library to interact with MongoDB databases from your Python code. You’ll also need the dnspython library to connect to a MongoDB Atlas Cluster. To install these libraries, use the following commands:

conda install -c conda-forge pymongo

conda install -c conda-forge dnspython

keys.py

The ch17 examples folder’s TwitterMongoDB subfolder contains this example’s code and keys.py file. Edit this file to include your Twitter credentials and your OpenMapQuest key from the “Data Mining Twitter” chapter. After we discuss creating a MongoDB Atlas cluster, you’ll also need to add your MongoDB connection string to this file.

17.4.1 Creating the MongoDB Atlas Cluster

To sign up for a free account go to

https://mongodb.com

then enter your email address and click Get started free. On the next page, enter your name and create a password, then read their terms of service. If you agree, click Get started free on this page and you’ll be taken to the screen for setting up your cluster. Click Build my first cluster to get started.

They walk you through the getting started steps with popup bubbles that describe and point you to each task you need to complete. They provide default settings for their free Atlas cluster (M0 as they refer to it), so just give your cluster a name in the Cluster Name section, then click Create Cluster. At this point, they’ll take you to the Clusters page and begin creating your new cluster, which takes several minutes.

Next, a Connect to Atlas popup tutorial will appear, showing a checklist of additional steps required to get you up and running:

	Create your first database user—This enables you to log into your cluster.

	Whitelist your IP address—This is a security measure which ensures that only IP addresses you verify are allowed to interact with your cluster. To connect to this cluster from multiple locations (school, home, work, etc.), you’ll need to whitelist each IP address from which you intend to connect.

	Connect to your cluster—In this step, you’ll locate your cluster’s connection string, which will enable your Python code to connect to the server.

Creating Your First Database User

In the popup tutorial window, click Create your first database user to continue the tutorial, then follow the on-screen prompts to view the cluster’s Security tab and click + ADD NEW USER. In the Add New User dialog, create a username and password. Write these down—you’ll need them momentarily. Click Add User to return to the Connect to Atlas popup tutorial.

Whitelist Your IP Address

In the popup tutorial window, click Whitelist your IP address to continue the tutorial, then follow the on-screen prompts to view the cluster’s IP Whitelist and click + ADD IP ADDRESS. In the Add Whitelist Entry dialog, you can either add your computer’s current IP address or allow access from anywhere, which they do not recommend for production databases, but is OK for learning purposes. Click ALLOW ACCESS FROM ANYWHERE then click Confirm to return to the Connect to Atlas popup tutorial.

Connect to Your Cluster

In the popup tutorial window, click Connect to your cluster to continue the tutorial, then follow the on-screen prompts to view the cluster’s Connect to YourClusterName dialog. Connecting to a MongoDB Atlas database from Python requires a connection string. To get your connection string, click Connect Your Application, then click Short SRV connection string. Your connection string will appear below Copy the SRV address. Click COPY to copy the string. Paste this string into the keys.py file as mongo_connection_string’s value. Replace "<PASSWORD>" in the connection string with your password, and replace the database name "test" with "senators", which will be the database name in this example. At the bottom of the Connect to YourClusterName, click Close. You’re now ready to interact with your Atlas cluster.

17.4.2 Streaming Tweets into MongoDB

First we’ll present an interactive IPython session that connects to the MongoDB database, downloads current tweets via Twitter streaming and summarizes the top-10 senators by tweet count. Next, we’ll present class TweetListener, which handles the incoming tweets and stores their JSON in MongoDB. Finally, we’ll continue the IPython session by creating an interactive Folium map that displays information from the tweets we stored.

Use Tweepy to Authenticate with Twitter

First, let’s use Tweepy to authenticate with Twitter:

In [1]: import tweepy, keys

In [2]: auth = tweepy.OAuthHandler(

 ...: keys.consumer_key, keys.consumer_secret)

 ...: auth.set_access_token(keys.access_token,

 ...: keys.access_token_secret)

 ...:

Next, configure the Tweepy API object to wait if our app reaches any Twitter rate limits.

In [3]: api = tweepy.API(auth, wait_on_rate_limit=True,

 ...: wait_on_rate_limit_notify=True)

 ...:

Loading the Senators’ Data

We’ll use the information in the file senators.csv (located in the ch17 examples folder’s TwitterMongoDB subfolder) to track tweets to, from and about every U.S. senator. The file contains the senator’s two-letter state code, name, party, Twitter handle and Twitter ID.

Twitter enables you to follow specific users via their numeric Twitter IDs, but these must be submitted as string representations of those numeric values. So, let’s load senators.csv into pandas, convert the TwitterID values to strings (using Series method astype) and display several rows of data. In this case, we set 6 as the maximum number of columns to display. Later we’ll add another column to the DataFrame and this setting will ensure that all the columns are displayed, rather than a few with … in between:

In [4]: import pandas as pd

In [5]: senators_df = pd.read_csv('senators.csv')

In [6]: senators_df['TwitterID'] = senators_df['TwitterID'].astype(str)

In [7]: pd.options.display.max_columns = 6

In [8]: senators_df.head()

Out[8]:

 State Name Party TwitterHandle TwitterID

0 AL Richard Shelby R SenShelby 21111098

1 AL Doug Jomes D SenDougJones 941080085121175552

2 AK Lisa Murkowski R lisamurkowski 18061669

3 AK Dan Sullivan R SenDanSullivan 2891210047

4 AZ Jon Kyl R SenJonKyl 24905240

Configuring the MongoClient

To store the tweet’s JSON as documents in a MongoDB database, you must first connect to your MongoDB Atlas cluster via a pymongo MongoClient, which receives your cluster’s connection string as its argument:

In [9]: from pymongo import MongoClient

In [10]: atlas_client = MongoClient(keys.mongo_connection_string)

Now, we can get a pymongo Database object representing the senators database. The following statement creates the database if it does not exist:

In [11]: db = atlas_client.senators

Setting up Tweet Stream

Let’s specify the number of tweets to download and create the TweetListener. We pass the db object representing the MongoDB database to the TweetListener so it can write the tweets into the database. Depending on the rate at which people are tweeting about the senators, it may take minutes to hours to get 10,000 tweets. For testing purposes, you might want to use a smaller number:

In [12]: from tweetlistener import TweetListener

In [13]: tweet_limit = 10000

In [14]: twitter_stream = tweepy.Stream(api.auth,

 ...: TweetListener(api, db, tweet_limit))

 ...:

Starting the Tweet Stream

Twitter live streaming allows you to track up to 400 keywords and follow up to 5,000 Twitter IDs at a time. In this case, let’s track the senators’ Twitter handles and follow the senator’s Twitter IDs. This should give us tweets from, to and about each senator. To show you progress, we display the screen name and time stamp for each tweet received, and the total number of tweets so far. To save space, we show here only one of those tweet outputs and replace the user’s screen name with XXXXXXX:

In [15]: twitter_stream.filter(track=senators_df.TwitterHandle.tolist(),

 ...: follow=senators_df.TwitterID.tolist())

 ...:

 Screen name: XXXXXXX

 Created at: Sun Dec 16 17:19:19 +0000 2018

Tweets received: 1

...

Class TweetListener

For this example, we slightly modified class TweetListener from the “Data Mining Twitter” chapter. Much of the Twitter and Tweepy code shown below is identical to the code you saw previously, so we’ll focus on only the new concepts here:

1 # tweetlistener.py

2 """TweetListener downloads tweets and stores them in MongoDB."""

3 import json

4 import tweepy

5

6 class TweetListener(tweepy.StreamListener):

7 """Handles incoming Tweet stream."""

8

9 def __init__(self, api, database, limit=10000):

10 """Create instance variables for tracking number of tweets."""

11 self.db = database

12 self.tweet_count = 0

13 self.TWEET_LIMIT = limit # 10,000 by default

14 super().__init__(api) # call superclass's init

15

16 def on_connect(self):

17 """Called when your connection attempt is successful, enabling

18 you to perform appropriate application tasks at that point."""

19 print('Successfully connected to Twitter\n')

20

21 def on_data(self, data):

22 """Called when Twitter pushes a new tweet to you."""

23 self.tweet_count += 1 # track number of tweets processed

24 json_data = json.loads(data) # convert string to JSON

25 self.db.tweets.insert_one(json_data) # store in tweets collection

26 print(f' Screen name: {json_data["user"]["name"]}')

27 print(f' Created at: {json_data["created_at"]}')

28 print(f'Tweets received: {self.tweet_count}')

29

30 # if TWEET_LIMIT is reached, return False to terminate streaming

31 return self.tweet_count != self.TWEET_LIMIT

32

33 def on_error(self, status):

34 print(status)

35 return True

Previously, TweetListener overrode method on_status to receive Tweepy Status objects representing tweets. Here, we override the on_data method instead (lines 21–31). Rather than Status objects, on_data receives each tweet object’s raw JSON. Line 24 converts the JSON string received by on_data into a Python JSON object. Each MongoDB database contains one or more Collections of documents. In line 25, the expression

self.db.tweets

accesses the Database object db’s tweets Collection, creating it if it does not already exist. Line 25 uses the tweets Collection’s insert_one method to store the JSON object in the tweets collection.

Counting Tweets for Each Senator

Next, we’ll perform a full-text search on the collection of tweets and count the number of tweets containing each senator’s Twitter handle. To text search in MongoDB, you must create a text index for the collection.16 This specifies which document field(s) to search. Each text index is defined as a tuple containing the field name to search and the index type ('text'). MongoDB’s wildcard specifier ($**) indicates that every text field in a document (a JSON tweet object in our case) should be indexed for a full-text search:
16. For additional details on MongoDB index types, text indexes and operators, see: https://docs.mongodb.com/manual/indexes, https://docs.mongodb.com/manual/core/index-text and https://docs.mongodb.com/manual/reference/operator.

In [16]: db.tweets.create_index([('$**', 'text')])

Out[16]: '$**_text'

Once the index is defined, we can use the Collection’s count_documents method to count the total number of documents in the collection that contain the specified text. Let’s search the database’s tweets collection for every twitter handle in the senators_df Data-Frame’s TwitterHandle column:

In [17]: tweet_counts = []

In [18]: for senator in senators_df.TwitterHandle:

 ...: tweet_counts.append(db.tweets.count_documents(

 ...: {"$text": {"$search": senator}}))

 ...:

The JSON object passed to count_documents in this case indicates that we’re using the index named text to search for the value of senator.

Show Tweet Counts for Each Senator

Let’s create a copy of the DataFrame senators_df that contains the tweet_counts as a new column, then display the top-10 senators by tweet count:

In [19]: tweet_counts_df = senators_df.assign(Tweets=tweet_counts)

In [20]: tweet_counts_df.sort_values(by='Tweets',

 ...: ascending=False).head(10)

 ...:

Out[20]:

 State Name Party TwitterHandle TwitterID Tweets

78 SC Lindsey Graham R LindseyGrahamSC 432895323 1405

41 MA Elizabeth Warren D SenWarren 970207298 1249

8 CA Dianne Feinstein D SenFeinstein 476256944 1079

20 HI Brian Schatz D brianschatz 47747074 934

62 NY Chuck Schumer D SenSchumer 17494010 811

24 IL Tammy Duckworth D SenDuckworth 1058520120 656

13 CT Richard Blumenthal D SenBlumenthal 278124059 646

21 HI Mazie Hirono D maziehirono 92186819 628

86 UT Orrin Hatch R SenOrrinHatch 262756641 506

77 RI Sheldon Whitehouse D SenWhitehouse 242555999 350

Get the State Locations for Plotting Markers

Next, we’ll use the techniques you learned in the “Data Mining Twitter” chapter to get each state’s latitude and longitude coordinates. We’ll soon use these to place on a Folium map popup markers that contain the names and numbers of tweets mentioning each state’s senators.

The file state_codes.py contains a state_codes dictionary that maps two-letter state codes to their full state names. We’ll use the full state names with geopy’s Open-MapQuest geocode function to look up the location of each state.17 First, let’s import the libraries we need and the state_codes dictionary:
17. We use full state names because, during our testing, the two-letter state codes did not always return correct locations.

In [21]: from geopy import OpenMapQuest

In [22]: import time

In [23]: from state_codes import state_codes

Next, let’s get the geocoder object to translate location names into Location objects:

In [24]: geo = OpenMapQuest(api_key=keys.mapquest_key)

There are two senators from each state, so we can look up each state’s location once and use the Location object for both senators from that state. Let’s get the unique state names, then sort them into ascending order:

In [25]: states = tweet_counts_df.State.unique()

In [26]: states.sort()

The next two snippets use code from the “Data Mining Twitter” chapter to look up each state’s location. In snippet [28], we call the geocode function with the state name followed by ', USA' to ensure that we get United States locations,18 since there are places outside the United States. with the same names as U.S. states. To show progress, we display each new Location object’s string:
18. When we initially performed the geocoding for Washington state, OpenMapQuest returned Washington, D.C.’s location. So we modified state_codes.py to use “Washington State” instead.

In [27]: locations = []

In [28]: for state in states:

 ...: processed = False

 ...: delay = .1

 ...: while not processed:

 ...: try:

 ...: locations.append(

 ...: geo.geocode(state_codes[state] + ', USA'))

 ...: print(locations[-1])

 ...: processed = True

 ...: except: # timed out, so wait before trying again

 ...: print('OpenMapQuest service timed out. Waiting.')

 ...: time.sleep(delay)

 ...: delay += .1

 ...:

Alaska, United States of America

Alabama, United States of America

Arkansas, United States of America

...

Grouping the Tweet Counts by State

We’ll use the total number of tweets for the two senators in a state to color that state on the map. Darker colors will represent the states with higher tweet counts. To prepare the data for mapping, let’s use the pandas DataFrame method groupby to group the senators by state and calculate the total tweets by state:

In [30]: tweets_counts_by_state = tweet_counts_df.groupby(

 ...: 'State', as_index=False).sum()

 ...:

In [31]: tweets_counts_by_state.head()

Out[31]:

 State Tweets

0 AK 27

1 AL 2

2 AR 47

3 AZ 47

4 CA 1135

The as_index=False keyword argument in snippet [30] indicates that the state codes should be values in a column of the resulting GroupBy object, rather than the indices for the rows. The GroupBy object’s sum method totals the numeric data (the tweets by state). Snippet [31] displays several rows of the GroupBy object so you can see some of the results.

Creating the Map

Next, let’s create the map. You may want to adjust the zoom. On our system, the following snippet creates a map in which we initially can see only the continental United States. Remember that Folium maps are interactive, so once the map is displayed, you can scroll to zoom in and out or drag to see different areas, such as Alaska or Hawaii:

In [32]: import folium

In [33]: usmap = folium.Map(location=[39.8283, -98.5795],

 ...: zoom_start=4, detect_retina=True,

 ...: tiles='Stamen Toner')

 ...:

Creating a Choropleth to Color the Map

A choropleth shades areas in a map using the values you specify to determine color. Let’s create a choropleth that colors the states by the number of tweets containing their senators’ Twitter handles. First, save Folium’s us-states.json file at
https://raw.githubusercontent.com/python-visualization/folium/master/examples/data/us-states.json

to the folder containing this example. This file contains a JSON dialect called GeoJSON (Geographic JSON) that describes the boundaries of shapes—in this case, the boundaries of every U.S. state. The choropleth uses this information to shade each state. You can learn more about GeoJSON at http://geojson.org/.19 The following snippets create the choropleth, then add it to the map:
19. Folium provides several other GeoJSON files in its examples folder at https://github.com/python-visualization/folium/tree/master/examples/data. You also can create your own at http://geojson.io.

In [34]: choropleth = folium.Choropleth(

 ...: geo_data='us-states.json',

 ...: name='choropleth',

 ...: data=tweets_counts_by_state,

 ...: columns=['State', 'Tweets'],

 ...: key_on='feature.id',

 ...: fill_color='YlOrRd',

 ...: fill_opacity=0.7,

 ...: line_opacity=0.2,

 ...: legend_name='Tweets by State'

 ...:).add_to(usmap)

 ...:

In [35]: layer = folium.LayerControl().add_to(usmap)

In this case, we used the following arguments:

	geo_data='us-states.json'—This is the file containing the GeoJSON that specifies the shapes to color.

	name='choropleth'—Folium displays the Choropleth as a layer over the map. This is the name for that layer that will appear in the map’s layer controls, which enable you to hide and show the layers. These controls appear when you click the layers icon ([image: layer icon]) on the map

	data=tweets_counts_by_state—This is a pandas DataFrame (or Series) containing the values that determine the Choropleth colors.

	columns=['State', 'Tweets']—When the data is a DataFrame, this is a list of two columns representing the keys and the corresponding values used to color the Choropleth.

	key_on='feature.id'—This is a variable in the GeoJSON file to which the Choropleth binds the values in the columns argument.

	fill_color='YlOrRd'—This is a color map specifying the colors to use to fill in the states. Folium provides 12 colormaps: 'BuGn', 'BuPu', 'GnBu', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'RdPu', 'YlGn', 'YlGnBu', 'YlOrBr' and 'YlOrRd'. You should experiment with these to find the most effective and eye-pleasing ones for your application(s).

	fill_opacity=0.7—A value from 0.0 (transparent) to 1.0 (opaque) specifying the transparency of the fill colors displayed in the states.

	line_opacity=0.2—A value from 0.0 (transparent) to 1.0 (opaque) specifying the transparency of lines used to delineate the states.

	legend_name='Tweets by State'—At the top of the map, the Choropleth displays a color bar (the legend) indicating the value range represented by the colors. This legend_name text appears below the color bar to indicate what the colors represent.

The complete list of Choropleth keyword arguments is documented at:

http://python-visualization.github.io/folium/modules.html#folium.features.Choropleth

Creating the Map Markers for Each State

Next, we’ll create Markers for each state. To ensure that the senators are displayed in descending order by the number of tweets in each state’s Marker, let’s sort tweet_counts_df in descending order by the 'Tweets' column:

In [36]: sorted_df = tweet_counts_df.sort_values(

 ...: by='Tweets', ascending=False)

 ...:

The loop in the following snippet creates the Markers. First,

sorted_df.groupby('State')

groups sorted_df by 'State'. A DataFrame’s groupby method maintains the original row order in each group. Within a given group, the senator with the most tweets will be first, because we sorted the senators in descending order by tweet count in snippet [36]:

In [37]: for index, (name, group) in

enumerate(sorted_df.groupby('State')):

 ...: strings = [state_codes[name]] # used to assemble popup text

 ...:

 ...: for s in group.itertuples():

 ...: strings.append(

 ...: f'{s.Name} ({s.Party}); Tweets: {s.Tweets}')

 ...:

 ...: text = '
'.join(strings)

 ...: marker = folium.Marker(

 ...: (locations[index].latitude, locations[index].longitude),

 ...: popup=text)

 ...: marker.add_to(usmap)

 ...:

 ...:

We pass the grouped DataFrame to enumerate, so we can get an index for each group, which we’ll use to look up each state’s Location in the locations list. Each group has a name (the state code we grouped by) and a collection of items in that group (the two senators for that state). The loop operates as follows:

	We look up the full state name in the state_codes dictionary, then store it in the strings list—we’ll use this list to assemble the Marker’s popup text.

	The nested loop walks through the items in the group collection, returning each as a named tuple that contains a given senator’s data. We create a formatted string for the current senator containing the person’s name, party and number of tweets, then append that to the strings list.

	The Marker text can use HTML for formatting. We join the strings list’s elements, separating each from the next with an HTML
 element which creates a new line in HTML.

	We create the Marker. The first argument is the Marker’s location as a tuple containing the latitude and longitude. The popup keyword argument specifies the text to display if the user clicks the Marker.

	We add the Marker to the map.

Displaying the Map

Finally, let’s save the map into an HTML file

In [38]: usmap.save('SenatorsTweets.html')

Open the HTML file in your web browser to view and interact with the map. Recall that you can drag the map to see Alaska and Hawaii. Here we show the popup text for the South Carolina marker:

[image: An interactive map of the U S showing blue markers in each state. The popup text for the South Carolina marker reads, South Carolina, Lindsey Graham, R, Tweets: 1405, Tim Scott, R, Tweets, 11.]

An exercise at the end of the chapter asks you to use the sentiment-analysis techniques you learned in previous chapters to rate as positive, neutral or negative the sentiment expressed by people who send tweets (“tweeters”) mentioning each senator’s handle.

[image:] Self Check for Section 17.4

	(Write a Statement) Assuming that atlas_client is a pymongo MongoClient that’s connected to a MongoDB Atlas cluster, write a statement that creates a new database with the name football_players and stores the resulting object in db.

Answer: db = atlas_client.football_players.

	(Fill-In) A pymongo Collection object’s method inserts a new document into the Collection.

Answer: insert_one.

	(True/False) Once you’ve inserted documents in a Collection, you can immediately text-search their contents.

Answer: False. To perform a text search, you must first create a text index for the collection specifying which document field(s) to search.

	(Fill-In) A folium uses GeoJSON to add color to a map.

Answer: Choropleth.

17.5 Hadoop

The next several sections show how Apache Hadoop and Apache Spark deal with big-data storage and processing challenges via huge clusters of computers, massively parallel processing, Hadoop MapReduce programming and Spark in-memory processing techniques. Here, we discuss Apache Hadoop, a key big-data infrastructure technology that also serves as the foundation for many recent advancements in big-data processing and an entire ecosystem of software tools that are continually evolving to support today’s big-data needs.

17.5.1 Hadoop Overview

When Google was launched in 1998, the amount of online data was already enormous with approximately 2.4 million websites20—truly big data. Today there are now nearly two billion websites21 (almost a thousandfold increase) and Google is handling over two trillion searches per year!22 Having used Google search since its inception, our sense is that today’s responses are significantly faster.
20. http://www.internetlivestats.com/total-number-of-websites/.
21. http://www.internetlivestats.com/total-number-of-websites/.
22. http://www.internetlivestats.com/google-search-statistics/.

When Google was developing their search engine, they knew that they needed to return search results quickly. The only practical way to do this was to store and index the entire Internet using a clever combination of secondary storage and main memory. Computers of that time couldn’t hold that amount of data and could not analyze that amount of data fast enough to guarantee prompt search-query responses. So Google developed a clustering system, tying together vast numbers of computers—called nodes. Because having more computers and more connections between them meant greater chance of hardware failures, they also built in high levels of redundancy to ensure that the system would continue functioning even if nodes within clusters failed. The data was distributed across all these inexpensive “commodity computers.” To satisfy a search request, all the computers in the cluster searched in parallel the portion of the web they had locally. Then the results of those searches were gathered up and reported back to the user.

To accomplish this, Google needed to develop the clustering hardware and software, including distributed storage. Google publishes its designs, but did not open source its software. Programmers at Yahoo!, working from Google’s designs in the “Google File System” paper,23 then built their own system. They open-sourced their work and the Apache organization implemented the system as Hadoop. The name came from an elephant stuffed animal that belonged to a child of one of Hadoop’s creators.
23. http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf.

Two additional Google papers also contributed to the evolution of Hadoop—“MapReduce: Simplified Data Processing on Large Clusters”24 and “Bigtable: A Distributed Storage System for Structured Data,”25 which was the basis for Apache HBase (a NoSQL key–value and column-based database).26
24. http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf.
25. http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf.
26. Many other influential big-data-related papers (including the ones we mentioned) can be found at: https://bigdata-madesimple.com/research-papers-that-changed-the-world-of-big-data/.

HDFS, MapReduce and YARN

Hadoop’s key components are:

	HDFS (Hadoop Distributed File System) for storing massive amounts of data throughout a cluster, and

	MapReduce for implementing the tasks that process the data.

Earlier in the book we introduced basic functional-style programming and filter/map/reduce. Hadoop MapReduce is similar in concept, just on a massively parallel scale. A MapReduce task performs two steps—mapping and reduction. The mapping step, which also may include filtering, processes the original data across the entire cluster and maps it into tuples of key–value pairs. The reduction step then combines those tuples to produce the results of the MapReduce task. The key is how the MapReduce step is performed. Hadoop divides the data into batches that it distributes across the nodes in the cluster—anywhere from a few nodes to a Yahoo! cluster with 40,000 nodes and over 100,000 cores.27 Hadoop also distributes the MapReduce task’s code to the nodes in the cluster and executes the code in parallel on every node. Each node processes only the batch of data stored on that node. The reduction step combines the results from all the nodes to produce the final result. To coordinate this, Hadoop uses YARN (“yet another resource negotiator”) to manage all the resources in the cluster and schedule tasks for execution.
27. https://wiki.apache.org/hadoop/PoweredBy.

Hadoop Ecosystem

Though Hadoop began with HDFS and MapReduce, followed closely by YARN, it has grown into a large ecosystem that includes Spark (discussed in Sections 17.6–17.7) and many other Apache projects:28,29,30
28. https://hortonworks.com/ecosystems/.
29. https://readwrite.com/2018/06/26/complete-guide-of-hadoop-ecosystem-components/.
30. https://www.janbasktraining.com/blog/introduction-architecture-components-hadoop-ecosystem/.

	Ambari (https://ambari.apache.org)—Tools for managing Hadoop clusters.

	Drill (https://drill.apache.org)—SQL querying of non-relational data in Hadoop and NoSQL databases.

	Flume (https://flume.apache.org)—A service for collecting and storing (in HDFS and other storage) streaming event data, like high-volume server logs, IoT messages and more.

	HBase (https://hbase.apache.org)—A NoSQL database for big data with "billions of rows by31 millions of columns—atop clusters of commodity hardware."
31. We used the word “by” to replace “X” in the original text.

	Hive (https://hive.apache.org)—Uses SQL to interact with data in data warehouses. A data warehouse aggregates data of various types from various sources. Common operations include extracting data, transforming it and loading (known as ETL) into another database, typically so you can analyze it and create reports from it.

	Impala (https://impala.apache.org)—A database for real-time SQL-based queries across distributed data stored in Hadoop HDFS or HBase.

	Kafka (https://kafka.apache.org)—Real-time messaging, stream processing and storage, typically to transform and process high-volume streaming data, such as website activity and streaming IoT data.

	Pig (https://pig.apache.org)—A scripting platform that converts data analysis tasks from a scripting language called Pig Latin into MapReduce tasks.

	Sqoop (https://sqoop.apache.org)—Tool for moving structured, semi-structured and unstructured data between databases.

	Storm (https://storm.apache.org)—A real-time stream-processing system for tasks such as data analytics, machine learning, ETL and more.

	ZooKeeper (https://zookeeper.apache.org)—A service for managing cluster configurations and coordination between clusters.

	And more.

Hadoop Providers

Numerous cloud vendors provide Hadoop as a service, including Amazon EMR, Google Cloud DataProc, IBM Watson Analytics Engine, Microsoft Azure HDInsight and others. In addition, companies like Cloudera and Hortonworks (which at the time of this writing are merging) offer integrated Hadoop-ecosystem components and tools via the major cloud vendors. They also offer free downloadable environments that you can run on the desktop32 for learning, development and testing before you commit to cloud-based hosting, which can incur significant costs. We introduce MapReduce programming in the example in the following sections by using a Microsoft cloud-based Azure HDInsight cluster, which provides Hadoop as a service.
32. Check their significant system requirements first to ensure that you have the disk space and memory required to run them.

Hadoop 3

Apache continues to evolve Hadoop. Hadoop 333 was released in December of 2017 with many improvements, including better performance and significantly improved storage efficiency.34
33. For a list of features in Hadoop 3, see https://hadoop.apache.org/docs/r3.0.0/.
34. https://www.datanami.com/2018/10/18/is-hadoop-officially-dead/.

17.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce

In the next several subsections, you’ll create a cloud-based, multi-node cluster of computers using Microsoft Azure HDInsight. Then, you’ll use the service’s capabilities to demonstrate Hadoop MapReduce running on that cluster. The MapReduce task you’ll define will determine the length of each word in RomeoAndJuliet.txt (from the “Natural Language Processing” chapter), then summarize how many words of each length there are. After defining the task’s mapping and reduction steps, you’ll submit the task to your HDInsight cluster, and Hadoop will decide how to use the cluster of computers to perform the task.

17.5.3 Creating an Apache Hadoop Cluster in Microsoft Azure HDInsight

Most major cloud vendors have support for Hadoop and Spark computing clusters that you can configure to meet your application’s requirements. Multi-node cloud-based clusters typically are paid services, though most vendors provide free trials or credits so you can try out their services.

We want you to experience the process of setting up clusters and using them to perform tasks. So, in this Hadoop example, you’ll use Microsoft Azure’s HDInsight service to create cloud-based clusters of computers in which to test our examples. Go to

https://azure.microsoft.com/en-us/free

to sign up for an account. Microsoft requires a credit card for identity verification.

Various services are always free and some you can continue to use for 12 months. For information on these services see:

https://azure.microsoft.com/en-us/free/free-account-faq/

Microsoft also gives you a credit to experiment with their paid services, such as their HDInsight Hadoop and Spark services. Once your credits run out or 30 days pass (whichever comes first), you cannot continue using paid services unless you authorize Microsoft to charge your card.

Because you’ll use your new Azure account’s credit for these examples,35 we’ll discuss how to configure a low-cost cluster that uses less computing resources than Microsoft allocates by default.36 Caution: Once you allocate a cluster, it incurs costs whether you’re using it or not. So, when you complete this case study, be sure to delete your cluster(s) and other resources, so you don’t incur additional charges. For more information, see:
35. For Microsoft’s latest free account features, visit https://azure.microsoft.com/en-us/free/.
36. For Microsoft’s recommended cluster configurations, see https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-component-versioning#default-node-configuration-and-virtual-machine-sizes-for-clusters. If you configure a cluster that’s too small for a given scenario, when you try to deploy the cluster you’ll receive an error.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal

For Azure-related documentation and videos, visit:

	https://docs.microsoft.com/en-us/azure/—the Azure documentation.

	https://channel9.msdn.com/—Microsoft’s Channel 9 video network.

	https://www.youtube.com/user/windowsazure—Microsoft’s Azure channel on YouTube.

Creating an HDInsight Hadoop Cluster

The following link explains how to set up a cluster for Hadoop using the Azure HDInsight service:

https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-linux-create-cluster-get-started-portal

While following their Create a Hadoop cluster steps, please note the following:

	In Step 1, you access the Azure portal by logging into your account at

https://portal.azure.com

	In Step 2, Data + Analytics is now called Analytics, and the HDInsight icon and icon color have changed from what is shown in the tutorial.

	In Step 3, you must choose a cluster name that does not already exist. When you enter your cluster name, Microsoft will check whether that name is available and display a message if it is not. You must create a password. For the Resource group, you’ll also need to click Create new and provide a group name. Leave all other settings in this step as is.

	In Step 5: Under Select a Storage account, click Create new and provide a storage account name containing only lowercase letters and numbers. Like the cluster name, the storage account name must be unique.

When you get to the Cluster summary you’ll see that Microsoft initially configures the cluster as Head (2 x D12 v2), Worker (4 x D4 v2). At the time of this writing, the estimated cost-per-hour for this configuration was $3.11. This setup uses a total of 6 CPU nodes with 40 cores—far more than we need for demonstration purposes.

You can edit this setup to use fewer CPUs and cores, which also saves money. Let’s change the configuration to a four-CPU cluster with 16 cores that uses less powerful computers. In the Cluster summary:

	Click Edit to the right of Cluster size.

	Change the Number of Worker nodes to 2.

	Click Worker node size, then View all, select D3 v2 (this is the minimum CPU size for Hadoop nodes) and click Select.

	Click Head node size, then View all, select D3 v2 and click Select.

	Click Next and click Next again to return to the Cluster summary. Microsoft will validate the new configuration.

	When the Create button is enabled, click it to deploy the cluster.

It takes 20–30 minutes for Microsoft to “spin up” your cluster. During this time, Microsoft is allocating all the resources and software the cluster requires.

After the changes above, our estimated cost for the cluster was $1.18 per hour, based on average use for similarly configured clusters. Our actual charges were less than that. If you encounter any problems configuring your cluster, Microsoft provides HDInsight chat-based support at:

https://azure.microsoft.com/en-us/resources/knowledge-center/technical-chat/

17.5.4 Hadoop Streaming

For languages like Python that are not natively supported in Hadoop, you must use Hadoop streaming to implement your tasks. In Hadoop streaming, the Python scripts that implement the mapping and reduction steps use the standard input stream and standard output stream to communicate with Hadoop. Usually, the standard input stream reads from the keyboard and the standard output stream writes to the command line. However, these can be redirected (as Hadoop does) to read from other sources and write to other destinations. Hadoop uses the streams as follows:

	Hadoop supplies the input to the mapping script—called the mapper. This script reads its input from the standard input stream.

	The mapper writes its results to the standard output stream.

	Hadoop supplies the mapper’s output as the input to the reduction script—called the reducer—which reads from the standard input stream.

	The reducer writes its results to the standard output stream.

	Hadoop writes the reducer’s output to the Hadoop file system (HDFS).

The mapper and reducer terminology used above should sound familiar to you from our discussions of functional-style programming and filter, map and reduce in the “Sequences: Lists and Tuples” chapter.

17.5.5 Implementing the Mapper

In this section, you’ll create a mapper script that takes lines of text as input from Hadoop and maps them to key–value pairs in which each key is a word, and its corresponding value is 1. The mapper sees each word individually so, as far as it is concerned, there’s only one of each word. In the next section, the reducer will summarize these key–value pairs by key, reducing the counts to a single count for each key. By default, Hadoop expects the mapper’s output and the reducer’s input and output to be in the form of key–value pairs separated by a tab.

In the mapper script (length_mapper.py), the notation #! in line 1 tells Hadoop to execute the Python code using python3, rather than the default Python 2 installation. This line must come before all other comments and code in the file. At the time of this writing, Python 2.7.12 and Python 3.5.2 were installed. Note that because the cluster does not have Python 3.6 or higher, you cannot use f-strings in your code.

1 #!/usr/bin/env python3

2 # length_mapper.py

3 """Maps lines of text to key-value pairs of word lengths and 1."""

4 import sys

5

6 def tokenize_input():

7 """Split each line of standard input into a list of strings."""

8 for line in sys.stdin:

9 yield line.split()

10

11 # read each line in the the standard input and for every word

12 # produce a key-value pair containing the word, a tab and 1

13 for line in tokenize_input():

14 for word in line:

15 print(str(len(word)) + '\t1')

Generator function tokenize_input (lines 6–9) reads lines of text from the standard input stream and for each returns a list of strings. For this example, we are not removing punctuation or stop words as we did in the “Natural Language Processing” chapter.

When Hadoop executes the script, lines 13–15 iterate through the lists of strings from tokenize_input. For each list (line) and for every string (word) in that list, line 15 outputs a key–value pair with the word’s length as the key, a tab (\t) and the value 1, indicating that there is one word (so far) of that length. Of course, there probably are many words of that length. The MapReduce algorithm’s reduction step will summarize these key–value pairs, reducing all those with the same key to a single key–value pair with the total count.

 17.5.6 Implementing the Reducer

In the reducer script (length_reducer.py), function tokenize_input (lines 8–11) is a generator function that reads and splits the key–value pairs produced by the mapper. Again, the MapReduce algorithm supplies the standard input. For each line, tokenize_input strips any leading or trailing whitespace (such as the terminating newline) and yields a list containing the key and a value.

1 #!/usr/bin/env python3

2 # length_reducer.py

3 """Counts the number of words with each length."""

4 import sys

5 from itertools import groupby

6 from operator import itemgetter

7

8 def tokenize_input():

9 """Split each line of standard input into a key and a value."""

10 for line in sys.stdin:

11 yield line.strip().split('\t')

12

13 # produce key-value pairs of word lengths and counts separated by tabs

14 for word_length, group in groupby(tokenize_input(), itemgetter(0)):

15 try:

16 total = sum(int(count) for word_length, count in group)

17 print(word_length + '\t' + str(total))

18 except ValueError:

19 pass # ignore word if its count was not an integer

When the MapReduce algorithm executes this reducer, lines 14–19 use the groupby function from the itertools module to group all word lengths of the same value:

	The first argument calls tokenize_input to get the lists representing the key–value pairs.

	The second argument indicates that the key–value pairs should be grouped based on the element at index 0 in each list—that is the key.

Line 16 totals all the counts for a given key. Line 17 outputs a new key–value pair consisting of the word and its total. The MapReduce algorithm takes all the final word-count outputs and writes them to a file in HDFS—the Hadoop file system.

17.5.7 Preparing to Run the MapReduce Example

Next, you’ll upload files to the cluster so you can execute the example. In a Command Prompt, Terminal or shell, change to the folder containing your mapper and reducer scripts and the RomeoAndJuliet.txt file. We assume all three are in this chapter’s ch17 examples folder, so be sure to copy your RomeoAndJuliet.txt file to this folder first.

Copying the Script Files to the HDInsight Hadoop Cluster

Enter the following command to upload the files. Be sure to replace YourClusterName with the cluster name you specified when setting up the Hadoop cluster and press Enter only after you’ve typed the entire command. The colon in the following command is required and indicates that you’ll supply your cluster password when prompted. At that prompt, type the password you specified when setting up the cluster, then press Enter:

scp length_mapper.py length_reducer.py RomeoAndJuliet.txt

 sshuser@YourClusterName-ssh.azurehdinsight.net:

The first time you do this, you’ll be asked for security reasons to confirm that you trust the target host (that is, Microsoft Azure).

Copying RomeoAndJuliet into the Hadoop File System

For Hadoop to read the contents of RomeoAndJuliet.txt and supply the lines of text to your mapper, you must first copy the file into Hadoop’s file system. First, you must use ssh37 to log into your cluster and access its command line. In a Command Prompt, Terminal or shell, execute the following command. Be sure to replace YourClusterName with your cluster name. Again, you’ll be prompted for your cluster password:
37. Windows users: If ssh does not work for you, install and enable it as described at https://blogs.msdn.microsoft.com/powershell/2017/12/15/using-the-openssh-beta-in-windows-10-fall-creators-update-and-windows-server-1709/. After completing the installation, log out and log back in or restart your system to enable ssh.

ssh sshuser@YourClusterName-ssh.azurehdinsight.net

For this example, we’ll use the following Hadoop command to copy the text file into the already existing folder /examples/data that the cluster provides for use with Microsoft’s Azure Hadoop tutorials. Again, press Enter only when you’ve typed the entire command:

hadoop fs -copyFromLocal RomeoAndJuliet.txt

 /example/data/RomeoAndJuliet.txt

17.5.8 Running the MapReduce Job

Now you can run the MapReduce job for RomeoAndJuliet.txt on your cluster by executing the following command. For your convenience, we provided the text of this command in the file yarn.txt with this example, so you can copy and paste it. We reformatted the command here for readability:

yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-streaming.jar

 -D mapred.output.key.comparator.class=

 org.apache.hadoop.mapred.lib.KeyFieldBasedComparator

 -D mapred.text.key.comparator.options=-n

 -files length_mapper.py,length_reducer.py

 -mapper length_mapper.py

 -reducer length_reducer.py

 -input /example/data/RomeoAndJuliet.txt

 -output /example/wordlengthsoutput

The yarn command invokes the Hadoop’s YARN (“yet another resource negotiator”) tool to manage and coordinate access to the Hadoop resources the MapReduce task uses. The file hadoop-streaming.jar contains the Hadoop streaming utility that allows you to use Python to implement the mapper and reducer. The two -D options set Hadoop properties that enable it to sort the final key–value pairs by key (KeyFieldBasedComparator) in descending order numerically (-n; the minus indicates descending order) rather than alphabetically. The other command-line arguments are:

	-files—A comma-separated list of file names. Hadoop copies these files to every node in the cluster so they can be executed locally on each node.

	-mapper—The name of the mapper’s script file.

	-reducer—The name of the reducer’s script file

	-input—The file or directory of files to supply as input to the mapper.

	-output—The HDFS directory in which the output will be written. If this folder already exists, an error will occur.

The following output shows some of the feedback that Hadoop produces as the MapReduce job executes. We replaced chunks of the output with … to save space and bolded several lines of interest including:

	The total number of “input paths to process”—the 1 source of input in this example is the RomeoAndJuliet.txt file.

	The “number of splits”—2 in this example, based on the number of worker nodes in our cluster.

	The percentage completion information.

	File System Counters, which include the numbers of bytes read and written.

	Job Counters, which show the number of mapping and reduction tasks used and various timing information.

	Map-Reduce Framework, which shows various information about the steps performed.

packageJobJar: [] [/usr/hdp/2.6.5.3004-13/hadoop-

mapreduce/hadoopstreaming-2.7.3.2.6.5.3004-13.jar] /tmp/streamjob2764990629848702405.jar

tmpDir=null

...

18/12/05 16:46:25 INFO mapred.FileInputFormat: Total input paths to

process : 1

18/12/05 16:46:26 INFO mapreduce.JobSubmitter: number of splits:2

...

18/12/05 16:46:26 INFO mapreduce.Job: The url to track the job: http://

hn0-paulte.y3nghy5db2kehav5m0opqrjxcb.cx.internal.cloudapp.net:8088

/proxy/application_1543953844228_0025/

...

18/12/05 16:46:35 INFO mapreduce.Job: map 0% reduce 0%

18/12/05 16:46:43 INFO mapreduce.Job: map 50% reduce 0%

18/12/05 16:46:44 INFO mapreduce.Job: map 100% reduce 0%

18/12/05 16:46:48 INFO mapreduce.Job: map 100% reduce 100%

18/12/05 16:46:50 INFO mapreduce.Job: Job job_1543953844228_0025

completed successfully

18/12/05 16:46:50 INFO mapreduce.Job: Counters: 49

 File System Counters

 FILE: Number of bytes read=156411

 FILE: Number of bytes written=813764

...

 Job Counters

 Launched map tasks=2

 Launched reduce tasks=1

...

 Map-Reduce Framework

 Map input records=5260

 Map output records=25956

 Map output bytes=104493

 Map output materialized bytes=156417

 Input split bytes=346

 Combine input records=0

 Combine output records=0

 Reduce input groups=19

 Reduce shuffle bytes=156417

 Reduce input records=25956

 Reduce output records=19

 Spilled Records=51912

 Shuffled Maps =2

 Failed Shuffles=0

 Merged Map outputs=2

 GC time elapsed (ms)=193

 CPU time spent (ms)=4440

 Physical memory (bytes) snapshot=1942798336

 Virtual memory (bytes) snapshot=8463282176

 Total committed heap usage (bytes)=3177185280

...

18/12/05 16:46:50 INFO streaming.StreamJob: Output directory: /example/

wordlengthsoutput

Viewing the Word Counts

Hadoop MapReduce saves its output into HDFS, so to see the actual word counts you must look at the file in HDFS within the cluster by executing the following command:

hdfs dfs -text /example/wordlengthsoutput/part-00000

Here are the results of the preceding command:

18/12/05 16:47:19 INFO lzo.GPLNativeCodeLoader: Loaded native gpl library

18/12/05 16:47:19 INFO lzo.LzoCodec: Successfully loaded & initialized

native-lzo library [hadoop-lzo rev

b5efb3e531bc1558201462b8ab15bb412ffa6b89]

1 1140

2 3869

3 4699

4 5651

5 3668

6 2719

7 1624

8 1062

9 855

10 317

11 189

12 95

13 35

14 13

15 9

16 6

17 3

18 1

23 1

Deleting Your Cluster So You Do Not Incur Charges

Caution: Be sure to delete your cluster(s) and associated resources (like storage) so you don’t incur additional charges. In the Azure portal, click All resources to see your list of resources, which will include the cluster you set up and the storage account you set up. Both can incur charges if you do not delete them. Select each resource and click the Delete button to remove it. You’ll be asked to confirm by typing yes. For more information, see:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal

[image:] Self Check for Section 17.5

	(Fill-In) Hadoop’s key components are for storing massive amounts of data throughout a cluster and for implementing the tasks that process the data.

Answer: HDFS (Hadoop Distributed File System), MapReduce.

	(Fill-In) For learning, development and testing before you commit to cloud-based services, the vendors and offer free downloadable environments with integrated Hadoop ecosystem components.

Answer: Cloudera, Hortonworks.

	(Fill-In) The command launches a MapReduce task.

Answer: yarn.

	(Fill-In) To implement MapReduce tasks in languages like Python that are not natively supported, you must use Hadoop in which the mapper and reducer communicated with Hadoop via the .

Answer: streaming, standard input and standard output streams.

	(True/False) Hadoop MapReduce does not place requirements on the format of the mapper’s output and the reducer’s input and output.

Answer: False. MapReduce expects the mapper’s output and the reducer’s input and output to be in the form of key–value pairs in which each key and value are separated by a tab.

	(True/False) Hadoop MapReduce keeps the task’s final output in main memory for easy access.

Answer: False. In big-data processing, the results typically would not fit in main memory, so Hadoop MapReduce writes its final output to HDFS. To access the results, you must read them from the HDFS folder in which the output was written.

17.6 Spark

In this section, we’ll overview Apache Spark. We’ll use the Python PySpark library and Spark’s functional-style filter/map/reduce capabilities to implement a simple word count example that summarizes the word counts in Romeo and Juliet.

17.6.1 Spark Overview

When you process truly big data, performance is crucial. Hadoop is geared to disk-based batch processing—reading the data from disk, processing the data and writing the results back to disk. Many big-data applications demand better performance than is possible with disk-intensive operations. In particular, fast streaming applications that require either real-time or near-real-time processing won’t work in a disk-based architecture.

History

Spark was initially developed in 2009 at U. C. Berkeley and funded by DARPA (the Defense Advanced Research Projects Agency). Initially, it was created as a distributed execution engine for high-performance machine learning.38 It uses an in-memory architecture that “has been used to sort 100 TB of data 3X faster than Hadoop MapReduce on 1/10th of the machines”39 and runs some workloads up to 100 times faster than Hadoop.40 Spark’s significantly better performance on batch-processing tasks is leading many companies to replace Hadoop MapReduce with Spark.41

,

42

,

43
38. https://gigaom.com/2014/06/28/4-reasons-why-spark-could-jolt-hadoop-into-hyperdrive/.
39. https://spark.apache.org/faq.html.
40. https://spark.apache.org/.
41. https://bigdata-madesimple.com/is-spark-better-than-hadoop-map-reduce/.
42. https://www.datanami.com/2018/10/18/is-hadoop-officially-dead/.
43. https://blog.thecodeteam.com/2018/01/09/changing-face-data-analytics-fast-data-displaces-big-data/.

Architecture and Components

Though it was initially developed to run on Hadoop and use Hadoop components like HDFS and YARN, Spark can run standalone on a single computer (typically for learning and testing purposes), standalone on a cluster or using various cluster managers and distributed storage systems. For resource management, Spark runs on Hadoop YARN, Apache Mesos, Amazon EC2 and Kubernetes, and it supports many distributed storage systems, including HDFS, Apache Cassandra, Apache HBase and Apache Hive.44
44. http://spark.apache.org/.

At the core of Spark are resilient distributed datasets (RDDs), which you’ll use to process distributed data using functional-style programming. In addition to reading data from disk and writing data to disk, Hadoop uses replication for fault tolerance, which adds even more disk-based overhead. RDDs eliminate this overhead by remaining in memory—using disk only if the data will not fit in memory—and by not replicating data. Spark handles fault tolerance by remembering the steps used to create each RDD, so it can rebuild a given RDD if a cluster node fails.45
45. https://spark.apache.org/research.html.

Spark distributes the operations you specify in Python to the cluster’s nodes for parallel execution. Spark streaming enables you to process data as it’s received. Spark DataFrames, which are similar to pandas DataFrames, enable you to view RDDs as a collection of named columns. You can use Spark DataFrames with Spark SQL to perform queries on distributed data. Spark also includes Spark MLlib (the Spark Machine Learning Library), which enables you to perform machine-learning algorithms, like those you learned in the Chapters 15 and 16. We’ll use RDDs, Spark streaming, DataFrames and Spark SQL in the next few examples. You’ll explore Spark MLlib in the chapter exercises.

Providers

Hadoop providers typically also provide Spark support. In addition to the providers listed in Section 17.5, there are Spark-specific vendors like Databricks. They provide a “zero-management cloud platform built around Spark.”46 Their website also is an excellent resource for learning Spark. The paid Databricks platform runs on Amazon AWS or Microsoft Azure. Databricks also provides a free Databricks Community Edition, which is a great way to get started with both Spark and the Databricks environment. An exercise at the end of the chapter asks you to research Databricks Community Edition, then use it to reimplement the Spark examples in the upcoming sections.
46. https://databricks.com/product/faq.

17.6.2 Docker and the Jupyter Docker Stacks

In this section, we’ll show how to download and execute a Docker stack containing Spark and the PySpark module for accessing Spark from Python. You’ll write the Spark example’s code in a Jupyter Notebook. First, let’s overview Docker.

Docker

Docker is a tool for packaging software into containers (also called images) that bundle everything required to execute that software across platforms. Some software packages we use in this chapter require complicated setup and configuration. For many of these, there are preexisting Docker containers that you can download for free and execute locally on your desktop or notebook computers. This makes Docker a great way to help you get started with new technologies quickly and conveniently.

Docker also helps with reproducibility in research and analytics studies. You can create custom Docker containers that are configured with the versions of every piece of software and every library you used in your study. This would enable others to recreate the environment you used, then reproduce your work, and will help you reproduce your results at a later time. We’ll use Docker in this section to download and execute a Docker container that’s preconfigured to run Spark applications.

Installing Docker

You can install Docker for Windows 10 Pro or macOS at:

https://www.docker.com/products/docker-desktop

On Windows 10 Pro, you must allow the "Docker for Windows.exe" installer to make changes to your system to complete the installation process. To do so, click Yes when Windows asks if you want to allow the installer to make changes to your system.47 Windows 10 Home users must use Virtual Box as described at:
47. Some Windows users might have to follow the instructions under Allow specific apps to make changes to controlled folders at https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/customize-controlled-folders-exploit-guard.

https://docs.docker.com/machine/drivers/virtualbox/

Linux users should install Docker Community Edition as described at:

https://docs.docker.com/install/overview/

For a general overview of Docker, read the Getting started guide at:

https://docs.docker.com/get-started/

Jupyter Docker Stacks

The Jupyter Notebooks team has preconfigured several Jupyter “Docker stacks” containers for common Python development scenarios. Each enables you to use Jupyter Notebooks to experiment with powerful capabilities without having to worry about complex software setup issues. In each case, you can open JupyterLab in your web browser, open a notebook in JupyterLab and start coding. JupyterLab also provides a Terminal window that you can use in your browser like your computer’s Terminal, Anaconda Command Prompt or shell. Everything we’ve shown you in IPython to this point can be executed using IPython in JupyterLab’s Terminal window.

We’ll use the jupyter/pyspark-notebook Docker stack, which is preconfigured with everything you need to create and test Apache Spark apps on your computer. When combined with installing other Python libraries we’ve used throughout the book, you can implement most of this book’s examples using this container. To learn more about the available Docker stacks, visit:

https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html

Run Jupyter Docker Stack

Before performing the next step, ensure that JupyterLab is not currently running on your computer. Let’s download and run the jupyter/pyspark-notebook Docker stack. To ensure that you do not lose your work when you close the Docker container, we’ll attach a local file-system folder to the container and use it to save your notebook—Windows users should replace \ with ^. :

docker run -p 8888:8888 -p 4040:4040 -it --user root \

 -v fullPathToTheFolderYouWantToUse:/home/jovyan/work \

 jupyter/pyspark-notebook:14fdfbf9cfc1 start.sh jupyter lab

The first time you run the preceding command, Docker will download the Docker container named:

jupyter/pyspark-notebook:14fdfbf9cfc1

The notation ":14fdfbf9cfc1" indicates the specific jupyter/pyspark-notebook container to download. At the time of this writing, 14fdfbf9cfc1 was the newest version of the container. Specifying the version as we did here helps with reproducibility. Without the ":14fdfbf9cfc1" in the command, Docker will download the latest version of the container, which might contain different software versions and might not be compatible with the code you’re trying to execute. The Docker container is nearly 6GB, so the initial download time will depend on your Internet connection’s speed.

Opening JupyterLab in Your Browser

Once the container is downloaded and running, you’ll see a statement in your Command Prompt, Terminal or shell window like:

Copy/paste this URL into your browser when you connect for the first

time, to login with a token:

 http://(bb00eb337630 or 127.0.0.1):8888/?token=

 9570295e90ee94ecef75568b95545b7910a8f5502e6f5680

Copy the long hexadecimal string (the string on your system will differ from this one):

9570295e90ee94ecef75568b95545b7910a8f5502e6f5680

then open http://localhost:8888/lab in your browser (localhost corresponds to 127.0.0.1 in the preceding output) and paste your token in the Password or token field. Click Log in to be taken to the JupyterLab interface. If you accidentally close your browser, go to http://localhost:8888/lab to continue your session.

In JupyterLab running in this Docker container, the work folder in the Files tab at the left side of the JupyterLab interface represents the folder you attached to the container in the docker run command’s -v option. From this folder, you can open the notebook files we provide for you. Any new notebooks or other files you create will be saved to this folder by default. Because the Docker container’s work folder is connected to a folder on your computer, any files you create in JupyterLab will remain on your computer, even if you decide to delete the Docker container.

Accessing the Docker Container’s Command Line

Each Docker container has a command-line interface like the one you’ve used to run IPython throughout this book. Via this interface, you can install Python packages into the Docker container and even use IPython as you’ve done previously.

Open a separate Anaconda Command Prompt, Terminal or shell and list the currently running Docker containers with the command:

docker ps

The output of this command is wide, so the lines of text will likely wrap, as in:

CONTAINER ID IMAGE COMMAND

 CREATED STATUS PORTS

 NAMES

f54f62b7e6d5 jupyter/pyspark-notebook:14fdfbf9cfc1 "tini -g --

/bin/bash" 2 minutes ago Up 2 minutes 0.0.0.0:8888->8888/tcp

 friendly_pascal

In the last line of our system’s output under the column head NAMES in the third line is the name that Docker randomly assigned to the running container—friendly_pascal—the name on your system will differ. To access the container’s command line, execute the following command, replacing container_name with the running container’s name:

docker exec -it container_name /bin/bash

The Docker container uses Linux under the hood, so you’ll see a Linux prompt where you can enter commands.

The app in this section will use features of the NLTK and TextBlob libraries you used in the “Natural Language Processing” chapter. Neither is preinstalled in the Jupyter Docker stacks. To install NLTK and TextBlob enter the command:

conda install -c conda-forge nltk textblob

Stopping and Restarting a Docker Container

Every time you start a container with docker run, Docker gives you a new instance that does not contain any libraries you installed previously. For this reason, you should keep track of your container name, so you can use it from another Anaconda Command Prompt, Terminal or shell window to stop the container and restart it. The command

docker stop container_name

will shut down the container. The command

docker restart container_name

will restart the container. Docker also provides a GUI app called Kitematic that you can use to manage your containers, including stopping and restarting them. You can get the app from https://kitematic.com/ and access it through the Docker menu. The following user guide overviews how to manage containers with the tool:

https://docs.docker.com/kitematic/userguide/

17.6.3 Word Count with Spark

In this section, we’ll use Spark’s filtering, mapping and reducing capabilities to implement a simple word count example that summarizes the words in Romeo and Juliet. You can work with the existing notebook named RomeoAndJulietCounter.ipynb in the SparkWordCount folder (into which you should copy your RomeoAndJuliet.txt file from the “Natural Language Processing” chapter), or you can create a new notebook, then enter and execute the snippets we show.

Loading the NLTK Stop Words

In this app, we’ll use techniques you learned in the “Natural Language Processing” chapter to eliminate stop words from the text before counting the words’ frequencies. First, download the NLTK stop words:

[1]: import nltk

 nltk.download('stopwords')

[nltk_data] Downloading package stopwords to /home/jovyan/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

[1]: True

Next, load the stop words:

[2]: from nltk.corpus import stopwords

 stop_words = stopwords.words('english')

Configuring a SparkContext

A SparkContext (from module pyspark) object gives you access to Spark’s capabilities in Python. Many Spark environments create the SparkContext for you, but in the Jupyter pyspark-notebook Docker stack, you must create this object.

First, let’s specify the configuration options by creating a SparkConf object (from module pyspark). The following snippet calls the object’s setAppName method to specify the Spark application’s name and calls the object’s setMaster method to specify the Spark cluster’s URL. The URL 'local[*]' indicates that Spark is executing on your local computer (as opposed to a cloud-based cluster), and the asterisk indicates that Spark should run our code using the same number of threads as there are cores on the computer:

[3]: from pyspark import SparkConf

 configuration = SparkConf().setAppName('RomeoAndJulietCounter')\

 .setMaster('local[*]')

Threads enable a single node cluster to execute portions of the Spark tasks concurrently to simulate the parallelism that Spark clusters provide. When we say that two tasks are operating concurrently, we mean that they’re both making progress at once—typically by executing a task for a short burst of time, then allowing another task to execute. When we say that two tasks are operating in parallel, we mean that they’re executing simultaneously, which is one of the key benefits of Hadoop and Spark executing on cloud-based clusters of computers.

Next, create the SparkContext, passing the SparkConf as its argument:

[4]: from pyspark import SparkContext

 sc = SparkContext(conf=configuration)

Reading the Text File and Mapping It to Words

You work with a SparkContext using functional-style programming techniques, like filtering, mapping and reduction, applied to a resilient distributed dataset (RDD). An RDD takes data stored throughout a cluster in the Hadoop file system and enables you to specify a series of processing steps to transform the data in the RDD. These processing steps are lazy (Chapter 5)—they do not perform any work until you indicate that Spark should process the task.

The following snippet specifies three steps:

	SparkContext method textFile loads the lines of text from RomeoAndJuliet.txt and returns it as an RDD (from module pyspark) of strings that represent each line.

	RDD method map uses its lambda argument to remove all punctuation with TextBlob’s strip_punc function and to convert each line of text to lowercase. This method returns a new RDD on which you can specify additional tasks to perform.

	RDD method flatMap uses its lambda argument to map each line of text into its words and produces a single list of words, rather than the individual lines of text. The result of flatMap is a new RDD representing all the words in Romeo and Juliet.

[5]: from textblob.utils import strip_punc

 tokenized = sc.textFile('RomeoAndJuliet.txt')\

 .map(lambda line: strip_punc(line, all=True).lower())\

 .flatMap(lambda line: line.split())

Removing the Stop Words

Next, let’s use RDD method filter to create a new RDD with no stop words remaining:

[6]: filtered = tokenized.filter(lambda word: word not in stop_words)

Counting Each Remaining Word

Now that we have only the non-stop-words, we can count the number of occurrences of each word. To do so, we first map each word to a tuple containing the word and a count of 1. This is similar to what we did in Hadoop MapReduce. Spark will distribute the reduction task across the cluster’s nodes. On the resulting RDD, we then call the method reduceByKey, passing the operator module’s add function as an argument. This tells method reduceByKey to add the counts for tuples that contain the same word (the key):

[7]: from operator import add

 word_counts = filtered.map(lambda word: (word, 1)).reduceByKey(add)

Locating Words with Counts Greater Than or Equal to 60

Since there are hundreds of words in Romeo and Juliet, let’s filter the RDD to keep only those words with 60 or more occurrences:

[8]: filtered_counts = word_counts.filter(lambda item: item[1] >= 60)

Sorting and Displaying the Results

At this point, we’ve specified all the steps to count the words. When you call RDD method collect, Spark initiates all the processing steps we specified above and returns a list containing the final results—in this case, the tuples of words and their counts. From your perspective, everything appears to execute on one computer. However, if the SparkContext is configured to use a cluster, Spark will divide the tasks among the cluster’s worker nodes for you. In the following snippet, sort in descending order (reverse=True) the list of tuples by their counts (itemgetter(1)).

The following snippet calls method collect to obtain the results and sorts those results in descending order by word count:

[9]: from operator import itemgetter

 sorted_items = sorted(filtered_counts.collect(),

 key=itemgetter(1), reverse=True)

Finally, let’s display the results. First, we determine the word with the most letters so we can right-align all the words in a field of that length, then we display each word and its count:

[10]: max_len = max([len(word) for word, count in sorted_items])

 for word, count in sorted_items:

 print(f'{word:>{max_len}}: {count}')

[10]: romeo: 298

 thou: 277

 juliet: 178

 thy: 170S

 nurse: 146

 capulet: 141

 love: 136

 thee: 135

 shall: 110

 lady: 109

 friar: 104

 come: 94

 mercutio: 83

 good: 80

 benvolio: 79

 enter: 75

 go: 75

 i’ll: 71

 tybalt: 69

 death: 69

 night: 68

 lawrence: 67

 man: 65

 hath: 64

 one: 60

17.6.4 Spark Word Count on Microsoft Azure

As we said previously, we want to expose you to both tools you can use for free and real-world development scenarios. In this section, you’ll implement the Spark word-count example on a Microsoft Azure HDInsight Spark cluster.

Create an Apache Spark Cluster in HDInsight Using the Azure Portal

The following link explains how to set up a Spark cluster using the HDInsight service:

https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-jupyter-spark-sql-use-portal

While following the Create an HDInsight Spark cluster steps, note the same issues we listed in the Hadoop cluster setup earlier in this chapter and for the Cluster type select Spark.

Again, the default cluster configuration provides more resources than you need for our examples. So, in the Cluster summary, perform the steps shown in the Hadoop cluster setup to change the number of worker nodes to 2 and to configure the worker and head nodes to use D3 v2 computers. When you click Create, it takes 20 to 30 minutes to configure and deploy your cluster.

Install Libraries into a Cluster

If your Spark code requires libraries that are not installed in the HDInsight cluster, you’ll need to install them. To see what libraries are installed by default, you can use ssh to log into your cluster (as we showed earlier in the chapter) and execute the command:

/usr/bin/anaconda/envs/py35/bin/conda list

Since your code will execute on multiple cluster nodes, libraries must be installed on every node. Azure requires you to create a Linux shell script that specifies the commands to install the libraries. When you submit that script to Azure, it validates the script, then executes it on every node. Linux shell scripts are beyond this book’s scope, and the script must be hosted on a web server from which Azure can download the file. So, we created an install script for you that installs the libraries we use in the Spark examples. Perform the following steps to install these libraries:

	In the Azure portal, select your cluster.

	In the list of items under the cluster’s search box, click Script Actions.

	Click Submit new to configure the options for the library installation script. For the Script type select Custom, for the Name specify libraries and for the Bash script URI use: http://deitel.com/bookresources/IntroToPython/install_libraries.sh

	Check both Head and Worker to ensure that the script installs the libraries on all the nodes.

	Click Create.

When the cluster finishes executing the script, if it executed successfully, you’ll see a green check next to the script name in the list of script actions. Otherwise, Azure will notify you that there were errors.

Copying RomeoAndJuliet.txt to the HDInsight Cluster

As you did in the Hadoop demo, let’s use the scp command to upload to the cluster the RomeoAndJuliet.txt file you used in the “Natural Language Processing” chapter. In a Command Prompt, Terminal or shell, change to the folder containing the file (we assume this chapter’s ch17 folder), then enter the following command. Replace YourClusterName with the name you specified when creating your cluster and press Enter only when you’ve typed the entire command. The colon is required and indicates that you’ll supply your cluster password when prompted. At that prompt, type the password you specified when setting up the cluster, then press Enter:

scp RomeoAndJuliet.txt sshuser@YourClusterName-ssh.azurehdinsight.net:

Next, use ssh to log into your cluster and access its command line. In a Command Prompt, Terminal or shell, execute the following command. Be sure to replace YourClusterName with your cluster name. Again, you’ll be prompted for your cluster password:

ssh sshuser@YourClusterName-ssh.azurehdinsight.net

To work with the RomeoAndJuliet.txt file in Spark, first use the ssh session to copy the file into the cluster’s Hadoop’s file system by executing the following command. Once again, we’ll use the already existing folder /examples/data that Microsoft includes for use with HDInsight tutorials. Again, press Enter only when you’ve typed the entire command:

hadoop fs -copyFromLocal RomeoAndJuliet.txt

 /example/data/RomeoAndJuliet.txt

Accessing Jupyter Notebooks in HDInsight

At the time of this writing, HDInsight uses the old Jupyter Notebook interface, rather than the newer JupyterLab interface shown earlier. For a quick overview of the old interface see:

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html

To access Jupyter Notebooks in HDInsight, in the Azure portal select All resources, then your cluster. In the Overview tab, select Jupyter notebook under Cluster dashboards. This opens a web browser window and asks you to log in. Use the username and password you specified when setting up the cluster. If you did not specify a username, the default is admin. Once you log in, Jupyter displays a folder containing PySpark and Scala subfolders. These contain Python and Scala Spark tutorials.

Uploading the RomeoAndJulietCounter.ipynb Notebook

You can create new notebooks by clicking New and selecting PySpark3, or you can upload existing notebooks from your computer. For this example, let’s upload the previous section’s RomeoAndJulietCounter.ipynb notebook and modify it to work with Azure. To do so, click the Upload button, navigate to the ch17 example folder’s SparkWordCount folder, select RomeoAndJulietCounter.ipynb and click Open. This displays the file in the folder with an Upload button to its right. Click that button to place the notebook in the current folder. Next, click the notebook’s name to open it in a new browser tab. Jupyter will display a Kernel not found dialog. Select PySpark3 and click OK. Do not run any cells yet.

Modifying the Notebook to Work with Azure

Perform the following steps, executing each cell as you complete the step:

	The HDInsight cluster will not allow NLTK to store the downloaded stop words in NLTK’s default folder because it’s part of the system’s protected folders. In the first cell, modify the call nltk.download('stopwords') as follows to store the stop words in the current folder ('.'):

nltk.download('stopwords', download_dir='.')

When you execute the first cell, Starting Spark application appears below the cell while HDInsight sets up a SparkContext object named sc for you. When this task is complete, the cell’s code executes and downloads the stop words.

	In the second cell, before loading the stop words, you must tell NLTK that they’re located in the current folder. Add the following statement after the import statement to tell NLTK to search for its data in the current folder:

nltk.data.path.append('.')

	Because HDInsight sets up the SparkContext object for you, the third and fourth cells of the original notebook are not needed, so you can delete them. To do so, either click inside it and select Delete Cells from Jupyter’s Edit menu, or click in the white margin to the cell’s left and type dd.

	In the next cell, you must specify the location of RomeoAndJuliet.txt in the underlying Hadoop file system. Replace the string 'RomeoAndJuliet.txt' with the string

'wasb:///example/data/RomeoAndJuliet.txt'

The notation wasb:/// indicates that RomeoAndJuliet.txt is stored in a Windows Azure Storage Blob (WASB)—Azure’s interface to the HDFS file system.

	Because Azure currently uses Python 3.5.x, it does not support f-strings. So, in the last cell, replace the f-string with the following older-style Python string formatting using the string method format:

print('{:>{width}}: {}'.format(word, count, width=max_len))

You’ll see the same final results as in the previous section.

Caution: Be sure to delete your cluster and other resources when you’re done with them, so you do not incur charges. For more information, see:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal

Note that when you delete your Azure resources, your notebooks will be deleted as well. You can download the notebook you just executed by selecting File > Download as > Notebook (.ipynb) in Jupyter.

[image:] Self Check for Section 17.6

	(Discussion) How does Docker help with reproducibility?

Answer: Docker enables you to create custom Docker containers that are configured with the versions of every piece of software and every library used in your study. This enables others to recreate the environment you used, then prove your work.

	(Fill-In) Spark uses an architecture for performance.

Answer: in-memory

	(True/False) Hadoop and Spark both implement fault tolerance by replicating data.

Answer: False. Hadoop implements fault tolerance by replicating data across nodes. Spark implements fault tolerance by remembering the steps used to create each RDD so it can be rebuilt if a cluster node fails.

	(True/False) Spark’s significantly better performance on batch-processing tasks is leading many companies to replace Hadoop MapReduce with Spark.

Answer: True.

	(True/False) You work with a SparkContext using functional-style filter, map and reduce operations, applied to a resilient distributed dataset (RDD).

Answer: True.

	(Discussion) Assuming that sc is a SparkContext, what does the following code do? Are any results produced when the statement completes?

from textblob.utils import strip_punc

tokenized = sc.textFile('RomeoAndJuliet.txt')\

 .map(lambda line: strip_punc(line, all=True).lower())\

 .flatMap(lambda line: line.split())

Answer: This code first creates an RDD from a text file. Next it uses RDD method map to produce a new RDD containing the lines of text with punctuation removed and in all lowercase letters. Finally, it produces another new RDD representing the individual words in all the lines. This statement specifies only processing steps, which are lazy, so no results will be produced until you call an RDD method like collect that initiates the processing steps.

17.7 Spark Streaming: Counting Twitter Hashtags Using the pyspark-notebook Docker Stack

In this section, you’ll create and run a Spark streaming application in which you’ll receive a stream of tweets on the topic(s) you specify and summarize the top-20 hashtags in a bar chart that updates every 10 seconds. For this purpose of this example, you’ll use the Jupyter Docker container from the first Spark example.

There are two parts to this example. First, using the techniques from the “Data Mining Twitter” chapter, you’ll create a script that streams tweets from Twitter. Then, we’ll use Spark streaming in a Jupyter Notebook to read the tweets and summarize the hashtags.

The two parts will communicate with one another via networking sockets—a low-level view of client/server networking in which a client app communicates with a server app over a network using techniques similar to file I/O. A program can read from a socket or write to a socket similarly to reading from a file or writing to a file. The socket represents one endpoint of a connection. In this case, the client will be a Spark application, and the server will be a script that receives streaming tweets and sends them to the Spark app.

Launching the Docker Container and Installing Tweepy

For this example, you’ll install the Tweepy library into the Jupyter Docker container. Follow Section 17.6.2’s instructions for launching the container and installing Python libraries into it. Use the following command to install Tweepy:

pip install tweepy

17.7.1 Streaming Tweets to a Socket

The script starttweetstream.py contains a modified version of the TweetListener class from the “Data Mining Twitter” chapter. It streams the specified number of tweets and sends them to a socket on the local computer. When the tweet limit is reached, the script closes the socket. You’ve already used Twitter streaming, so we’ll focus only on what’s new. Ensure that the file keys.py (in the ch17 folder’s SparkHashtagSummarizer subfolder) contains your Twitter credentials.

Executing the Script in the Docker Container

In this example, you’ll use JupyterLab’s Terminal window to execute starttweetstream.py in one tab, then use a notebook to perform the Spark task in another tab. With the Jupyter pyspark-notebook Docker container running, open

http://localhost:8888/lab

in your web browser. In JupyterLab, select File > New > Terminal to open a new tab containing a Terminal. This is a Linux-based command line. Typing the ls command and pressing Enter lists the current folder’s contents. By default, you’ll see the container’s work folder.

To execute starttweetstream.py, you must first navigate to the SparkHashtagSummarizer folder with the command48:
48. Windows users should note that Linux uses / rather than \ to separate folders and that file and folder names are case sensitive.

cd work/SparkHashtagSummarizer

You can now execute the script with the command of the form

ipython starttweetstream.py number_of_tweets search_terms

where number_of_tweets specifies the total number of tweets to process and search_terms one or more space-separated strings to use for filtering tweets. For example, the following command would stream 1000 tweets about football:

ipython starttweetstream.py 1000 football

At this point, the script will display "Waiting for connection" and will wait until Spark connects to begin streaming the tweets.

starttweetstream.py import Statements

For discussion purposes, we’ve divided starttweetstream.py into pieces. First, we import the modules used in the script. The Python Standard Library’s socket module provides the capabilities that enable Python apps to communicate via sockets.

1 # starttweetstream.py

2 """Script to get tweets on topic(s) specified as script argument(s)

3 and send tweet text to a socket for processing by Spark."""

4 import keys

5 import socket

6 import sys

7 import tweepy

8

Class TweetListener

Once again, you’ve seen most of the code in class TweetListener, so we focus only on what’s new here:

	Method __init__ (lines 12–17) now receives a connection parameter representing the socket and stores it in the self.connection attribute. We use this socket to send the hashtags to the Spark application.

	In method on_status (lines 24–44), lines 27–32 extract the hashtags from the Tweepy Status object, convert them to lowercase and create a space-separated string of the hashtags to send to Spark. The key statement is line 39:

self.connection.send(hashtags_string.encode('utf-8'))

which uses the connection object’s send method to send the tweet text to whatever application is reading from that socket. Method send expects as its argument a sequence of bytes. The string method call encode('utf-8') converts the string to bytes. Spark will automatically read the bytes and reconstruct the strings.

9 class TweetListener(tweepy.StreamListener):

10 """Handles incoming Tweet stream."""

11

12 def __init__(self, api, connection, limit=10000):

13 """Create instance variables for tracking number of tweets."""

14 self.connection = connection

15 self.tweet_count = 0

16 self.TWEET_LIMIT = limit # 10,000 by default

17 super().__init__(api) # call superclass's init

18

19 def on_connect(self):

20 """Called when your connection attempt is successful, enabling

21 you to perform appropriate application tasks at that point."""

22 print('Successfully connected to Twitter\n')

23

24 def on_status(self, status):

25 """Called when Twitter pushes a new tweet to you."""

26 # get the hashtags

27 hashtags = []

28

29 for hashtag_dict in status.entities['hashtags']:

30 hashtags.append(hashtag_dict['text'].lower())

31

32 hashtags_string = ' '.join(hashtags) + '\n'

33 print(f'Screen name: {status.user.screen_name}:')

34 print(f' Hashtags: {hashtags_string}')

35 self.tweet_count += 1 # track number of tweets processed

36

37 try:

38 # send requires bytes, so encode the string in utf-8 format

39 self.connection.send(hashtags_string.encode('utf-8'))

40 except Exception as e:

41 print(f'Error: {e}')

42

43 # if TWEET_LIMIT is reached, return False to terminate streaming

44 return self.tweet_count != self.TWEET_LIMIT

45

46 def on_error(self, status):

47 print(status)

48 return True

49

Main Application

Lines 50–80 execute when you run the script. You’ve connected to Twitter to stream tweets previously, so here we discuss only what’s new in this example.

Line 51 gets the number of tweets to process by converting the command-line argument sys.argv[1] to an integer. Recall that element 0 represents the script’s name.

50 if __name__ == '__main__':

51 tweet_limit = int(sys.argv[1]) # get maximum number of tweets

Line 52 calls the socket module’s socket function, which returns a socket object that we’ll use to wait for a connection from the Spark application.

52 client_socket = socket.socket() # create a socket

53

Line 55 calls the socket object’s bind method with a tuple containing the hostname or IP address of the computer and the port number on that computer. Together these represent where this script will wait for an initial connection from another app:

54 # app will use localhost (this computer) port 9876

55 client_socket.bind(('localhost', 9876))

56

Line 58 calls the socket’s listen method, which causes the script to wait until a connection is received. This is the statement that prevents the Twitter stream from starting until the Spark application connects.

57 print('Waiting for connection')

58 client_socket.listen() # wait for client to connect

59

Once the Spark application connects, line 61 calls socket method accept, which accepts the connection. This method returns a tuple containing a new socket object that the script will use to communicate with the Spark application and the IP address of the Spark application’s computer.

60 # when connection received, get connection/client address

61 connection, address = client_socket.accept()

62 print(f'Connection received from {address}')

63

Next, we authenticate with Twitter and start the stream. Lines 73–74 set up the stream, passing the socket object connection to the TweetListener so that it can use the socket to send hashtags to the Spark application.

64 # configure Twitter access

65 auth = tweepy.OAuthHandler(keys.consumer_key, keys.consumer_secret)

66 auth.set_access_token(keys.access_token, keys.access_token_secret)

67

68 # configure Tweepy to wait if Twitter rate limits are reached

69 api = tweepy.API(auth, wait_on_rate_limit=True,

70 wait_on_rate_limit_notify=True)

71

72 # create the Stream

73 twitter_stream = tweepy.Stream(api.auth,

74 TweetListener(api, connection, tweet_limit))

75

76 # sys.argv[2] is the first search term

77 twitter_stream.filter(track=sys.argv[2:])

78

Finally, lines 79–80 call the close method on the socket objects to release their resources.

79 connection.close()

80 client_socket.close()

17.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL

In this section, you’ll use Spark streaming to read the hashtags sent via a socket by the script starttweetstream.py and summarize the results. You can either create a new notebook and enter the code you see here or load the hashtagsummarizer.ipynb notebook we provide in the ch17 examples folder’s SparkHashtagSummarizer subfolder.

Importing the Libraries

First, let’s import the libraries used in this notebook. We’ll explain the pyspark classes as we use them. From IPython, we imported the display module, which contains classes and utility functions that you can use in Jupyter. In particular, we’ll use the clear_output function to remove an existing chart before displaying a new one:

[1]: from pyspark import SparkContext

 from pyspark.streaming import StreamingContext

 from pyspark.sql import Row, SparkSession

 from IPython import display

 import matplotlib.pyplot as plt

 import seaborn as sns

 %matplotlib inline

This Spark application summarizes hashtags in 10-second batches. After processing each batch, it displays a Seaborn barplot. The IPython magic

%matplotlib inline

indicates that Matplotlib-based graphics should be displayed in the notebook rather than in their own windows. Recall that Seaborn uses Matplotlib.

We’ve used several IPython magics throughout the book. There are many magics specifically for use in Jupyter Notebooks. For the complete list of magics see:

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Utility Function to Get the SparkSession

As you’ll soon see, you can use Spark SQL to query data in resilient distributed datasets (RDDs). Spark SQL uses a Spark DataFrame to get a table view of the underlying RDDs. A SparkSession (module pyspark.sql) is used to create a DataFrame from an RDD.

There can be only one SparkSession object per Spark application. The following function, which we borrowed from the Spark Streaming Programming Guide,49 defines the correct way to get a SparkSession instance if it already exists or to create one if it does not yet exist:50
49. https://spark.apache.org/docs/latest/streaming-programming-guide.html#dataframe-and-sql-operations.
50. Because this function was borrowed from the Spark Streaming Programming Guide’s DataFrame and SQL Operations section (https://spark.apache.org/docs/latest/streaming-programming-guide.html#dataframe-and-sql-operations), we did not rename it to use Python’s standard function naming style, and we did not use single quotes to delimit strings.

[2]: def getSparkSessionInstance(sparkConf):

 """Spark Streaming Programming Guide's recommended method

 for getting an existing SparkSession or creating a new one."""

 if ("sparkSessionSingletonInstance" not in globals()):

 globals()["sparkSessionSingletonInstance"] = SparkSession \

 .builder \

 .config(conf=sparkConf) \

 .getOrCreate()

 return globals()["sparkSessionSingletonInstance"]

Utility Function to Display a Barchart Based on a Spark DataFrame

We call function display_barplot after Spark processes each batch of hashtags. Each call clears the previous Seaborn barplot, then displays a new one based on the Spark DataFrame it receives. First, we call the Spark DataFrame’s toPandas method to convert it to a pandas DataFrame for use with Seaborn. Next, we call the clear_output function from the IPython.display module. The keyword argument wait=True indicates that the function should remove the prior graph (if there is one), but only once the new graph is ready to display. The rest of the code in the function uses standard Seaborn techniques we’ve shown previously. The function call sns.color_palette('cool', 20) selects twenty colors from the Matplotlib 'cool' color palette:

[3]: def display_barplot(spark_df, x, y, time, scale=2.0, size=(16, 9)):

 """Displays a Spark DataFrame's contents as a bar plot."""

 df = spark_df.toPandas()

 # remove prior graph when new one is ready to display

 display.clear_output(wait=True)

 print(f'TIME: {time}')

 # create and configure a Figure containing a Seaborn barplot

 plt.figure(figsize=size)

 sns.set(font_scale=scale)

 barplot = sns.barplot(data=df, x=x, y=y

 palette=sns.color_palette('cool', 20))

 # rotate the x-axis labels 90 degrees for readability

 for item in barplot.get_xticklabels():

 item.set_rotation(90)

 plt.tight_layout()

 plt.show()

Utility Function to Summarize the Top-20 Hashtags So Far

In Spark streaming, a DStream is a sequence of RDDs each representing a mini-batch of data to process. As you’ll soon see, you can specify a function that is called to perform a task for every RDD in the stream. In this app, the function count_tags will summarize the hashtag counts in a given RDD, add them to the current totals (maintained by the SparkSession), then display an updated top-20 barplot so that we can see how the top-20 hashtags are changing over time.51 For discussion purposes, we’ve broken this function into smaller pieces. First, we get the SparkSession by calling the utility function getSparkSessionInstance with the SparkContext’s configuration information. Every RDD has access to the SparkContext via the context attribute:
51. When this function gets called the first time, you might see an exception’s error message display if no tweets with hashtags have been received yet. This is because we simply display the error message in the standard output. That message will disappear as soon as there are tweets with hashtags.

[4]: def count_tags(time, rdd):

 """Count hashtags and display top-20 in descending order."""

 try:

 # get SparkSession

 spark = getSparkSessionInstance(rdd.context.getConf())

Next, we call the RDD’s map method to map the data in the RDD to Row objects (from the pyspark.sql package). The RDDs in this example contain tuples of hashtags and counts. The Row constructor uses the names of its keyword arguments to specify the column names for each value in that row. In this case, tag[0] is the hashtag in the tuple, and tag[1] is the total count for that hashtag:

map hashtag string-count tuples to Rows

rows = rdd.map(

 lambda tag: Row(hashtag=tag[0], total=tag[1]))

The next statement creates a Spark DataFrame containing the Row objects. We’ll use this with Spark SQL to query the data to get the top-20 hashtags with their total counts:

create a DataFrame from the Row objects

hashtags_df = spark.createDataFrame(rows)

To query a Spark DataFrame, first create a table view, which enables Spark SQL to query the DataFrame like a table in a relational database. Spark DataFrame method createOrReplaceTempView creates a temporary table view for the DataFrame and names the view for use in the from clause of a query:

create a temporary table view for use with Spark SQL

hashtags_df.createOrReplaceTempView('hashtags')

Once you have a table view, you can query the data using Spark SQL.52 The following statement uses the SparkSession instance’s sql method to perform a Spark SQL query that selects the hashtag and total columns from the hashtags table view, orders the selected rows by total in descending (desc) order, then returns the first 20 rows of the result (limit 20). Spark SQL returns a new Spark DataFrame containing the results:
52. For details of Spark SQL’s syntax, see https://spark.apache.org/sql/.

use Spark SQL to get top 20 hashtags in descending order

top20_df = spark.sql(

 """select hashtag, total

 from hashtags

 order by total, hashtag desc

 limit 20""")

Finally, we pass the Spark DataFrame to our display_barplot utility function. The hashtags and totals will be displayed on the x- and y-axes, respectively. We also display the time at which count_tags was called:

 display_barplot(top20_df, x='hashtag', y='total', time=time)

except Exception as e:

 print(f'Exception: {e}')

Getting the SparkContext

The rest of the code in this notebook sets up Spark streaming to read text from the starttweetstream.py script and specifies how to process the tweets. First, we create the SparkContext for connecting to the Spark cluster:

[5]: sc = SparkContext()

Getting the StreamingContext

For Spark streaming, you must create a StreamingContext (module pyspark.streaming), providing as arguments the SparkContext and how often in seconds to process batches of streaming data. In this app, we’ll process batches every 10 seconds—this is the batch interval:

[6]: ssc = StreamingContext(sc, 10)

Depending on how fast data is arriving, you may wish to shorten or lengthen your batch intervals. For a discussion of this and other performance-related issues, see the Performance Tuning section of the Spark Streaming Programming Guide:

https://spark.apache.org/docs/latest/streaming-programming-guide.html#performance-tuning

Setting Up a Checkpoint for Maintaining State

By default, Spark streaming does not maintain state information as you process the stream of RDDs. However, you can use Spark checkpointing to keep track of the streaming state. Checkpointing enables:

	fault-tolerance for restarting a stream in cases of cluster node or Spark application failures, and

	stateful transformations, such as summarizing the data received so far—as we’re doing in this example.

StreamingContext method checkpoint sets up the checkpointing folder:

[7]: ssc.checkpoint('hashtagsummarizer_checkpoint')

For a Spark streaming application in a cloud-based cluster, you’d specify a location within HDFS to store the checkpoint folder. We’re running this example in the local Jupyter Docker image, so we simply specified the name of a folder, which Spark will create in the current folder (in our case, the ch17 folder’s SparkHashtagSummarizer). For more details on checkpointing, see

https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

Connecting to the Stream via a Socket

StreamingContext method socketTextStream connects to a socket from which a stream of data will be received and returns a DStream that receives the data. The method’s arguments are the hostname and port number to which the StreamingContext should connect—these must match where the starttweetstream.py script is waiting for the connection:

[8]: stream = ssc.socketTextStream('localhost', 9876)

Tokenizing the Lines of Hashtags

We use functional-style programming calls on a DStream to specify the processing steps to perform on the streaming data. The following call to DStream’s flatMap method tokenizes a line of space-separated hashtags and returns a new DStream representing the individual tags:

[9]: tokenized = stream.flatMap(lambda line: line.split())

Mapping the Hashtags to Tuples of Hashtag-Count Pairs

Next, similar to the Hadoop mapper earlier in this chapter, we use DStream method map to get a new DStream in which each hashtag is mapped to a hashtag-count pair (in this case as a tuple) in which the count is initially 1:

[10]: mapped = tokenized.map(lambda hashtag: (hashtag, 1))

Totaling the Hashtag Counts So Far

DStream method updateStateByKey receives a two-argument lambda that totals the counts for a given key and adds them to the prior total for that key:

[11]: hashtag_counts = tokenized.updateStateByKey(

 lambda counts, prior_total: sum(counts) + (prior_total or 0))

Specifying the Method to Call for Every RDD

Finally, we use DSteam method foreachRDD to specify that every processed RDD should be passed to function count_tags, which then summarizes the top-20 hashtags so far and displays a barplot:

[12]: hashtag_counts.foreachRDD(count_tags)

Starting the Spark Stream

Now, that we’ve specified the processing steps, we call the StreamingContext’s start method to connect to the socket and begin the streaming process.

[13]: ssc.start() # start the Spark streaming

The following shows a sample barplot produced while processing a stream of tweets about “football.” Because football is a different sport in the United States and the rest of the world the hashtags relate to both American football and what we call soccer—we grayed out three hashtags that were not appropriate for publication:

[image: An example of a bar plot for a stream of tweets about football.]

17.7-6 Full Alternative Text

[image:] Self Check for Section 17.7

	(Fill-In) Spark DataFrame method returns a pandas DataFrame.

Answer: toPandas.

	(True/False) You can use Spark SQL to query RDD objects using familiar Structured Query Language syntax.

Answer: False. Spark SQL requires a table view of a Spark DataFrame.

	(Discussion) Assuming hashtags_df is a Spark DataFrame, what does the following code do?

hashtags_df.createOrReplaceTempView('hashtags')

Answer: This statement creates (or replaces) a temporary table view for the DataFrame hashtags_df and names it 'hashtags' for use in Spark SQL queries.

	(True/False) By default, Spark streaming does not maintain state information as you process the stream of RDDs. However, you can use Spark checkpointing to keep track of the streaming state for fault-tolerance and stateful transformations, such as summarizing the data received so far.

Answer: True.

17.8 Internet of Things and Dashboards

In the late 1960s, the Internet began as the ARPANET, which initially connected four universities and grew to 10 nodes by the end of 1970.53 In the last 50 years, that has grown to billions of computers, smartphones, tablets and an enormous range of other device types connected to the Internet worldwide. Any device connected to the Internet is a “thing” in the Internet of Things (IoT).
53. https://en.wikipedia.org/wiki/ARPANET#History..

Each device has a unique Internet protocol address (IP address) that identifies it. The explosion of connected devices exhausted the approximately 4.3 billion available IPv4 (Internet Protocol version 4) addresses54 and led to the development of IPv6, which supports approximately 3.4×10

38

 addresses (that’s a lot of zeros).55
54. https://en.wikipedia.org/wiki/IPv4_address_exhaustion.
55. https://en.wikipedia.org/wiki/IPv6.

“Top research firms such as Gartner and McKinsey predict a jump from the 6 billion connected devices we have worldwide today, to 20–30 billion by 2020.”56 Various predictions say that number could be 50 billion. Computer-controlled, Internet-connected devices continue to proliferate. The following is a small subset IoT device types and applications.
56. https://www.pubnub.com/developers/tech/how-pubnub-works/.

IoT devices

	activity trackers—Apple Watch, FitBit, …

Amazon Dash ordering buttons

Amazon Echo (Alexa), Apple HomePod (Siri), Google Home (Google Assistant)

appliances—ovens, coffee makers, refrigerators, …

driverless cars

earthquake sensors

	healthcare—blood glucose monitors for diabetics, blood pressure monitors, electro-cardiograms (EKG/ECG), electroencephalograms (EEG), heart monitors, ingestible sensors, pacemakers, sleep trackers, …

sensors—chemical, gas, GPS, humidity, light, motion, pressure, temperature, …

	smart home—lights, garage openers, video cameras, doorbells, irrigation controllers, security devices, smart locks, smart plugs, smoke detectors, thermostats, air vents

tsunami sensors

tracking devices

wine cellar refrigerators

wireless network devices

IoT Issues

Though there’s a lot of excitement and opportunity in IoT, not everything is positive. There are many security, privacy and ethical concerns. Unsecured IoT devices have been used to perform distributed-denial-of-service (DDOS) attacks on computer systems.57 Home security cameras that you intend to protect your home could potentially be hacked to allow others access to the video stream. Voice-controlled devices are always “listening” to hear their trigger words. This leads to privacy and security concerns. Children have accidentally ordered products on Amazon by talking to Alexa devices, and companies have created TV ads that would activate Google Home devices by speaking their trigger words and causing Google Assistant to read Wikipedia pages about a product to you.58 Some people worry that these devices could be used to eavesdrop. Just recently, a judge ordered Amazon to turn over Alexa recordings for use in a criminal case.59
57. https://threatpost.com/iot-security-concerns-peaking-with-no-end-in-sight/131308/.
58. https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-security-voice-activated-smart-speakers-en.pdf.
59. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/.

This Section’s Examples

In this section, we discuss the publish/subscribe model that IoT and other types of applications use to communicate. First, without writing any code, you’ll build a web-based dashboard using Freeboard.io and subscribe to a sample live stream from the PubNub service. Next, you’ll simulate an Internet-connected thermostat which publishes messages to the free Dweet.io service using the Python module Dweepy, then create a dashboard visualization of it with Freeboard.io. Finally, you’ll build a Python client that subscribes to a sample live stream from the PubNub service and dynamically visualizes the stream with Seaborn and a Matplotlib FuncAnimation. In the exercises, you’ll experiment with additional IoT platforms, simulators and live streams.

17.8.1 Publish and Subscribe

IoT devices (and many other types of devices and applications) commonly communicate with one another and with applications via pub/sub (publisher/subscriber) systems. A publisher is any device or application that sends a message to a cloud-based service, which in turn sends that message to all subscribers. Typically each publisher specifies a topic or channel, and each subscriber specifies one or more topics or channels for which they’d like to receive messages. There are many pub/sub systems in use today. In the remainder of this section, we’ll use PubNub and Dweet.io. In the exercises, you can investigate Apache Kafka—a Hadoop ecosystem component that provides a high-performance publish/subscribe service, real-time stream processing and storage of streamed data.

17.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard Dashboard

PubNub is a pub/sub service geared to real-time applications in which any software and device connected to the Internet can communicate via small messages. Some of their common use-cases include IoT, chat, online multiplayer games, social apps and collaborative apps. PubNub provides several live streams for learning purposes, including one that simulates IoT sensors (Section 17.8.5 lists the others).

One common use of live data streams is visualizing them for monitoring purposes. In this section, you’ll connect PubNub’s live simulated sensor stream to a Freeboard.io web-based dashboard. A car’s dashboard visualizes data from your car’s sensors, showing information such as the outside temperature, your speed, engine temperature, the time and the amount of gas remaining. A web-based dashboard does the same thing for data from various sources, including IoT devices.

Freeboard.io is a cloud-based dynamic dashboard visualization tool. You’ll see that, without writing any code, you can easily connect Freeboard.io to various data streams and visualize the data as it arrives. The following dashboard visualizes data from three of the four simulated sensors in the PubNub simulated IoT sensors stream:

[image: A dashboard visualization of data for humidity, radiation level, and ambient temperature. Each data category has a semi-circular gauge with an exact value below the curve of the gauge and a jagged, zig zagged line below.]

For each sensor, we used a Gauge (the semicircular visualizations) and a Sparkline (the jagged lines) to visualize the data. When you complete this section, you’ll see the Gauges and Sparklines frequently moving as new data arrives multiple times per second.

In addition to their paid service, Freeboard.io provides an open-source version (with fewer options) on GitHub. They also provide tutorials that show how to add custom plug-ins, so you can develop your own visualizations to add to their dashboards.

Signing up for Freeboard.io

For this example, register for a Freeboard.io 30-day trial at

https://freeboard.io/signupOnce you’ve registered, the My Freeboards page appears. If you’d like, you can click the Try a Tutorial button and visualize data from your smartphone.

Creating a New Dashboard

In the upper-right corner of the My Freeboards page, enter Sensor Dashboard in the enter a name field, then click the Create New button to create a dashboard. This displays the dashboard designer.

Adding a Data Source

If you add your data source(s) before designing your dashboard, you’ll be able to configure each visualization as you add it:

	Under DATASOURCES, click ADD to specify a new data source.

	The DATASOURCE dialog’s TYPE drop-down list shows the currently supported data sources, though you can develop plug-ins for new data sources as well.60 Select PubNub. The web page for each PubNub sample live stream specifies the Channel and Subscribe key. Copy these values from PubNub’s Sensor Network page at https://www.pubnub.com/developers/realtime-data-streams/sensor-network/, then insert their values in the corresponding DATASOURCE dialog fields. Provide a NAME for your data source, then click SAVE.
60. Some of the listed data sources are available only via Freeboard.io, not the open source Freeboard on GitHub.

Adding a Pane for the Humidity Sensor

A Freeboard.io dashboard is divided into panes that group visualizations. Multiple panes can be dragged to rearrange them. Click the + Add Pane button to add a new pane. Each pane can have a title. To set it, click the wrench icon on the pane, specify Humidity for the TITLE, then click SAVE.

Adding a Gauge to the Humidity Pane

To add visualizations to a pane, click its + button to display the WIDGET dialog. The TYPE drop-down list shows several built-in widgets. Choose Gauge. To the right of the VALUE field, click + DATASOURCE, then select the name of your data source. This displays the available values from that data source. Click humidity to select the humidity sensor’s value. For UNITS, specify %, then click SAVE. This displays the new visualization, which immediately begins showing values from the sensor stream.

Notice that the humidity value has four digits of precision to the right of the decimal point. PubNub supports JavaScript expressions, so you can use them to perform calculations or format data. For example, you can use JavaScript’s function Math.round to round the humidity value to the closest integer. To do so, hover the mouse over the gauge and click its wrench icon. Then, insert "Math.round(" before the text in the VALUE field and ")" after the text, then click SAVE.

Adding a Sparkline to the Humidity Pane

A sparkline is a line graph without axes that’s typically used to give you a sense of how a data value is changing over time. Add a sparkline for the humidity sensor by clicking the humidity pane’s + button, then selecting Sparkline from the TYPE drop-down list. For the VALUE, once again select your data source and humidity, then click SAVE.

Completing the Dashboard

Using the techniques above, add two more panes and drag them to the right of the first. Name them Radiation Level and Ambient Temperature, respectively, and configure each pane with a Gauge and Sparkline as shown above. For the Radiation Level gauge, specify Millirads/Hour for the UNITS and 400 for the MAXIMUM. For the Ambient Temperature gauge, specify Celsius for the UNITS and 50 for the MAXIMUM.

17.8.3 Simulating an Internet-Connected Thermostat in Python

Simulation is one of the most important applications of computers. We used simulation with dice rolling in earlier chapters. With IoT, it’s common to use simulators to test your applications, especially when you do not have access to actual devices and sensors while developing applications. Many cloud vendors have IoT simulation capabilities. In the exercises, you’ll explore the IBM Watson IoT Platform and IOTIFY.io.

Here, you’ll create a script that simulates an Internet-connected thermostat publishing periodic JSON messages—called dweets—to dweet.io. The name “dweet” is based on “tweet”—a dweet is like a tweet from a device. Many of today’s Internet-connected security systems include temperature sensors that can issue low-temperature warnings before pipes freeze or high-temperature warnings to indicate there might be a fire. Our simulated sensor will send dweets containing a location and temperature, as well as low- and high-temperature notifications. These will be True only if the temperature reaches 3 degrees Celsius or 35 degrees Celsius, respectively. In the next section, we’ll use freeboard.io to create a simple dashboard that shows the temperature changes as the messages arrive, as well as warning lights for low- and high-temperature warnings.

Installing Dweepy

To publish messages to dweet.io from Python, first install the Dweepy library:

pip install dweepy

The library is straightforward to use. You can view its documentation at:

https://github.com/paddycarey/dweepy

Invoking the simulator.py Script

The Python script simulator.py that simulates our thermostat is located in the ch17 example folder’s iot subfolder. You invoke the simulator with two command-line arguments representing the number of total messages to simulate and the delay in seconds between sending dweets:

ipython simulator.py 1000 1

Sending Dweets

The simulator.py is shown below. It uses random-number generation and Python techniques that you’ve studied throughout this book, so we’ll focus just on a few lines of code that publish messages to dweet.io via Dweepy. We’ve broken apart the script below for discussion purposes.

By default, dweet.io is a public service, so any app can publish or subscribe to messages. When publishing messages, you’ll want to specify a unique name for your device. We used 'temperature-simulator-deitel-python' (line 17).61 Lines 18–21 define a Python dictionary, which will store the current sensor information. Dweepy will convert this into JSON when it sends the dweet.
61. To truly guarantee a unique name, dweet.io can create one for you. The Dweepy documentation explains how to do this.

1 # simulator.py

2 """A connected thermostat simulator that publishes JSON

3 messages to dweet.io"""

4 import dweepy

5 import sys

6 import time

7 import random

8

9 MIN_CELSIUS_TEMP = -25

10 MAX_CELSIUS_TEMP = 45

11 MAX_TEMP_CHANGE = 2

12

13 # get the number of messages to simulate and delay between them

14 NUMBER_OF_MESSAGES = int(sys.argv[1])

15 MESSAGE_DELAY = int(sys.argv[2])

16

17 dweeter = 'temperature-simulator-deitel-python' # provide a unique name

18 thermostat = {'Location': 'Boston, MA, USA',

19 'Temperature': 20,

20 'LowTempWarning': False,

21 'HighTempWarning': False}

22

Lines 25–53 produce the number of simulated message you specify. During each iteration of the loop, we

	generate a random temperature change in the range –2 to +2 degrees and modify the temperature,

	ensure that the temperature remains in the allowed range,

	check whether the low- or high-temperature sensor has been triggered and update the thermostat dictionary accordingly,

	display how many messages have been generated so far,

	use Dweepy to send the message to dweet.io (line 52), and

	use the time module’s sleep function to wait the specified amount of time before generating another message.

23 print('Temperature simulator starting')

24

25 for message in range(NUMBER_OF_MESSAGES):

26 # generate a random number in the range -MAX_TEMP_CHANGE

27 # through MAX_TEMP_CHANGE and add it to the current temperature

28 thermostat['Temperature'] += random.randrange(

29 -MAX_TEMP_CHANGE, MAX_TEMP_CHANGE + 1)

30

31 # ensure that the temperature stays within range

32 if thermostat['Temperature'] < MIN_CELSIUS_TEMP:

33 thermostat['Temperature'] = MIN_CELSIUS_TEMP

34

35 if thermostat['Temperature'] > MAX_CELSIUS_TEMP:

36 thermostat['Temperature'] = MAX_CELSIUS_TEMP

37

38 # check for low temperature warning

39 if thermostat['Temperature'] < 3:

40 thermostat['LowTempWarning'] = True

41 else:

42 thermostat['LowTempWarning'] = False

43

44 # check for high temperature warning

45 if thermostat['Temperature'] > 35:

46 thermostat['HighTempWarning'] = True

47 else:

48 thermostat['HighTempWarning'] = False

49

50 # send the dweet to dweet.io via dweepy

51 print(f'Messages sent: {message + 1}\r', end='')

52 dweepy.dweet_for(dweeter, thermostat)

53 time.sleep(MESSAGE_DELAY)

54

55 print('Temperature simulator finished')

You do not need to register to use the service. On the first call to dweepy’s dweet_for function to send a dweet (line 52), dweet.io creates the device name. The function receives as arguments the device name (dweeter) and a dictionary representing the message to send (thermostat). Once you execute the script, you can immediately begin tracking the messages on the dweet.io site by going to the following address in your web browser:
https://dweet.io/follow/temperature-simulator-deitel-pythonIf you use a different device name, replace "temperature-simulator-deitel-python" with the name you used. The web page contains two tabs. The Visual tab shows you the individual data items, displaying a sparkline for any numerical values. The Raw tab shows you the actual JSON messages that Dweepy sent to dweet.io.

17.8.4 Creating the Dashboard with Freeboard.io

The sites dweet.io and freeboard.io are run by the same company. In the dweet.io webpage discussed in the preceding section, you can click the Create a Custom Dashboard button to open a new browser tab, with a default dashboard already implemented for the temperature sensor. By default, freeboard.io will configure a data source named Dweet and auto-generate a dashboard containing one pane for each value in the dweet JSON. Within each pane, a text widget will display the corresponding value as the messages arrive.

If you prefer to create your own dashboard, you can use the steps in Section 17.8.2 to create a data source (this time selecting Dweepy) and create new panes and widgets, or you can you modify the auto-generated dashboard.

Below are three screen captures of a dashboard consisting of four widgets:

	A Gauge widget showing the current temperature. For this widget’s VALUE setting, we selected the data source’s Temperature field. We also set the UNITS to Celsius and the MINIMUM and MAXIMUM values to -25 and 45 degrees, respectively.

	A Text widget to show the current temperature in Fahrenheit. For this widget, we set the INCLUDE SPARKLINE and ANIMATE VALUE CHANGES to YES. For this widget’s VALUE setting, we again selected the data source’s Temperature field, then added to the end of the VALUE field

* 9 / 5 + 32

to perform a calculation that converts the Celsius temperature to Fahrenheit. We also specified Fahrenheit in the UNITS field.

	Finally, we added two Indicator Light widgets. For the first Indicator Light’s VALUE setting, we selected the data source’s LowTempWarning field, set the TITLE to Freeze Warning and set the ON TEXT value to LOW TEMPERATURE WARNING—ON TEXT indicates the text to display when value is true. For the second Indicator Light’s VALUE setting, we selected the data source’s HighTempWarning field, set the TITLE to High Temperature Warning and set the ON TEXT value to HIGH TEMPERATURE WARNING.

[image: 3 dashboard visualizations of temperature data.]

17.8-8 Full Alternative Text

17.8.5 Creating a Python PubNub Subscriber

PubNub provides the pubnub Python module for conveniently performing pub/sub operations. They also provide seven sample streams for you to experiment with—four real-time streams and three simulated streams:62
62. https://www.pubnub.com/developers/realtime-data-streams/.

	Twitter Stream—provides up to 50 tweets-per-second from the Twitter live stream and does not require your Twitter credentials.

	Hacker News Articles—this site’s recent articles.

	State Capital Weather—provides weather data for the U.S. state capitals.

	Wikipedia Changes—a stream of Wikipedia edits.

	Game State Sync—simulated data from a multiplayer game.

	Sensor Network—simulated data from radiation, humidity, temperature and ambient light sensors.

	Market Orders—simulated stock orders for five companies.

In this section, you’ll use the pubnub module to subscribe to their simulated Market Orders stream, then visualize the changing stock prices as a Seaborn barplot, like:

[image: An example of a Seaborn bar plot of changing stock prices. Each company is represented along the horizontal axis by a different colored bar. The stock prices are tracked on the vertical axis.]

Of course, you also can publish messages to streams. For details, see the pubnub module’s documentation at https://www.pubnub.com/docs/python/pubnub-python-sdk.

To prepare for using PubNub in Python, execute the following command to install the latest version of the pubnub module—the '>=4.1.2' ensures that at a minimum the 4.1.2 version of the pubnub module will be installed:

pip install "pubnub>=4.1.2"

The script stocklistener.py that subscribes to the stream and visualizes the stock prices is defined in the ch17 folder’s pubnub subfolder. We break the script into pieces here for discussion purposes.

Message Format

The simulated Market Orders stream returns JSON objects containing five key–value pairs with the keys 'bid_price', 'order_quantity', 'symbol', 'timestamp' and 'trade_type'. For this example, we’ll use only the 'bid_price' and 'symbol'. The PubNub client returns the JSON data to you as a Python dictionary.

Importing the Libraries

Lines 3–13 import the libraries used in this example. We discuss the PubNub types imported in lines 10–13 as we encounter them below.

 1 # stocklistener.py

 2 """Visualizing a PubNub live stream."""

 3 from matplotlib import animation

 4 import matplotlib.pyplot as plt

 5 import pandas as pd

 6 import random

 7 import seaborn as sns

 8 import sys

 9

10 from pubnub.callbacks import SubscribeCallback

11 from pubnub.enums import PNStatusCategory

12 from pubnub.pnconfiguration import PNConfiguration

13 from pubnub.pubnub import PubNub

14

List and DataFrame Used for Storing Company Names and Prices

The list companies contains the names of the companies reported in the Market Orders stream, and the pandas DataFrame companies_df is where we’ll store each company’s last price. We’ll use this DataFrame with Seaborn to display a bar chart.

15 companies = ['Apple', 'Bespin Gas', 'Elerium', 'Google', 'Linen Cloth']

16

17 # DataFrame to store last stock prices

18 companies_df = pd.DataFrame(

19 {'company': companies, 'price' : [0, 0, 0, 0, 0]})

20

Class SensorSubscriberCallback

When you subscribe to a PubNub stream, you must add a listener that receives status notifications and messages from the channel. This is similar to the Tweepy listeners you’ve defined previously. To create your listener, you must define a subclass of SubscribeCallback (module pubnub.callbacks), which we discuss after the code:

21 class SensorSubscriberCallback(SubscribeCallback):

22 """SensorSubscriberCallback receives messages from PubNub."""

23 def __init__(self, df, limit=1000):

24 """Create instance variables for tracking number of tweets."""

25 self.df = df # DataFrame to store last stock prices

26 self.order_count = 0

27 self.MAX_ORDERS = limit # 1000 by default

28 super().__init__() # call superclass's init

29

30 def status(self, pubnub, status):

31 if status.category == PNStatusCategory.PNConnectedCategory:

32 print('Connected to PubNub')

33 elif status.category == PNStatusCategory.PNAcknowledgmentCategory:

34 print('Disconnected from PubNub')

35

36 def message(self, pubnub, message):

37 symbol = message.message['symbol']

38 bid_price = message.message['bid_price']

39 print(symbol, bid_price)

40 self.df.at[companies.index(symbol), 'price'] = bid_price

41 self.order_count += 1

42

43 # if MAX_ORDERS is reached, unsubscribe from PubNub channel

44 if self.order_count == self.MAX_ORDERS:

45 pubnub.unsubscribe_all()

46

Class SensorSubscriberCallback’s __init__ method stores the DataFrame in which each new stock price will be placed. The PubNub client calls overridden method status each time a new status message arrives. In this case, we’re checking for the notifications that indicate that we’ve subscribed to or unsubscribed from a channel.

The PubNub client calls overridden method message (lines 36–45) when a new message arrives from the channel. Lines 37 and 38 get the company name and price from the message, which we print so you can see that messages are arriving. Line 40 uses the DataFrame method at to locate the appropriate company’s row and its 'price' column, then assign that element the new price. Once the order_count reaches MAX_ORDERS, line 45 calls the PubNub client’s unsubscribe_all method to unsubscribe from the channel.

Function Update

This example visualizes the stock prices using the animation techniques you learned in Chapter 6’s Intro to Data Science section. Function update specifies how to draw one animation frame and is called repeatedly by the FuncAnimation we’ll define shortly. We use Seaborn function barplot to visualize data from the companies_df DataFrame, using its 'company' column values on the x-axis and 'price' column values on the y-axis.

47 def update(frame_number):

48 """Configures bar plot contents for each animation frame."""

49 plt.cla() # clear old barplot

50 axes = sns.barplot(

51 data=companies_df, x='company', y='price', palette='cool')

52 axes.set(xlabel='Company', ylabel='Price')

53 plt.tight_layout()

54

Configuring the Figure

In the main part of the script, we begin by setting the Seaborn plot style and creating the Figure object in which the barplot will be displayed:

55 if __name__ == '__main__':

56 sns.set_style('whitegrid') # white background with gray grid lines

57 figure = plt.figure('Stock Prices') # Figure for animation

58

Configuring the FuncAnimation and Displaying the Window

Next, we set up the FuncAnimation that calls function update, then call Matplotlib’s show method to display the Figure. Normally, this method blocks the script from continuing until you close the Figure. Here, we pass the block=False keyword argument to allow the script to continue so we can configure the PubNub client and subscribe to a channel.

59 # configure and start animation that calls function update

60 stock_animation = animation.FuncAnimation(

61 figure, update, repeat=False, interval=33)

62 plt.show(block=False) # display window

63

Configuring the PubNub Client

Next, we configure the PubNub subscription key, which the PubNub client uses in combination with the channel name to subscribe to the channel. The key is specified as an attribute of the PNConfiguration object (module pubnub.pnconfiguration), which line 69 passes to the new PubNub client object (module pubnub.pubnub). Lines 70–72 create the SensorSubscriberCallback object and pass it to the PubNub client’s add_listener method to register it to receive messages from the channel. We use a command-line argument to specify the total number of messages to process.

64 # set up pubnub-market-orders sensor stream key

65 config = PNConfiguration()

66 config.subscribe_key = 'sub-c-4377ab04-f100-11e3-bffd-02ee2ddab7fe'

67

68 # create PubNub client and register a SubscribeCallback

69 pubnub = PubNub(config)

70 pubnub.add_listener(

71 SensorSubscriberCallback(df=companies_df,

72 limit=int(sys.argv[1] if len(sys.argv) > 1 else 1000))

73

Subscribing to the Channel

The following statement completes the subscription process, indicating that we wish to receive messages from the channel named 'pubnub-market-orders'. The execute method starts the stream.

74 # subscribe to pubnub-sensor-network channel and begin streaming

75 pubnub.subscribe().channels('pubnub-market-orders').execute()

76

Ensuring the Figure Remains on the Screen

The second call to Matplotlib’s show method ensures that the Figure remains on the screen until you close its window.

77 plt.show() # keeps graph on screen until you dismiss its window

[image:] Self Check for Section 17.8

	(Fill-In) IoT devices (and many other types of devices and applications) commonly communicate with one another and with applications via systems.

Answer: pub/sub (publisher/subscriber)

	(Fill-In) A(n) is any device or application that sends a message to a cloud-based service, which in turn sends that message to all .

Answer: publisher, subscribers.

	(Fill-In) A(n) is a graph without axes that’s typically used to give you a sense of how a data value is changing over time.

Answer: sparkline.

	(Fill-In) In a PubNub Python client that subscribes to a channel, you must create a subclass of , then register an object of that class to receive status notifications and messages from the channel.

Answer: SubscribeCallback.

17.9 Wrap-Up

In this chapter, we introduced big data, discussed how large data is getting and discussed hardware and software infrastructure for working with big data. We introduced traditional relational databases and Structured Query Language (SQL) and used the sqlite3 module to create and manipulate a books database in SQLite. We also demonstrated loading SQL query results into pandas DataFrames.

We discussed the four major types of NoSQL databases—key–value, document, columnar and graph—and introduced NewSQL databases. We stored JSON tweet objects as documents in a cloud-based MongoDB Atlas cluster, then summarized them in an interactive visualization displayed on a Folium map.

We introduced Hadoop and how it’s used in big-data applications. You configured a multi-node Hadoop cluster using the Microsoft Azure HDInsight service, then created and executed a Hadoop MapReduce task using Hadoop streaming.

We discussed Spark and how it’s used in high-performance, real-time big-data applications. You used Spark’s functional-style filter/map/reduce capabilities, first on a Jupyter Docker stack that runs locally on your own computer, then again using a Microsoft Azure HDInsight multi-node Spark cluster. Next, we introduced Spark streaming for processing data in mini-batches. As part of that example, we used Spark SQL to query data stored in Spark DataFrames.

The chapter concluded with an introduction to the Internet of Things (IoT) and the publish/subscribe model. You used Freeboard.io to create a dashboard visualization of a live sample stream from PubNub. You simulated an Internet-connected thermostat which published messages to the free dweet.io service using the Python module Dweepy, then used Freeboard.io to visualize the simulated device’s data. Finally, you subscribed to a PubNub sample live stream using their Python module.

The rich collection of exercises encourages you to work with more big-data cloud and desktop platforms, additional SQL and NoSQL databases, NewSQL databases and IoT platforms. You can work with Wikipedia as another big-data source, and you can implement IoT with the Raspberry Pi and Iotify simulators.

Thanks for reading Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and the Cloud. We hope that you enjoyed the book and that you found it entertaining and informative. Most of all we hope you feel empowered to apply the technologies you’ve learned to the challenges you’ll face as you continue your education and in your career.

Exercises

SQL and RDBMS Exercises

	17.1 (Books Database) In an IPython session, perform each of the following tasks on the books database from Section 17.2:

	Select all authors’ last names from the authors table in descending order.

	Select all book titles from the titles table in ascending order.

	Use an INNER JOIN to select all the books for a specific author. Include the title, copyright year and ISBN. Order the information alphabetically by title.

	Insert a new author into the authors table.

	Insert a new title for an author. Remember that the book must have an entry in the author_ISBN table and an entry in the titles table.

	17.2 (Cursor Method fetchall and Attribute description) When you use a sqlite3 Cursor’s execute method to perform a query, the query’s results are stored in the Cursor object. The Cursor attribute description contains metadata about the results stored as a tuple of tuples. Each nested tuple’s first value is a column name in the query results. Cursor method fetchall returns the query result’s data as a list of tuples. Investigate the description attribute and fetchall method. Open the books database and use Cursor method execute to select all the data in the titles table, then use description and fetchall to display the data in tabular format.

	17.3 (Contacts Database) Study the books.sql script provided in the ch17 examples folder’s sql subfolder. Save the script as addressbook.sql and modify it to create a single table named contacts. The table should contain an auto-incremented id column and text columns for a person’s first name, last name and phone number. In an IPython session, insert contacts into the database, query the database to list all the contacts and contacts with a specific last name, update a contact and delete a contact.

	17.4 (Project: DB Browser for SQLite) Investigate the open source DB Browser for SQLite (https://sqlitebrowser.org/). This tool provides a graphical user interface in which you can view and interact with a SQLite database. Use the tool to open the books.db database and view the contents of the authors table. In IPython, add a new author and remove it so you can see the table update live in DB Browser for SQLite.

	17.5 (Project: MariaDB) Research the MariaDB relational database management system and its Python support, then use it to create a database and reimplement the IPython session in Section 17.2. You may need to update the SQL script that creates the database tables, as some features like auto-incremented integer primary keys vary by relational database management system.

NoSQL Database Exercises

	17.6 (MongoDB Twitter Example Modification: Sentiment Analysis Enhancement) Using the sentiment analysis techniques you learned in the “Natural Language Processing” chapter, modify Section 17.4’s case study as follows. Enable the user to select a senator, then use a pandas DataFrame to show a summary of the positive, negative and neutral tweets for that senator by state. Create a choropleth that colors each state by positive, negative and neutral sentiment. The popup map markers should show the number of tweets of each sentiment for that state.

	17.7 (Project: Six Degrees of Separation with Neo4j NoSQL Graph Database) The famous “six degrees of separation” problem says that any two people in the world are connected to one another by six or fewer acquaintance connections.63 A game based on this is called “Six degrees of Kevin Bacon”64 in which any two movie stars in Hollywood can be connected to Kevin Bacon via the roles they’ve played in films (because he has appeared in so many films). Neo4j’s Cypher language is used to query Neo4j databases. In their Guide to Cypher Basics (https://neo4j.com/developer/guide-cypher-basics/), they implement “Six degrees of Kevin Bacon” using a movie database. Install the Neo4j database on your system and implement their solution.
63. https://en.wikipedia.org/wiki/Six_degrees_of_separation.
64. https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon.

Hadoop Exercises

	17.8 (Project: Hadoop on the Desktop with Hortonworks HDP Sandbox) Hortonworks Sandbox (https://hortonworks.com/products/sandbox/) is an open-source desktop platform for Hadoop, Spark and related technologies. Install a desktop version of the Hortonworks Data Platform (HDP) Sandbox, then use it to execute this chapter’s Hadoop MapReduce example. Caution: Before installing HDP Sandbox, ensure that your system meets the substantial disk and memory requirements.

	17.9 (Project: Hadoop on the Desktop with Cloudera CDH Quickstart VM) Cloudera CDH is an open-source desktop platform for Hadoop, Spark and related technologies. Install a Cloudera desktop Quick Start VM (search for “Cloudera CDH Quickstart VM” online), then use it to execute this chapter’s Hadoop MapReduce example. Caution: Before installing a Cloudera CDH Quickstart VM, ensure that your system meets the substantial disk and memory requirements.

	17.10 (Research Project: Apache Tez) Investigate Apache Tez—a high-performance replacement for MapReduce. How is it that Tez achieves its performance improvement over MapReduce?

Spark Exercises

	17.11 (Project: Spark on the Desktop with Hortonworks HDP Sandbox) Hortonworks Sandbox (https://hortonworks.com/products/sandbox/) is an open-source desktop platform for Hadoop, Spark and related technologies. Install a desktop version of the Hortonworks Data Platform (HDP) Sandbox, then use it to execute this chapter’s Spark examples. Caution: Before installing HDP Sandbox, ensure that your system meets the substantial disk and memory requirements.

	17.12 (Project: Spark on the Desktop with Cloudera Quickstart VM) Cloudera CDH is an open-source desktop platform for Hadoop, Spark and related technologies. Install a Cloudera desktop Quick Start VM (search for “Cloudera CDH Quickstart VM” online), then use it to execute this chapter’s Spark examples. Caution: Before installing a Quickstart VM, ensure that your system meets the substantial disk and memory requirements.

	17.13 (Project: Spark ML) The “Machine Learning” chapter presented several popular machine-learning algorithms. These and many other algorithms are available in Spark via Spark ML and the PySpark library. Research Spark ML in PySpark, then reimplement one of the “Machine Learning” chapter’s examples using the Jupyter pyspark-notebook Docker container.

	17.14 (Project: IBM’s Apache Spark Service) Investigate IBM Watson’s Apache Spark service (https://console.bluemix.net/catalog/services/apache-spark), which provides free Lite tier support for Spark streaming and Spark MLlib, then use it to implement one of the machine-learning studies from Chapter15 .

IoT and Pub/Sub Exercises

	17.15 (Watson IoT Platform) Investigate the free Lite tier of the Watson IoT Platform (https://console.bluemix.net/catalog/services/internet-of-things-platform). They provide a live stream demonstration that receives sensor data directly from your smartphone, provides a 3D visualization of your phone and shows the sensor data. The visualization updates in real time as you move your phone. See https://developer.ibm.com/iotplatform/2017/12/07/use-device-simulator-watson-iot-platform for more information.

	17.16 (Raspberry Pi and Internet of Things) IOTIFY is an IoT simulation service. Research IOTIFY, then follow their Hello IoT tutorial, which uses a simulated Raspberry Pi device.

	17.17 (Streaming Stock Prices Dashboard with IEX, PubNub and Freeboard.io) Investigate the free stock-quote API provided by IEX (https://iextrading.com/) and Python modules on GitHub that enable you to use their APIs in Python applications. Create a Python IEX client that receives quotes for specific companies (you can look up their stock ticker symbols online). Research how to publish to a PubNub channel and publish the quotes to your channel. Use Freeboard.io to create a dashboard that subscribes to the PubNub channel you created and visualizes the stock prices as they arrive.

	17.18 (Project: Dweet.io and Dweepy) Use Dweet.io and Dweepy to implement a text-based chat client script. Each person running the script would specify their own username. By default all clients will publish and subscribe to the same channel. As an enhancement, enable the user to choose the channel to use.

	17.19 (Project: Freeboard on GitHub) Freeboard.io provides a free open-source version (with fewer options) on GitHub. Locate this version, install it on your system and use it to implement the dashboards we showed in Section 17.8.

	17.20 (Project: PubNub and Bokeh) The Bokeh visualization library enables you to create dashboard visualizations from Python. In addition, it provides streaming support for dyanamically updating visualizations. Investigate Bokeh’s streaming capabilities, then use them with PubNub’s simulated sensor stream to create a Python client that visualizes the sensor data.

	17.21 (Research Project: IoT for the Entrepreneur) If you’re inclined to start a company, IoT presents many opportunities. Research IoT opportunities for entrepreneurs and create and describe an original idea for a business.

	17.22 (Research Project: Smart Watches and Activity Trackers) Research the wearable IoT devices Apple Watch and Fitbit. List the sensors they provide and what they’re able to monitor, and the dashboards they provide to help you monitor your health.

	17.23 (Research Project: Kafka Publish/Subscribe Messaging) In this chapter you studied streaming and publish/subscribe messaging. Apache Kafka (https://kafka.apache.org) supports real-time messaging, stream processing and storage, and is typically used to transform and process high-volume streaming data, such as website activity and streaming IoT data. Research the applications of Apache Kafka and the platforms that use it.

Platform Exercises

	17.24 (Project: Spark with Databricks Community Edition) Databricks65 is an analytics platform created by the people who originally created Spark at U.C. Berkeley. In addition to being available through Amazon AWS and Microsoft Azure, they provide a free cloud-based Databricks Community Edition (https://databricks.com/product/faq/community-edition), which runs on AWS66 and enables you to learn about and experiment with Spark without having to install any software locally. In fact, they implemented all the examples in their book Spark: The Definitive Guide using the free Databricks Community Edition.
65. http://databricks.com.
66. https://databricks.com/product/faq/community-edition.

Investigate the Databricks Community Edition’s capabilities and follow their Getting Started with Apache Spark tutorial at https://databricks.com/spark/getting-started-with-apache-spark. Their notebook format and commands are similar but not identical to Jupyter’s. Next, reimplement the Spark examples in Sections 17.6–17.7 using the Databricks Community Edition. To install Python modules into your Databricks cluster, follow the instructions at https://docs.databricks.com/user-guide/libraries.html. Like many of the data-science libraries we’ve used in the book, Databricks includes popular datasets you can use when learning Spark:

https://docs.databricks.com/user-guide/faq/databricks-datasets.html

	17.25 (Project: IBM Watson Analytics Engine) You can access Hadoop, Spark and other tools in the Hadoop ecosystem via IBM’s Watson Analytics Engine. To get started, the Watson Lite tier lets you create one cluster per 30-day period and use it for a maximum of 50 node hours67 so that you can evaluate the platform or test Hadoop and Spark tasks. IBM also provides a separate Apache Spark service and various other big-data-related services. Research Watson Analytics Engine, then use it to implement and run this chapter’s Hadoop and Spark examples. For a complete list of IBM’s services, see their catalog at:

https://console.bluemix.net/catalog/
67. https://console.bluemix.net/docs/services/AnalyticsEngine/faq.html#how-does-the-lite-plan-work-.

Other Exercises

	17.26 (Research Project: Big Data in Baseball) Big data analytics techniques have been employed by some baseball teams and are credited with helping the 2004 Red Sox and the 2016 Cubs win World Series after long droughts. The books Moneyball68 and Big Data Baseball69 chronicle the data analytics successes of the 2002 Oakland Athletics and the 2013 Pittsburgh Pirates, respectively. On the downside, the Wall Street Journal reported that as a result of using data analytics, baseball games have become longer on average with less action.70 Read either or both of those books to gain insights into how big-data analytics are used in sports.
68. Lewis, M., Moneyball: The Art of Winning an Unfair Game. W. W. Norton & Company. 2004.
69. Sawchik, T., Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak. Flatiron Books. 2016.
70. “Baseball learns data’s downside—analytics leads to longer games with less action,” October 3, 2017. https://www.wsj.com/articles/the-downside-of-baseballs-data-revolutionlong-games-less-action-1507043924.

	17.27 (Research Project: NewSQL Databases) Research the NewSQL databases VoltDB, MemSQL, Apache Ignite and Google Spanner and discuss their key features.

	17.28 (Research Project: CRISPR Gene Editing) Research how big data is being used with CRISPR gene editing. Research and discuss ethical and moral issues raised by CRISPR gene editing.

	17.29 (Research: Big-Data Ethics Conundrum) Suppose big-data analytics predicts that a person with no criminal record has a significant chance of committing a serious crime. Should the police arrest that person? Investigate ethics issues with respect to big data.

	17.30 (Research Project: Privacy and Data Integrity Legislation) In the chapter, we mentioned HIPAA (Health Insurance Portability and Accountability Act) in the United States and GDPR (General Data Protection Regulation) for the European Union. Laws like these are becoming more common and stricter. Investigate each of these laws and how they affect big-data analytics thinking.

	17.31 (Research Project: Cross-Referencing Databases) Investigate and comment on the privacy issues caused by cross-referencing facts about individuals among various databases.

	17.32 (Research Project: Personally Identifiable Information) Protecting users personally identifiable information (PII) is an important aspect of privacy. Research and comment on this issue in the context of big data.

	17.33 (Research Project: Wikipedia as a Big-Data Source) Wikipedia is a popular big-data source. Investigate the capabilities they offer for accessing their information. Be sure to check out the wikipedia Python module and build an application that uses Wikipedia data.

 Index

Symbols

	^ regex metacharacter 301, 305

	^ set difference operator 225

	^= set symmetric difference augmented assignment 227

	_ (digit separator) 126

	_ SQL wildcard character 735

	, (comma) in singleton tuple 161

	: (colon) 65

	!= inequality operator 62, 65

	? to access help in IPython 122

	?? to access help in IPython (include source code) 122

	. regular expression metacharacter 306

	\’ single-quote-character escape sequence 57

	’relu’ (Rectified Linear Unit) activation function 685

	\" double-quote-character escape sequence 57

	“is-a” relationships 384

	(and) regex metacharacters 306

	[] regex character class 301

	[] subscription operator 157, 159

	{} for creating a dictionary 210

	{} placeholder in a format string 288

	{n,} quantifier (regex) 302

	{n,m} quantifier (regex) 302

	@-mentions 522, 541, 542

	* multiplication operator 52, 65

	* operator for unpacking an iterable into function arguments 137

	* quantifier (regex) 301

	* SQL wildcard character 731

	* string repetition operator 165, 289

	* to unpack a tuple passed to a function 370

	** exponentiation operator 52, 65

	*= for lists 174

	/ true division operator 52, 65

	// floor division operator 52, 65

	\ continuation character 57, 64

	\ escape character 56, 57

	\ regex metacharacter 300

	\\ backslash character escape sequence 57

	\D regex character class 301

	\d regex character class 301

	\n newline escape sequence 56, 57

	\S regex character class 301

	\s regex character class 301

	\t horizontal tab 57

	\t tab escape sequence 57

	\W regex character class 301

	\w regex character class 301

	& bitwise AND operator 270

	& set intersection operator 225

	&= set intersection augmented assignment 227

	# comment character 64

	% remainder operator 52, 53, 65

	% SQL wildcard character 735

	+ addition operator 50, 52, 65

	– subtraction operator 52, 65

	+ operator for sequence concatenation 159

	+ quantifier (regex) 302

	- set difference operator 225

	+ string concatenation operator 289

	+= augmented assignment statement 89, 158

	< less-than operator 62, 65

	<= less-than-or-equal-to operator 62, 65

	= assignment symbol 50, 51, 65

	-= set difference augmented assignment 227

	== equality operator 62, 65

	> greater-than operator 62, 65

	>= greater-than-or-equal-to operator 62, 65

	| (bitwise OR operator) 270

	| set union operator 225

	|= set union augmented assignment 226

	$ regex metacharacter 305

Numerics

	0D tensor 674

	1D tensor 674

	2D tensor 674

	3D scatter plot 658

	3D tensor 674

	4D tensor 674

	5D tensor 674

A

	'a' file-open mode 331

	'a+' file-open mode 331

	abbreviating an assignment expression 89

	abc (abstract base class) module 429

	@abstractmethod decorator 430

	ABC class 429

	ABC class of the module abc 429

	abs built-in function 133

	absence of a value (None) 121

	absolute value 133

	abstract base class (abc) module 429

	abstract class 429

	abstract method 429

	@abstractmethod decorator of the module abc 430

	accelerometer 4

	accept method of a socket 780

	access token (Twitter) 520, 526

	access token secret (Twitter) 520, 526

	Account class 358, 407

	inheritance hierarchy exercise 426

	Accounts and Users API (Twitter) 518

	accounts-receivable file 321

	accuracy 709

	accuracy of a model 690

	ACID (Atomicity, Consistency, Isolation, Durability) 743

	acquire resources 322

	action 90

	action symbol 76

	action to execute 74

	activate a neuron 672

	activation function 673, 676

	relu (Rectified Linear Unit) 685

	sigmoid 708

	softmax 687

	activation record 145

	adam optimizer 689

	add

	method of set 227

	universal function (NumPy) 253, 254

	__add__ special method of class object 394, 396

	add_to method of class Marker 555

	addition 5, 52, 54

	augmented assignment (+=) 89

	operator (+) 50

	adjective 483

	“administrative” section of the computer 5

	agent in reinforcement learning 712

	AI xxxii

	algebraic expression 54

	algorithm 74, 90, 438

	binary search 444

	bucket sort 473

	insertion sort 451

	linear search 441

	merge sort 454

	quicksort 473

	recursive binary search 473

	selection sort 448

	algorithm development xxii

	alignment 286

	all built-in function 175

	alphabetic characters 298

	AlphaGo 43, 713

	alphanumeric character 298, 301

	AlphaZero 43, 713

	ALU (arithmetic and logic unit) 5

	Amazon Alexa xxviii, 46

	Amazon DynamoDB 742

	Amazon EMR 757

	Ambari 757

	Anaconda

	base environment 670

	conda activate command 671

	conda create command 671

	conda deactivate command 671

	environment 670

	installer xlvi

	Anaconda Prompt

	Windows xlvi

	Anaconda Python distribution 17, 21

	install xlvi

	NumPy preinstalled 240

	packages installed xlvii

	update xlvi

	analyze text for tone 570

	anchor (regex) 305

	and Boolean operator 106, 108

	truth table 107

	Android

	operating system 14

	smartphone 14

	animated binary search visualization 468

	animated visualization 228

	animation frame 229, 463

	animation module (Matplotlib) 228, 233

	FuncAnimation function 228, 232, 233, 234

	anomaly detection 39, 719

	anonymous function 183

	Anscombe’s Quartet 116, 354

	Anscombe’s quartet xxiv

	answering natural language questions 509

	antonyms 479, 492, 494

	any built-in function 175

	Apache Hadoop xxiii, 725, 755

	Apache HBase 756

	Apache Ignite (NewSQL) 744, 803

	Apache Kafka 788, 802

	Apache Mesos 767

	Apache OpenNLP 509

	Apache Software Foundation 13

	Apache Spark 725

	Apache Tez 800

	API class (Tweepy) 525, 526

	followers method 529

	followers_ids method 531

	friends method 532

	get_user method 527

	home_timeline method 533

	lookup_users method 531

	me method 528

	search method 534

	trends_available method 536

	trends_closest method 537

	trends_place method 537

	user_timeline method 532

	API key (Twitter) 520, 526, 527

	API reference (IBM Watson) 587

	API secret key (Twitter) 520, 526, 527

	app development

	BeeWare 15, 47

	Kivy 15, 47

	PyMob 15, 47

	Pythonista 15, 48

	app rate limit (Twitter API) 518

	append method of list 176, 178

	Apple 14

	Apple Macintosh 14

	Apple Siri xxviii, 46

	Apple TV 14

	Apple Watch 14, 801

	application programming interface (API) xxxvii

	approximating a floating-point number 102

	arange function (NumPy) 244

	arbitrary argument list 136

	arccos universal function (NumPy) 254

	arcsin universal function (NumPy) 254

	arctan universal function (NumPy) 254

	*args parameter for arbitrary argument lists 136

	argument 51, 122

	argv list of command-line arguments 198

	argv[0] first command-line argument 198

	arithmetic and logic unit (ALU) 5

	arithmetic calculation 52

	arithmetic expressions 21

	arithmetic on ndarray 248

	arithmetic operator 52

	Decimal 103

	“arity” of an operator 394

	ARPANET 29, 786

	array

	JSON 327

	array attributes (NumPy) 242

	array function (NumPy) 241, 242

	artificial general intelligence 42

	artificial intelligence (AI) xxvi, xxxii, 42, 43

	artificial neural network 672

	artificial neuron in an artificial neural network 672

	as clause of a with statement 322

	as-a-service

	big data (BDaas) 726

	Hadoop (Haas) 726

	Hardware (Haas) 726

	Infrastructure (Iaas) 726

	platform (Paas) 726

	software (Saas) 726

	Spark (Saas) 726

	storage (Saas) 726

	ascending order

	ASC in SQL 736

	sort 172, 219

	ASCII (American Standard Code for Information Interchange) character set 7

	asdict function of the module dataclasses 424

	assembler 9

	assembly language 9

	assignment statement 50

	assignment symbol (=) 50, 51, 65

	assisting people with disabilities 39

	asterisk (*) multiplication operator 52, 65

	asterisk (*) SQL wildcard character 731

	astuple function of the module dataclasses 424

	astype method of class Series 747

	asynchronous 571

	asynchronous tweet stream 546

	at attribute of a DataFrame 270

	Atari video-game environments (OpenAI Gym) 720

	atomicity 743

	attribute 12

	internal use only 364

	of a class 10, 359

	of an array 242

	of an object 12

	publicly accessible 364

	AudioSegment class

	from pydub module 586

	from_wav method 586

	augmented assignment

	addition (+=) 89, 158

	Authentication API (Twitter) 518

	author_ISBN table of books database 730, 732

	authors table of books database 730

	auto insurance risk prediction 39

	autoincremented value 731, 738

	Auto-Keras automated deep learning library 668, 710

	automated

	closed captioning 39, 702

	hyperparameter tuning 661

	image captions 39

	investing 39

	machine learning (AutoML) 710, 711

	AutoML 668

	autonomous ships 39

	auto-sklearn library 663

	average time 247

	Averaged Perceptron Tagger 480

	averaging calculation 90

	awesome-public-datasets 352

	Axes class (Matplotlib) 194

	imshow method 379

	set method 195

	set_ylim method 196

	text method 195, 196

	Axes3D class (Matplotlib) 658

	axis=1 keyword argument of DataFrame method sort_index 272

	Azure HDInsight (Microsoft) 725

B

	b prefix for a byte string 586

	backpropagation 673

	backslash (\) escape character 56, 57

	bad data values 117, 308

	balanced classes in a dataset 608, 662

	bandwidth 30

	bar chart 497, 499

	static 156

	bar method of a DataFrame’s plot property 499

	bar plot 191, 228, 229, 464

	barplot function (Seaborn) 194

	Seaborn 460

	BASE (Basic Availability, Soft-state, Eventual consistency) 744

	base-10 number system 133

	base case 433, 437, 438

	base class 357

	direct 383

	indirect 383

	base e 133

	base environment in Anaconda 670

	BaseBlob class from the textblob module 481

	BaseException class 397, 398

	BASIC programming language 20

	batch

	interval in Spark streaming 784

	of data in Hadoop 756

	of streaming data in Spark 784

	batch_size argument to a Keras model’s fit method 691

	BDaaS (Big data as a Service) 726

	Beautiful Soup web scraping library 511

	BeeWare 15, 47

	behavior of a class 10

	big data 8, 38, 240

	analytics 38

	analytics in the cloud xxv

	Big O notation 432, 442, 448, 451, 453, 459

	bimodal set of values 110

	binary classification 701, 708

	machine learning 600, 661

	binary digit (bit) 7

	binary file 321, 350

	binary number system 7, 285

	binary operator 50

	binary search

	algorithm 444, 447

	visualization 468

	binary_crossentropy loss function 690, 708

	binary-classification model 719

	bind a name to an object 66

	bind method of a socket 780

	Bing sentiment analysis 509

	bit (binary digit) 7

	BitBucket 357

	Bitcoin 36, 37, 47

	bitwise

	AND operator (&) 270

	OR operator (|) 270

	bitwise_and universal function (NumPy) 254

	bitwise_or universal function (NumPy) 254

	bitwise_xor universal function (NumPy) 254

	Bjarne Stroustrup 20

	blank line 95

	block

	in a function 121

	vs. suite 121, 139

	blockchain 36, 37, 47

	books database 730

	book-title capitalization 291

	bool NumPy type 242

	Boolean indexing (pandas) 270

	Boolean operators 106

	and 106

	not 106, 108

	or 106, 107

	Boolean values in JSON 327

	brain mapping 39

	break statement 105

	Breast Cancer dataset 661

	broadcasting (NumPy) 249, 253

	Brown Corpus (from Brown University) 480

	brute force computing 42, 115

	bs4 module (Beautiful Soup library) 511

	bubble sort 474

	bucket sort 473

	building-block approach 11

	built-in function

	abs 133

	all 175

	any 175

	enumerate 164, 165

	eval 369

	filter 182

	float 61

	frozenset 223

	id 143

	input 59, 60

	int 60, 61

	len 109, 137, 157

	list 164

	map 183

	max 69, 124, 136, 185

	min 69, 124, 136, 185

	next 463

	open 322

	ord 71, 185

	print 56

	range 88, 101

	repr 368

	reversed 186

	set 222

	sorted 110, 172, 215

	str 369, 446, 450

	sum 109, 130, 137

	super 389

	tuple 164

	zip 186

	built-in namespace 412

	built-in types

	dict (dictionary) 210

	float 66, 103

	int 66, 103

	set 210, 221

	str 57, 66, 103

	Bunch class from sklearn.utils 626

	data attribute 604, 627

	DESCR attribute 602, 626

	feature_names attribute 628

	target attribute 604, 627

	byte 5, 7

	string 586

C

	c presentation type 285, 314

	C programming language 20, 242

	C# programming language 20

	C++ programming language 20

	cadence, voice 569, 571

	calculate change 115

	calculations 5

	calendar module 132

	California Housing dataset 625, 661

	call-by-reference 142

	call-by-value 142

	callback (Keras) 699

	caller 121

	caller identification 39

	CamelCase naming convention 134

	cancer diagnosis 39

	capitalization

	book title 291

	sentence 291

	capitalize method of a string 291

	capstone course projects xxiii

	carbon emissions reduction 39

	Card class 373, 375, 401

	card images 373

	Card Shuffling and Dealing exercise 205, 206, 591

	caret (^) regex metacharacter 301

	CartPole environment (OpenAI Gym) 713

	OpenAI Gym

	CartPole environment 720

	case insensitive 305

	case-insensitive sort 530

	case sensitive 51, 305

	catching multiple exceptions in one except clause 335

	categorical data 117, 353, 681, 706

	categorical features in machine learning datasets 605

	categorical_crossentropy loss function 690

	%cd magic 248

	ceil (ceiling) function 133

	ceil universal function (NumPy) 254

	cell in a Jupyter Notebook 26

	central nervous system 672

	central processing unit (CPU) 5

	centroid 642, 651

	chained method calls 245

	channel in pub/sub systems 788

	character 7, 297

	character class (regular expressions) 300, 301

	custom 301

	character set 7, 71

	chart xxiv

	chatbots 568, 719

	check protection 313

	checkpoint method of a StreamingContext 784

	checkpointing in Spark 784

	chess 42

	Chinese (simplified) 488

	choice function from the numpy.random module 679

	choropleth 752, 799

	chunking text 480

	CIFAR10 dataset (Keras) 670

	CIFAR100 dataset (Keras) 670

	cla function of matplotlib.pyplot module 196, 232

	class 11, 131

	attribute 359

	class keyword 360

	client code 364

	data attribute 360

	definition 360

	header 360

	instance variable 12

	library 357

	method 399

	namespace 414

	object 361, 386

	property 365, 367

	@property decorator 367

	@propertyname.setter decorator 367

	public interface 370

	variable 375, 401

	class attribute 375

	in a data class 401, 402

	class average

	for arbitrary number of grades 93

	class average problem 90, 93

	class libraries xxvii

	classification (machine learning) 596, 597, 599, 659

	algorithm 601

	binary 661

	binary classification 600

	handwritten digits 676

	Iris dataset 659, 660

	metrics 613

	multi-classification 600

	probabilities (deep learning) 687

	classification report (scikit-learn)

	f1-score 614

	precision 614

	recall 614

	support 614

	classification_report function from the sklearn.metrics module 613

	classifier 571

	classify

	handwriting 39

	ClassVar type annotation from the typing module 401, 402

	cleaning data 300, 346, 554

	clear axes 232

	clear method

	of dictionary 211

	of list 177

	of set 227

	client of a class 364, 372

	client/server app

	client 777

	server 777

	client/server networking 777

	close method

	of a file object 322

	of a socket 780

	of a sqlite3 Connection 740

	of an object that uses a system resource 322

	of class Stream 586

	closed captioning 510, 702

	closures 147

	cloud xxiii, 30, 518, 566, 567

	computing 32

	IBM Cloud account 566

	cloud-based services 30, 327

	Cloudera CDH 757, 800

	cluster 755

	node 755

	clustering 662

	digits dataset 660

	clusters of computers 41

	CNN (convolutional neural network) 676

	CNTK (Microsoft Cognitive Toolkit) 19, 666, 670

	code 2, 12

	coeff_ attribute of a LinearRegression estimator 622

	coefficient of determination (R2 score) 637

	Cognitive Computation Group 512

	cognitive computing xxxvii, 566, 567, 571

	Cognos Analytics (IBM) 573

	collaborative filtering 510, 719

	collection

	non-sequence 210

	sequence 210

	unordered 211

	Collection class of the pymongo module 749

	count_documents method 749

	insert_one method 749

	collections 156

	collections module 18, 132, 219, 399

	namedtuple function 399

	color map 607

	Matplotlib 607

	column

	in a database table 729, 730

	in a multi-dimensional list 187

	columnar database (NoSQL) 741, 742

	column-oriented database 741, 742

	comma (,) format specifier 194

	comma-separated list of arguments 121

	comma-separated-value (CSV) files 132

	command-line arguments 198

	argv 198

	argv[0] 198

	comma-separated-value (CSV) files 18

	comment 64

	comment character (#) 64

	CommissionEmployee class 384

	common programming errors xxxviii

	comparison operators 61

	compile method of class Sequential 689

	compiler 10

	complete algorithm 76

	Complex class 394

	complex condition 106

	complexity theory 438

	component 10, 357

	composite primary key 732, 733

	composition

	exercise 424

	composition (“has a” relationship) 361, 392

	compound interest 104

	computer-assisted instruction (CAI) 153

	Difficulty Levels 154

	Reducing Student Fatigue 154

	Varying the Types of Problems 154

	computer program 3

	computer science xx

	computer vision 39

	computers in education 153

	computer-vision applications 42

	computer-vision systems 718

	concatenate sequences 159

	concatenate strings separated by whitespace 218

	concrete class 429

	concurrent execution 771

	concurrent programming xxxii, 18

	conda activate command 671

	conda command xlvi

	conda create command 671

	conda deactivate command 671

	conda package manager xlvii

	Condense Spaces to a Single Space exercise 315

	condition 61, 62, 78

	None evaluates to False 121

	conditional

	expression 82, 128

	operators 106

	confidence interval 421

	confusion matrix 612

	as a heat map 615

	confusion_matrix function of the sklearn.metrics module 612

	conjunction

	subordinating 483

	conll2000 (Conference on Computational Natural Language Learning 2000) 480

	connect function from the sqlite3 module 730

	Connection class (sqlite3 module) 730, 738

	close method 740

	cursor method 738

	connection string (MongoDB) 747

	connector symbols 76

	consistency 743

	constant 375

	constant run time 442

	constants 134

	constructor 526

	constructor expression 359, 360

	consume memory 439

	Consumer API keys (Twitter) 520

	container (Docker) xxxvi, 767

	contains method for a pandas Series 309

	content property of a Response 511

	continental United States 555

	continuation character (\) 57, 64

	continuation prompt ...: in IPython 59

	continue statement 106

	control statement 74, 75, 439

	for 86, 87, 88

	if 77, 79

	if…elif…else 77, 83

	if…else 77, 80, 81, 98

	nesting 77

	stacking 77

	while 85, 86

	Conv2D class from the tensorflow.keras.layers module 684

	converge on a base case 433

	convert

	floating-point value to an integer 61

	speech to text 569

	string to floating-point number 61

	string to integer 60, 61

	Converting Integers to Characters exercise 314

	convnet pretrained models 711

	convnet (convolutional neural network) 676, 680, 681, 682, 684, 692

	convolution layer 683

	filter 684

	convolutional neural network (CNN or convnet) 667, 676

	model 682

	co-occurrence 496

	Cooking with Healthier Ingredients exercise 316

	Coordinated Universal Time (UTC) 522

	coordinates (map) 551

	copy method of list 177

	copy method of ndarray 258

	copy module 258

	core Python language 132

	co-reference resolution 509

	corpus 479

	corpora (plural of corpus) 479

	correct method of class Sentence 490

	correct method of class TextBlob 490

	correct method of class Word 490

	cos (cosine) function 133

	cos universal function (NumPy) 254

	Couchbase 742

	CouchDB 742

	count method

	of class WordList 492

	of list 177

	count statistic 68, 110

	count string method 292

	count_documents method of class Collection 749

	counter 94

	counter-controlled iteration 439

	Counter type for summarizing iterables 219

	Counting Characters and Words exercise 315

	counting word frequencies 479

	CPU (central processing unit) 5, 685

	crafting valuable classes 356

	CraigsList 31

	craps (casino game) 208

	craps game 128

	create algorithm that solves a problem 90

	classes from existing classes 386

	create, read, update and delete (CRUD) 730

	createOrReplaceTempView method of a Spark DataFrame 783

	Creating Three-Letter Strings from a Five-Letter Word exercise 314

	credentials (API keys) 520

	credit scoring 39

	crime

	predicting locations 39

	predicting recidivism 39

	predictive policing 39

	prevention 39

	CRISPR gene editing 39, 803

	crop yield improvement 39

	cross_val_score function sklearn.model_selection 616, 618, 638

	cross_validate function (module sklearn.model_selection) 660

	cross-platform mobile apps 15

	cross-validation

	k-fold 616

	crossword-puzzle generator 354

	crowdsourced data 40

	CRUD operations (create, read, update and delete) 730

	cryptocurrency 37, 47

	cryptography 18, 47, 127

	modules 132

	CSV (comma-separated value) format 320, 399, 400

	csv module 18, 132, 342

	csv module reader function 343

	csv module writer function 342

	file 295

	.csv file extension 342

	curly braces in an f-string replacement field 92

	curse of dimensionality 639

	cursor 56

	Cursor class (sqlite3)

	execute method 738

	fetchall method 799

	Cursor class (Tweepy) 529

	items method 530

	cursor method of a sqlite3 Connection 738

	cursor.description attribute 799

	custom character class 301

	custom exception classes 398

	custom function 120

	custom indices in a Series 264

	custom models 572

	customer

	churn 39

	experience 39

	retention 39

	satisfaction 39

	service 39

	service agents 39

	customized diets 39

	customized indexing (pandas) 262

	cybersecurity 39

D

	d presentation type 285

	Dale-Chall readability formula 503, 504, 505

	DARPA (the Defense Advanced Research Projects Agency) 766

	dashboard 697

	data 3

	attribute of a class 360

	categorical 353

	encapsulating 364

	hiding 370, 373

	numerical 353

	data attribute of a Bunch 604, 627

	data augmentation 667, 685

	data class 400

	autogenerated methods 400

	autogenerated overloaded operator methods 401

	class attribute 401, 402

	frozen object 426

	data cleaning 284, 307, 346, 541, 554

	data compression 18

	data exploration 606, 631

	data hierarchy 6

	data mining xxiii, 516, 517

	Twitter 39, 516

	data munging 284, 307

	data preparation 262, 680, 705

	data sampling 308

	data science xx

	use cases 39

	data science libraries

	Gensim 19

	Matplotlib 19

	NLTK 19

	NumPy 19

	pandas 19

	scikit-learn 19

	SciPy 19

	Seaborn 19

	StatsModels 19

	TensoFlow 19

	TextBlob 19

	Theano 19

	data sources 510

	data visualization 39

	data warehouse 757

	data wrangling 284, 307

	data.gov datasets 352

	database 8, 724, 728, 733

	Database Application Programming Interface (DB-API) 730

	Database class of the pymongo module 747

	database management system (DBMS) 728

	Databricks 767

	Community Edition 725

	@dataclass decorator from the module dataclasses 401

	dataclasses module 400, 401

	@dataclass decorator 401

	asdict function 424

	astuple function 424

	make_dataclass function 426

	DataFrame (pandas) 262, 267, 284, 308, 310, 311, 554

	at attribute 270

	describe method 271

	dropna method 554

	groupby method 751, 753

	head method 346

	hist method 348

	iat attribute 270

	iloc attribute 268

	index attribute 267

	index keyword argument 267

	itertuples method 555

	loc attribute 268

	plot method 415

	plot property 499

	sample method 630

	sort_index method 272

	sort_values method 273

	sum method 751

	T attribute 272

	tail method 346

	to_csv method 345

	transpose rows and columns 272

	DataFrame (Spark) 781, 783

	createOrReplaceTempView method 783

	pyspark.sql module 781, 783

	data-interchange format

	JSON 327

	dataset 116, 352

	awesome-public-datasets 352

	Breast Cancer 661

	California Housing 625

	CIFAR10 670

	CIFAR100 670

	data.gov 352

	Diabetes 660

	diamonds 352

	Digits 600

	EMNIST 662, 696

	Fashion-MNIST 670, 715

	ImageNet 687

	IMDb Movie reviews 670

	Iris 353, 643

	Kaggle competition site 352

	MNIST digits 662, 669, 676

	natural language 510

	Rdatasets 352

	repositories 352

	Titanic disaster 345, 346, 664

	UCI ML hand-written digits 602

	datasets

	MovieLens 100K 719

	Spambase 719

	date and time manipulations 18, 132

	datetime module 18, 132, 152, 371, 424

	exercise 424

	datetime type 152, 424

	today method 152

	DB-API (Database Application Programming Interface) 730

	Db2 (IBM) 729

	DBMS (database management system) 728

	debug 69

	debugging 11, 18

	decimal digit 7

	decimal integers 298

	decimal module 18, 103, 132

	Decimal type 102, 104

	arithmetic operators 103

	decision symbol 76, 79

	DeckOfCards class 373, 377

	declarative programming 147, 148

	decompose a problem 91, 93

	decorator

	@abstractmethod 430

	@dataclass 401

	@property 367

	@propertyname.setter 367

	@total_ordering 428

	decorators 147

	decrement 101

	deep copy 167, 258

	deep fakes 721

	deep learning xxiii, xxxii, 19, 41, 509, 666, 667

	Auto-Keras 668

	CNTK 666, 670

	epoch 673

	EZDL 668

	fully connected network 672

	Keras 666

	loss function 677

	model 676

	network 676

	optimizer 677

	TensorFlow 666

	Theano 19, 666, 670

	deep learning (IBM Watson) 572

	deep learning EZDL 668

	Deep Q-Learning 713

	DeepBlue 42

	deepcopy function from the module copy 258

	Deep-Q Learning 720

	def keyword for defining a function 121

	default parameter value 135

	define a function 120

	define method of class Word 493

	definite repetition 92

	definitions property of class Word 493

	del statement 169, 213

	DELETE FROM SQL statement 734, 739

	delimiters 294

	Dense class from the tensorflow.keras.layers module 687

	dense-vector representation 706

	dependent variable 415, 620, 635

	dequeue operation of queue 205

	derived class 357

	“derived-class-object-is-a-base-class-object” relationship 391

	descending sort 172

	DESC 736

	DESCR attribute of a Bunch 602, 626

	describe method of a pandas DataFrame 271

	describe method of a pandas Series 264

	description property of a User (Twitter) 527

	descriptive statistics 68, 109, 148, 263, 271, 347, 353

	deserializing data 328

	design pattern 32

	design process 12

	detect_language method of a TextBlob 487

	detecting new viruses 39

	determiner 483

	Diabetes dataset 660

	diagnose medical conditions 42

	diagnosing breast cancer 39

	diagnosing heart disease 39

	diagnostic medicine 39

	diamond symbol for decisions in a flowchart 76

	diamonds dataset 352

	dice game 128

	dict method of class Textatistic 504

	dictionary 147

	dictionary built-in type 210

	clear method 211

	get method 213

	immutable keys 210

	items method 212

	keys method 214

	length 211

	lists as values 217

	modifying the value associated with a key 213

	pop method 213

	process keys in sorted order 215

	update a key’s associated value 213

	update method 220

	values method 214

	view 215

	dictionary comprehension 147, 220, 221, 704

	die rolling 125

	visualization 193

	die-rolling simulation xxiv

	difference augmented assignment (sets) 227

	difference method of set 225

	difference_update method of set 227

	digit separator (_) 126

	Digits dataset 600, 658

	Dijkstra 406

	dimensionality 685

	reduction 639, 658, 686

	direct base class 383

	directed-study projects xxiii

	disaster victim identification 39

	discard method of set 227

	discovery with IPython tab completion 133

	disjoint 226

	dispersion 149

	display a line of text 56

	distribution 649

	divide and conquer 93, 120, 433, 587

	divide by zero 24

	divide universal function (NumPy) 254

	dividing by zero is not allowed 53

	division 5, 22, 52, 54

	by zero 95

	floor 52, 65

	true 52, 65

	Doc class (spaCy) 506

	ents property 506

	similarity method 508

	Docker xxviii, xxxvi, 670, 767

	container xxxvi, 767

	image 767

	docstring 58, 64, 121

	for a class 360

	for a function 130

	for testing 407

	viewing in IPython 134

	doctest module 18, 132, 406

	testmod function 407

	%doctest_mode IPython magic 409

	document database 741, 742

	document summarization 514, 719

	document-analysis techniques 218

	domain expert 649

	double-indexed list 187

	double quotes ("") 56, 57

	double-selection statement 77

	double-subscripted list 187

	download function of the nltk module 495

	download the examples xlv

	Drill 757

	drones 39

	dropna method of class DataFrame 554

	dropout 685, 707

	Dropout class from the tensorflow.keras.layers.embeddings module 707

	layer 717

	DStream class

	flatMap method 784

	foreachRDD method 785

	map method 785

	updateStateByKey method 785

	DStream class from the pyspark.streaming module 782

	dtype attribute of a pandas Series 265

	dtype attribute of ndarray 242

	dual-core processor 5

	duck typing 392, 424

	dummy value 93

	dump function from the json module 328

	dump function of the pickle module 350

	dumps function from the json module 328

	duplicate elimination 202, 206, 222

	durability 743

	Dweepy library 790

	dweepy module dweet_for function 792

	dweet (message in dweet.io) 790

	dweet_for function of the dweepy module 792

	Dweet.io 725, 787

	dynamic

	driving routes 39

	pricing 39

	resizing 156

	typing 67

	visualization 228

	dynamic die-rolling simulation xxiv

	DynamoDB (Amazon) 742

E

	E (or e) presentation type 286

	Eclipse Foundation 14

	edge in a graph 743

	%edit magic 248

	editor 23

	efficiency of

	binary search 447

	insertion sort 453

	linear search 443

	merge sort 459

	selection sort 451

	Eight Queens exercise 470

	ElasticNet estimator from sklearn.linear_model 638

	elbow method 661

	electronic health records 39

	element of a sequence 156

	element of chance 125

	elif keyword 77, 83

	else in an if statement 77

	else clause

	of a loop 106, 115

	of a try statement 333, 335

	e-mail (electronic mail) 29

	embedded system 14

	Embedding class from the tensorflow.keras.layers module 707

	embedding layer 706

	EMNIST dataset 662, 696

	emotion 570

	detection 39

	empirical science 308

	employee identification number 7

	empty

	list 158

	set 222

	string 79, 87

	tuple 161

	encapsulation 364

	enclosing namespace 413

	encode a string as bytes 778

	end index of a slice 166, 167

	“end of data entry” 93

	endpoint

	of a connection 777

	of a web service 518

	endswith string method 293

	energy consumption reduction 39

	English-like abbreviations 9

	English parts of speech 482

	enqueue operation of queue 205

	Enter (or Return) key 56

	entity-relationship (ER) diagram 733

	ents property of a spaCy Doc 506

	enum module 428

	enumerate built-in function 164, 165

	enumeration 428

	environment

	in Anaconda 670

	epoch argument to a Keras model’s fit method 691

	epoch in deep learning 673

	__eq__ special method of a class 400

	__ne__ special method of a class 400

	__eq__ special method of a class 400

	equal to operator(==) 62

	equal universal function (NumPy) 254

	equation in straight-line form 54

	e-reader device 15

	error-prevention tips xxxviii

	escape character 56, 739

	escape sequence 56, 57, 298

	estimator (model) in scikit-learn 602, 621

	Ethereum 37, 47

	ethics xxviii, 47, 803

	ETL (extract, transform, load) 757

	eval built-in function 369

	evaluate method of class Sequential 692

	Evaluate Word Problems exercise 314

	evaluation order 22

	evenly-spaced values 245

	evolutionary algorithms 722

	evolutionary computation 722

	evolutionary learning 722

	exabytes (EB) 34

	exaflops 36

	except clause 333

	catching multiple exceptions 335

	exception 53, 320

	handler 320, 333

	uncaught 341

	Exception class of exceptions 398

	exception classes

	custom 398

	exceptions module 397

	execute method of a sqlite3 Cursor 738

	execution phases 91, 94

	execution-time error 24

	exp (exponential) function of module math 133

	exp universal function (NumPy) 254

	expected values 230

	exponential notation 286

	exponentiation 52, 54, 65

	operator (**) 52

	extend method of list 176

	extended_tweet property of a Status (Twitter) 528

	extensible language 358

	external iteration 147, 240, 309

	extracting data from text 300

	EZDL automated deep learning (Baidu) 668

F

	f presentation type 286

	f1-score in a scikit-learn classification report 614

	fabs (absolute value) function of module math 133

	fabs universal function (NumPy) 254

	face detection 718

	Facebook 14, 517

	Facial Recognition 39

	facial recognition 718

	factorial 433

	factorial function 433, 434

	fake news xxix

	False 61, 76, 77

	fargs keyword argument of FuncAnimation 233

	Fashion-MNIST dataset (Keras) 670, 715

	fatal

	logic error 84, 95

	runtime error 24

	fault tolerance 320

	Spark streaming 784

	feature engineering 663

	feature in a dataset 308

	feature map 684

	feature selection 663

	feature_names attribute of a Bunch 628

	feed-forward network 682

	fetch_california_housing function from sklearn.datasets 626

	fetchall method of a sqlite3 Cursor 799

	fibonacci method 437

	Fibonacci series 436, 438

	defined recursively 436

	field 7, 8

	field alignment 286

	field width 105, 286

	FIFO (first-in, first-out) order) 179

	Figure class (Matplotlib) 194

	tight_layout method 380

	figure function of matplotlib.pyplot module 233

	file 8, 320

	binary 350

	contents deleted 331

	file object 321, 322

	close method 322

	in a for statement 324

	read method 331

	readline method 331

	readlines method 324

	seek method 324

	standard 321

	write method 322

	writelines method 331

	file-open mode 322

	'a' (append) 331

	'a+' (read and append) 331

	'r' (read) 323, 331

	'r+' (read and write) 331

	'w' (write) 322, 331

	'w+' (read and write) 331

	file-position pointer 324

	file/directory access 18

	FileNotFoundError 331, 338

	fill character (string formatting) 313

	fill with 0s 287

	filter sequence 180, 182

	filter built-in function 147, 182

	filter in convolution 684

	filter method

	of class RDD 772

	of class Stream 546

	filter/map/reduce operations 262

	finally clause 336

	finally suite raising an exception 341

	find string method 293

	findall function of the module re 305

	finditer function of the module re 306

	fire hose (Twitter) 543

	first 179

	first-in, first-out (FIFO) order 179, 205

	first refinement 93, 98

	fit method

	batch_size argument 691

	epochargument 691

	of a scikit-learn estimator 610, 634

	of class Sequential 691

	of the PCA estimator 653

	of the TSNE estimator 640

	validation_data argument 705

	validation_split argument 691, 705

	fit_transform method

	of the PCA estimator 653

	of the TSNE estimator 640

	Fitbit 801

	fitness tracking 39

	five-card poker hand 381, 428

	flag value 93

	flags keyword argument (regular expressions) 305

	flat attribute of ndarray 243

	flatMap method of a DStream 784

	flatMap method of the RDD class 772

	Flatten class from the tensorflow.keras.layers module 687

	flatten method of ndarray 259

	Flesch Reading Ease readability formula 503, 504

	Flesch-Kincaid readability formula 503, 505

	flipped classroom xxxvi

	flipped classrooms xxii

	float function 61

	float type 51, 66, 103

	float64 NumPy type 242, 243

	floating-point number 22, 51, 52, 66

	floor division 52, 65

	operator (//) 52

	floor function of module math 133

	floor universal function (NumPy) 254

	FLOPS (floating-point operations per second) 36

	flow of control 86, 105

	flowchart 76, 81

	flowline 76, 79

	Flume 757

	fmod (remainder) function of module math 133

	Folding@home network 36

	folds in k-fold cross-validation 616

	Folium xxiv

	Folium mapping library 41, 552

	Map class 555

	Marker class 555

	Popup class 555

	followers method of class API 529

	followers_count property of a User (Twitter) 528

	followers_ids method of class API 531

	for clause of a list comprehension 180

	for statement 77, 86, 87, 88

	else clause 106, 115

	target 87

	foreachRDD method of a DStream 785

	foreign key 732, 733

	format method

	of a string 288, 776

	format specifier 96, 105, 285, 377

	comma (,) 194

	format string 288, 377

	__format_ special method of class object 376, 378

	formatted input/output 325

	formatted string (f-string) 92

	formatted text 325

	formatting

	type dependent 285

	formulating algorithms 90, 93, 97

	four V’s of big data 38

	fractions module 425

	frame-by-frame animation

	Matplotlib 229

	frames keyword argument of FuncAnimation 233

	fraud detection 39, 719

	free open datasets xxv

	Freeboard.io 725, 787

	freemium xxv

	friends method of class API 532

	friends_count property of a User (Twitter) 528

	FROM SQL clause 733

	from_wav method of class AudioSegment 586

	from…import statement 103, 141

	frozen data-class object 426

	frozenset

	built-in function 223

	built-in type 223

	f-string (formatted string) 92, 96, 104, 285, 376

	curly braces in a replacement field 92

	full function (NumPy) 244

	fullmatch function of module re 300

	fully connected network 672

	FuncAnimation (Matplotlib animation module) 228, 232, 233, 234, 463

	fargs keyword argument 233

	frames keyword argument 233

	interval keyword argument 233

	repeat keyword argument 233

	function 51, 120, 122, 131, 138

	anonymous 183

	are objects 148, 182

	as building block 120

	block 121

	call 51

	call stack 145

	def keyword 121

	definition 120, 121

	docstring 130

	generator 462

	name 121

	nested 413

	range 88, 101

	recursive 151

	signature 122

	sorted 110

	that calls itself 151

	functional-style programming xxii, 18, 69, 88, 92, 110, 147, 175, 179, 180, 243, 262, 264, 265, 309, 310

	reduction 69, 110

	function-call stack 122

	functools module 147, 184

	reduce function 184

G

	game of craps 128

	game playing 39, 125

	garbage collected 144

	garbage collection 67

	Gary Kasparov 42

	Gaussian Naive Bayes 661

	GaussianNB estimator 661

	from sklearn.naive_bayes 617

	GCD (greatest common divisor) 470

	gcf function of the module matplotlib.pyplot 499

	GDPR (General Data Protection Regulation) xxviii, 724, 803

	generate method of class WordCloud 501, 502

	Generative Adversarial Networks (GANs) 721

	generator

	expression 147, 181, 462

	function 147, 462

	object 181, 462

	GeneratorExit exception 398

	genomics 39

	Gensim 19

	Gensim NLP library 507, 509, 514

	geocode a location 554

	geocode method of class OpenMapQuest (geopy) 558

	geocoding 551, 557

	OpenMapQuest geocoding service 551

	geographic center of the continental United States 555

	Geographic Information Systems (GIS) 39

	GeoJSON (Geographic JSON) 752

	geopy library 525, 551

	OpenMapQuest class 557, 558

	get function

	of the requests module 511

	get method

	of dictionary 213

	get_sample_size method of the class PyAudio 586

	get_synsets method of class Word 493

	get_user method of class API 527

	get_word_index function of the tensorflow.keras.datasets.imdb module 704

	getter method

	decorator 367

	of a property 367

	gettext module 132

	getting questions answered xxxix

	gigabytes (GB) 5, 33

	gigaflops 36

	GitHub xxxv, 13, 116, 357

	global

	namespace 411

	scope 138

	variable 138

	global keyword 139

	GloVe word embeddings 707

	Go board game 42, 713

	golden mean (Fibonacci) 436

	golden ratio (Fibonacci) 436

	good programming practices xxxviii

	Google Assistant xxviii, 46

	Google Cloud AI Platform 664

	Google Cloud DataProc 757

	Google Cloud Datastore 742

	Google Cloud Natural Language API 509

	Google Maps 31

	Google Spanner (NewSQL) 744, 803

	Google Translate 317, 479, 487

	Gosling, James 20

	goto statement 76

	GPS (Global Positioning System) 39

	device 4

	GPS sensor 41

	GPU (Graphics Processing Unit) 685

	gradient descent 673

	graph xxiv

	graph database 741, 743

	edge 743

	node 743

	vertices 743

	graphical user interface (GUI) 14

	Graphics Processing Unit (GPU) 667, 675

	greater universal function (NumPy) 254

	greater_equal universal function (NumPy) 254

	greater-than operator (>) 62

	greater-than-or-equal-to operator (>=) 62

	greatest common divisor (GCD) 470

	greedy evaluation 181

	greedy quantifier 302

	GridSearchCV class sklearn.model_selection 661

	GROUP BY SQL clause 734

	group method of a match object (regular expressions) 304, 306

	GroupBy class (pandas) 751

	groupby function

	of the itertools module 762

	groupby method

	of a DataFrame 751, 753

	grouping (operators) 55, 108, 394

	groups method of a match object (regular expressions) 306

	GUI 18

	GUI (Grahical User Interface) 14

	Guido van Rossum 16, 17

	Gunning Fog readability formula 503, 505

H

	h5 file extension for Hierarchical Data Format files 696

	Hadoop (Apache) xxiii, 184, 725, 755

	as a Service (HaaS) 726

	streaming 760

	streaming mapper 760

	streaming reducer 760

	YARN (“yet another resource negotiator”) 756, 763

	yarn command 763

	handle (or resolve) an exception 320, 333

	hands-on xxiii, 18

	handwritten digits

	classification 676

	recognition 658

	hard disk 320

	hard drive 3, 5

	hardware 2, 3, 9

	Hardware as a Service (HaaS) 726

	“has a” relationship (composition) 362

	hash character (#) 64

	hashtags 522, 535

	HBase 742, 756, 757

	HDFS (Hadoop Distributed File System) 756, 784

	HDInsight

	(Microsoft Azure) 725

	head method of a DataFrame 346

	head of a queue 205

	health outcome improvement 39

	heat map 614

	heatmap function (Seaborn visualization library) 615

	help in IPython 122

	heterogeneous data 161

	hexadecimal number system 285

	hidden layer 677, 682, 685

	Hierarchical Data Format 696

	high-level language 10

	higher-order functions 147, 182

	highest level of precedence 54

	HIPAA (Health Insurance Portability and Accountability Act) xxviii, 724, 803

	hist method of a DataFrame 348

	histogram 164

	%history magic 248

	Hive 757

	home timeline 533

	home_timeline method of class API 533

	homogeneous data 156, 157

	homogeneous numeric data 262

	horizontal stacking (ndarray) 261

	horizontal tab (\t) 57

	Hortonworks 757

	hospital readmission reduction 39

	hostname 780

	hstack function (NumPy) 261

	HTML (HyperText Markup Language) 30

	HTTP (HyperText Transfer Protocol) 30

	human genome sequencing 39

	hyperparameter

	in machine learning 602, 619

	tuning 602, 619, 710

	tuning (automated) 602, 661

	HyperText Markup Language (HTML) 30

	HyperText Transfer Protocol (HTTP) 30

	hypot universal function (NumPy) 254

I

	__iadd__ special method of class object 396

	iat attribute of a DataFrame 270

	IBM Cloud account 566, 568, 575

	IBM Cloud console 568

	IBM Cloud dashboard 568

	IBM Cognos Analytics 573

	IBM Db2 729

	IBM DeepBlue 42

	IBM Summit supercomputer 3

	IBM Watson xxviii, xxxvii, 42, 46, 518, 566, 567, 712

	Analytics Engine 757

	Apache Spark 801

	API reference 587

	dashboard 568

	deep learning 572

	GitHub repository 588

	Knowledge Studio 572

	Language Translator service 569, 575, 576, 577, 578, 583

	Lite tier 566

	lite tiers xxxvii

	machine learning 573

	Machine Learning service 573

	Natural Language Classifier service 571

	Natural Language Understanding service 570

	Personality Insights service 570

	Python SDK xxxvii, 567

	service documentation 587

	Speech to Text service 569, 575, 576, 577, 578, 579, 581, 584

	Text to Speech service 569, 575, 576, 577, 578

	Tone Analyzer service 570

	use cases 566, 567

	Visual Recognition service 569

	Watson Assistant service 568

	Watson Developer Cloud Python SDK 573, 574, 578, 588

	Watson Discovery service 570

	Watson Knowledge Catalog 573

	Watson Studio 664

	YouTube channel 588

	id built-in function 143, 256

	id property of a User (Twitter) 527

	IDE (integrated development environment) 23

	identifiers 51

	identity of an object 143

	identity theft prevention 39

	if clause of a list comprehension 180

	if statement 62, 65, 77, 79

	if…elif…else statement 77, 83

	if…else statement 77, 80, 81, 98

	IGNORECASE regular expression flag 305

	iloc attribute of a DataFrame 268

	image 569

	image (Docker) 767

	Image class of the IPython.display module 688

	imageio module

	imread function 501

	ImageNet dataset 687

	ImageNet Large Scale Visual Recognition Challenge 712

	ImageNet Object Localization Challenge 712

	imaginary part of a complex number 394

	IMDb (the Internet Movie Database) dataset 510, 701

	imdb module from tensorflow.keras.datasets 670, 702

	immediate feedback xxii

	immunotherapy 39

	immutability 147

	immutable 130, 134, 144

	elements in a set 210, 221

	frozenset type 223

	keys in a dictionary 210

	sequence 158

	string 284, 290

	Impala 757

	implement a solution to a problem 90

	implementation detail 370

	import statement 103, 132

	import…as statement 141

	importing

	all identifiers from a module 141

	libraries 193

	one identifier from a module 141

	improper subset 223

	improper superset 224

	imread function of module matplotlib.image 379

	imread function of the module imageio 501

	imshow method of class Axes 379

	in keyword in a for statement 77, 86, 87, 88

	in operator 130, 214, 222

	in place sort (pandas) 273

	indefinite repetition 93

	indentation 65, 78, 79

	indentation validator

	tabnanny 116

	IndentationError 78

	independent variable 415, 620, 621

	index 157

	index attribute of a DataFrame 267

	index keyword argument for a DataFrame 267

	index keyword argument of a pandas Series 264

	index method

	list 174

	index string method 293

	IndexError 158

	indexing ndarray 254

	indirect base class 383

	indirect recursion 435

	industry standard class libraries xxvii

	infinite loop 86

	infinite recursion 435, 439

	infinity symbol 733

	inflection 479, 489

	inflection, voice 569, 571

	Information Revolution 4

	Infrastructure as a Service (IaaS) 726

	inherit data members and methods of a base class 357

	inheritance 12, 386

	hierarchy 382

	single 386, 387

	__init__ special method of a class 360

	initialization phase 91

	initialize a variable 80

	in-memory

	architecture 766

	processing 755

	inner for structure 189

	INNER JOIN SQL clause 734, 737

	innermost pair of parentheses 54

	input device 4

	input function 59, 60

	input layer 676, 682

	input unit 4

	input–output bound 230

	INSERT INTO SQL statement 734, 738

	insert method of list 176

	insert_one method of class Collection 749

	insertion sort algorithm 451, 453

	install a Python package xlvii

	install Tweepy 525, 542

	instance 11

	instance variable 12

	insurance pricing 39

	int function 60, 61

	int type 51, 66, 103

	int64 NumPy type 242, 243

	integer 22, 51, 66

	presentations types 285

	Integrated Development Environment (IDE)

	PyCharm 23

	Spyder 23

	Visual Studio Code 23

	integrated development environment (IDE) xxxiv, 23

	intelligent assistants xxviii, 39, 46

	Amazon Alexa xxviii, 46

	Apple Siri xxviii, 46

	Google Assistant xxviii, 46

	IBM Watson xxviii, 46

	Microsoft Cortana xxviii, 46

	intensity of a grayscale pixel 604

	interactive maps xxiv

	interactive mode (IPython) xxii, 21, 50

	exit 22

	interactive visualization xxiv

	intercept 416, 419

	intercept_ attribute of a LinearRegression estimator 622

	interest rate 104

	Interface Builder 14

	inter-language translation 317, 479, 590, 702

	internal iteration 147, 175, 240, 309

	internal use only attributes 364

	International Organization for Standardization (ISO) 488

	internationalization 18, 132

	Internet 29

	Internet of Things (IoT) 31, 38, 41, 47, 309, 725, 786

	medical device monitoring 39

	Weather Forecasting 39

	Internet Protocol (IP) 30

	address 786

	interpreter 10, 17

	interprocess communication 18

	interquartile range 264

	intersection augmented assignment 227

	intersection method of set 225

	intersection_update method of set 227

	interval keyword argument of FuncAnimation 233

	Inventory Control 39

	invert universal function (NumPy) 254

	Invoice class exercise 425

	io module 331

	iOS 13

	IoT (Internet of Things) 38, 725, 786

	IOTIFY.io 790

	IP address 30, 31, 780

	iPad 14

	iPhone 14

	IPv4 (Internet Protocol version 4) 786

	IPv6 (Internet Protocol version 6) 786

	IPython xxii

	? to access help 122

	?? to access help (include source code) 122

	%doctest_mode magic 409

	continuation prompt ...: 59

	help 64, 122

	interactive mode 21, 50

	interpreter xlvi, 21

	navigate through snippets 81

	script mode 21

	ipython

	command 21

	--matplotlib option 193

	IPython interactive mode xxii

	IPython interpreter 17

	IPython magics 196, 248

	%cd 248

	%doctest_mode 409

	%edit 248

	%history 248

	%load 248

	%pprint 703

	%precision 248

	%recall 196

	%run 248

	%save 197, 248

	%timeit 246

	IPython magics documentation 248

	IPython Notebook 26

	IPython.display module

	Image class 688

	.ipynb extension for Jupyter Notebooks 26

	Iris dataset 353, 643

	Iris setosa 643

	Iris versicolor 643

	Iris virginica 643

	“is-a” relationship 384

	is operator 143

	isalnum string method 298

	isalpha string method 298

	isdecimal string method 298

	isdigit string method 297, 298

	isdisjoint method of set 226

	isidentifier string method 298

	isinf universal function (NumPy) 254

	isinstance function 390

	islower string method 298

	isnan universal function (NumPy) 254

	isnumeric string method 298

	ISO (International Organization for Standardization) 488

	isolation 743

	isspace string method 298

	issubclass function 390

	issubset method of set 224

	issuperset method of set 224

	istitle string method 298

	isupper string method 298

	itemgetter function from the operator module 204, 498

	items method 219

	of Counter 219

	of Cursor 530

	of dictionary 212

	itemsize attribute of ndarray 243

	iterable 88, 124, 159, 180

	iterating over lines in a file 324

	iteration 439

	of a loop 85

	statement 439

	iterative (non-recursive) 433

	iterator 88, 147, 182

	itertools module 147, 762

	groupby function 762

	itertuples method of class DataFrame 555

J

	Jacopini, G. 76

	Java programming language 14, 20

	JavaScript 20

	JavaScript Object Notation (JSON) 18, 521

	Jeopardy! dataset 510

	Jobs, Steve 14

	join string method 295

	joining 732

	joining database tables 732, 737

	joinpath method of class Path 379

	JSON (JavaScript Object Notation) 41, 320, 327, 521, 724, 742

	array 327

	Boolean values 327

	data-interchange format 327

	document 578

	document database (NoSQL) 742

	false 327

	json module 327

	JSON object 327

	null 327

	number 327

	object 521, 744

	string 327

	true 327

	json module 18, 132

	dump function 328

	dumps function 328

	load function 328

	JSON/XML/other Internet data formats 18

	Jupyter Docker stack container 726

	Jupyter Notebooks xxviii, xxxv, 3, 21, 24, 26

	.ipynb extension 26

	cell 26

	reproducibility 25

	server xlvi

	terminate execution 677

	JupyterLab 3, 25

	Terminal window 768

K

	k-fold cross-validation 616, 660, 710

	Kafka 757, 802

	Kaggle datasets 352

	Keras 573

	CIFAR10 dataset 670

	CIFAR100 dataset 670

	Fashion-MNIST dataset 670, 715

	IMDb movie reviews dataset 670

	loss function 690

	metrics 690

	MNIST digits dataset 669

	optimizers 689

	reproducibility 676

	summary method of a model 687

	TensorBoard callback 699

	Keras deep learning library 666

	kernel

	in a convolutional layer 683

	kernel of an operating system 13

	key 174

	key–value

	database 741

	pair 210

	keyboard 3

	KeyboardInterrupt exception 398

	keys

	API keys 520

	credentials 520

	keys method of dictionary 214

	keyword 61, 65, 77

	and 106, 108

	argument 87, 136

	break 105

	class 360

	continue 106

	def 121

	elif 77, 83

	else 77

	False 76, 77

	for 77, 86, 87, 88

	from 103

	if 77, 79

	if…elif…else 77, 83

	if…else 77, 80, 81, 98

	import 103

	in 77, 86, 87, 88

	lambda 183

	not 106, 108

	or 106, 107

	True 76, 77

	while 77, 85, 86, 87

	yield 462

	KFold class sklearn.model_selection 616, 618, 638

	Kitematic (Docker GUI app) 770

	Kivy 15, 47

	k-means clustering algorithm 642, 650

	KMeans estimator from sklearn.cluster 650

	k-nearest neighbors (k-NN) classification algorithm 601, 660

	KNeighborsClassifier estimator from sklearn.neighbors 609

	KNIME Analytics Platform (workbench) 664

	Knowledge Studio (IBM Watson) 572

	KoNLPy 509

L

	L1 regularization 685

	L2 regularization 685

	label_ property of a spaCy Span 506

	labeled data 596, 600

	lambda expression 147, 183, 530

	lambda keyword 183

	language codes 488

	language detection 479

	language translation 39, 479

	Language Translator service (IBM Watson) 569, 575, 576, 577, 578, 583

	LanguageTranslatorV3 class

	from the watson_developer_cloud module 578, 583

	translate method 583

	largest integer not greater than 133

	Lasso estimator from sklearn.linear_model 638

	last-in, first-out (LIFO) order 145, 178

	latitude 551

	Law of Large Numbers 3

	law of large numbers xxiv, 156, 228, 230

	layers 676

	layers in a neural network 666, 672, 676

	lazy estimator (scikit-learn) 610

	lazy evaluation 147, 181, 182, 183, 462

	Leaflet.js JavaScript mapping library 552

	leave interactive mode 22

	left align (<) in string formatting 105, 286, 287

	left-to-right evaluation 55, 65

	left_shift universal function (NumPy) 254

	leftmost condition 108

	legacy code 330

	LEGB (local, enclosing, global, built-in) rule 413, 426

	lemmas method of class Synset 493

	lemmatization 479, 484, 490

	lemmatize method of class Sentence 491

	lemmatize method of class Word 491

	len built-in function 109, 137, 157

	length of a dictionary 211

	less universal function (NumPy) 254

	less_equal universal function (NumPy) 254

	less-than operator (<) 62

	less-than-or-equal-to operator (<=) 62

	letter 7

	lexicographical comparison 292

	lexicographical order 173, 185

	libraries xxii, 18

	LIFO (last-in, first-out) order 145, 178

	LIKE operator (SQL) 735

	linear regression xxiv, 415, 660

	multiple 621, 634

	simple 620, 621

	linear relationship 415

	linear run time 442

	linear search algorithm 441, 447

	LinearRegression estimator from sklearn.linear_model 621, 634

	coeff_ attribute 622

	intercept_ attribute 622

	linguistic analytics 570

	LinkedIn 517

	linregress function of SciPy’s stats module 417, 419

	linspace function (NumPy) 245

	Linux operating system 13

	kernel 14

	Linux Terminal or shell xlvi

	lip reader technology 510

	list 156

	*= 174

	append method 176, 178

	clear method 177

	copy method 177

	extend method 176

	index method 174

	insert method 176

	pop method 178, 205

	remove method 177

	reverse method 177

	list built-in function 164

	list comprehension 147, 179, 193, 704

	filter and map 184

	for clause 180

	if clause 180

	list indexing in pandas 269

	list method sort 172

	list of base-class objects 391

	list sequence 88, 92

	List type annotation from the typing module 401, 402

	listen method of a socket 780

	listener for tweets from a stream 543

	Lite tier (IBM Watson) 566

	literal character 300

	literal digits 300

	load function from the json module 328

	load function of the pickle module 350

	load function of the spacy module 506

	%load magic 248

	load_data function of the tensorflow.keras.datasets.mnist module 678, 702

	load_digits function from sklearn.datasets 602

	load_iris function from sklearn.datasets 644

	load_model function of the tensorflow.keras.models module 696

	loc attribute of a DataFrame 268

	local

	namespace 411

	scope 138

	variable 122, 124, 138

	locale module 132

	localization 132

	Locating URLs exercise 315

	location-based services 40

	log (natural logarithm) function of module math 133

	log universal function (NumPy) 254

	log10 (logarithm) function of module math 133

	logarithm 133

	logarithmic run time 448

	logic error 23, 84

	fatal 95

	off-by-one 88

	logical decision 3

	logical unit 4

	logical_and universal function (NumPy) 254

	logical_not universal function (NumPy) 254

	logical_or universal function (NumPy) 254

	logical_xor universal function (NumPy) 254

	logistic regression 661

	LogisticRegression estimator 661

	Long Short-Term Memory (LSTM) 701

	longitude 551

	lookup_users method of class API 531

	loop 85, 92, 94

	nested control statement within 98

	loss 673

	loss function 673, 690

	binary_crossentropy 690, 708

	categorical_crossentropy 690

	deep learning 677

	Keras 690

	mean_squared_error 690

	lower method of a string 138, 186, 291

	lowercase letter 7, 51, 298

	lowerstrip function of the module textblob.utils 512, 562

	loyalty programs 40

	LSTM 719

	LSTM (Long Short-Term Memory) 701

	lstrip string method 290

M

	m-by-n sequence 188

	machine dependent 9

	machine language 9

	machine learning xxiii, xxxii, 19, 41, 509, 594, 642, 667

	608, 634

	binary classification 600

	classification 599

	hyperparameter 602, 619

	IBM Watson 573

	k-nearest neighbors (k-NN) algorithm 601

	measure a model’s accuracy 612

	model 602

	multi-classification 600

	preparing data 605

	samples 604, 627

	scikit-learn 600, 602, 625

	studies 352

	target values 627

	training set 608, 634

	unsupervised 639

	workbenches 664

	Macintosh 14

	macOS 13, 14

	macOS Terminal xlvi

	magics (IPython) 196

	%matplotlib inline 678

	%pprint 703

	%precision 485

	%recall 196

	%save 197

	documentation 248

	’__main__’ value 412

	_make method of a named tuple 399

	make your point (game of craps) 128

	make_dataclass function of the dataclasses module 426

	Malware Detection 40

	“manufacturing” section of the computer 5

	many-to-many relationship 733

	map 183

	coordinates 551

	marker 551

	panning 551

	sequence 180, 182

	zoom 551

	map built-in function 147, 183

	Map class (Folium) 555

	save method 555

	map data to another format 310

	map method

	of a DStream 785

	of a pandas Series 310

	of the RDD class 772

	mapper in Hadoop MapReduce 756, 760

	mapping 40

	MapReduce xxiii, 755, 756

	MapReduce programming 184

	MariaDB ColumnStore 729, 743

	Marker class (folium) 555

	add_to method 555

	marketing 40

	analytics 40

	mashup 31, 574

	mask image 501

	massively parallel processing 41, 755, 756

	match function of the module re 305

	match method for a pandas Series 309

	match object (regular expressions) 304, 306

	Matching Numeric Values exercise 315

	math module 18, 132

	exp function 133

	fabs function 133

	floor function 133

	fmod function 133

	log function 133

	log10 function 133

	pow function 133

	sin function 133

	sqrt function 133

	tan function 133

	mathematical operators for sets 225

	Matplotlib 41

	%matplotlib inline magic 678

	Matplotlib visualization library xxiv, 19, 156, 191, 192, 193, 228, 231, 234, 499, 630

	animation 460

	animation module 228, 233

	Axes class 194

	Axes3D 658

	cla function 196

	color maps 501, 607

	Figure class 194

	FuncAnimation 463

	IPython interactive mode 193

	show function 198

	matplotlib.image module 379

	imread function 379

	matplotlib.pylot module

	plot function 623, 624

	matplotlib.pyplot module 193

	cla function 232

	figure function 233

	gcf function 499

	subplots function 379

	matrix 674

	max

	built-in function 69, 124, 136, 185

	method of ndarray 251

	max pooling 686

	maximum statistic 68

	maximum universal function (NumPy) 254

	MaxPooling2D class from the tensorflow.keras.layers module 686

	McKinsey Global Institute xxxiv

	me method of class API 528

	mean 117, 148

	mean function (statistics module) 110

	mean method of ndarray 251

	mean squared error 637

	mean statistic 109

	mean_squared_error loss function 690

	measure a model’s accuracy 612

	measures of central tendency 109, 117, 148

	measures of dispersion 68, 264

	standard deviation 68

	variance 68

	measures of dispersion (spread) 148

	measures of variability 68

	measures of variability (statistics) 148

	media type 581, 585

	median 117, 148, 264

	median function (statistics module) 110

	median statistic 109

	megabytes (MB) 33

	memoization 470

	memory 4, 5

	memory unit 5

	MemSQL (NewSQL) 744, 803

	merge records from tables 737

	merge sort algorithm 454, 459

	merge two arrays 454

	Mesos 767

	metacharacter (regular expressions) 300

	metacharacters

	^ 305

	. 306

	(and) 306

	$ 305

	metadata 602, 741, 799

	tweet 522, 524

	method 11, 138

	call 12

	metric conversion program 592

	metrics

	Keras 690

	Microsoft

	Azure Cosmos DB 742

	Azure HDInsight 725, 757

	Azure Learning Studio (workbench) 664

	Bing Translator 487

	Linguistic Analysis API 509

	SQL Server 729

	Microsoft CNTK 666, 670

	Microsoft Cognitive Toolkit (CNTK) 19

	Microsoft Cortana xxviii, 46

	MIDI (Musical Instrument Digital Interface) 460

	MIME (Multipurpose Internet Mail Extensions) 581

	min built-in function 69, 124, 136, 185

	min method of ndarray 251

	MiniBatchKMeans estimator 655

	minimum statistic 68

	minimum universal function (NumPy) 254

	missing values 308

	mixed-type expression 55

	MNIST handwritten digits dataset 662

	Keras 669, 676

	mnist module from tensorflow.keras.datasets 677

	mobile application 15

	mode statistic 109, 117, 148

	mode function (statistics module) 110

	model

	deep learning 676

	model in machine learning 602

	Modifying the Internal Data Representation of a Class (exercise) 424

	modules 103, 131, 132

	abc (abstract base class) 429

	collections 219, 399

	csv 342

	dataclasses 400, 401

	datetime 152, 371, 424

	decimal 103, 132

	doctest 406

	dweepy 792

	enum 428

	fraction 425

	io 331

	itertools 762

	math 132

	matplotlib.image 379

	numpy 241

	os 326

	pandas 731

	pathlib 379, 491

	pickle 330, 350

	pubnub 794

	pyaudio 578, 585

	pydub 579, 586

	pydub.playback 579, 586

	pymongo 745

	pyspark.sql 781, 783

	pyspark.streaming 782, 784

	secrets 127

	sklearn.datasets 602, 626

	sklearn.linear_model 621

	sklearn.metrics 612

	sklearn.model_selection 608

	sklearn.preprocessing 605

	socket 778

	sqlite3 730

	statistics 110, 132

	tensorflow.keras.datasets 669, 677, 702

	tensorflow.keras.datasets.imdb 702

	tensorflow.keras.datasets.mnist 677

	tensorflow.keras.layers 682

	tensorflow.keras.models 682

	tensorflow.keras.preprocessing.sequence 705

	tensorflow.keras.utils 681

	tweepy 526

	typing 401

	wave (for processing WAV files) 579, 586

	modulo operator 52

	monetary calculations 18, 132

	monetary calculations with Decimal type 102, 104

	MongoClient class of the pymongo module 747

	MongoDB document database 560, 742

	Atlas cluster 745

	text index 749

	text search 749

	wildcard specifier ($**) 749

	Moore’s Law 4, 38

	motion information 4

	mouse 3

	Movie Reviews dataset 480

	MovieLens 100K dataset 719

	Mozilla Foundation 14

	__mul__ special method of class object 394

	multi-model database 742

	multi-classification (machine learning) 600

	multicore processor 5, 146

	multidimentional sequences 187

	MultiIndex collection in pandas 262

	multimedia 18

	multiple-exception catching 335

	multiple inheritance 383, 386

	multiple linear regression 621, 625, 626, 634, 661

	multiple-selection statement 77

	multiple speaker recognition in Watson Speech to Text 569

	multiplication 22

	multiplication operator (*) 52, 54

	for sequences 165

	multiply a sequence 174

	multiply universal function (NumPy) 253, 254

	multivariate time series 415

	music generation 40

	musical note calculations 468

	mutable (modifiable) 88

	sequence 158

	mutate a variable 147

	MyPy static code analysis tool 406, 427

	MySQL database 729

N

	Naive Bayes 486

	Gaussian 661

	NaiveBayesAnalyzer 486

	name mangling 372

	name property of a User (Twitter) 527

	__name__ identifier 412

	named constants 428

	named entity recognition 505

	Named Entity Recognition Demo 512

	named tuple 399

	_make method 399

	named tuples 399

	namedtuple function of the module collections 399

	NameError 53, 122, 170

	namespace 411

	built-in 412

	enclosing 413

	for a class 414

	for an object of a class 414

	LEGB (local, enclosing, global, built-in) rule 413

	naming convention

	for encouraging correct use of attributes 364

	single leading underscore 367

	NaN (not a number) 270

	National Oceanic and Atmospheric Administration (NOAA) 417

	natural language 41, 478

	Natural Language Classifier service (IBM Watson) 571

	natural language datasets 510

	natural language processing 41

	natural language processing (NLP) xxiii, xxxii, 284, 541

	datasets 510

	natural language text 568

	natural language translation 40

	natural language understanding 479

	service from IBM Watson 570

	natural logarithm 133

	navigate backward and forward through IPython snippets 81

	nbviewer xxxv

	ndarray 193, 240

	arithmentic 248

	copy method 258

	dtype attribute 242

	flat attribute 243

	flatten method 259

	indexing 254

	itemsize attribute 243

	max method 251

	mean method 251

	min method 251

	ndim attribute 242

	ravel method 259

	reshape method 245, 259

	resize method 259

	shape attribute 242

	size attribute 243

	slicing 254

	std method 251

	sum method 251

	var method 251

	view method 256

	ndarray collection (NumPy)

	T attribute 260

	ndim attribute of ndarray 242

	negative reward 712

	negative sentiment 484

	Neo4j 743

	nested

	control statements 126

	for structure 188

	functions 413

	functions and namespaces 426

	list 187

	loop 189

	parentheses 54

	network (neural) 676

	networking 18

	neural network 19, 43, 672, 713

	deep learning 676

	layer 672, 676

	loss function 677

	model 676

	neuron 672

	optimizer 677

	weight 673

	neural style transfer 721

	neuroevolution 722

	neuron 672

	activation 672

	in a neural network 672

	in biology 672

	neutral sentiment 485

	new pharmaceuticals 40

	newline character (\n) 56, 57

	NewSQL database 725, 741, 744

	Apache Ignite 744, 803

	Google Spanner 744, 803

	MemSQL 744, 803

	VoltDB 744, 803

	next built-in function 463

	NeXTSTEP operating system 14

	n-grams 479, 496

	ngrams method of class TextBlob 496

	NLTK (Natural Language Toolkit) NLP library 19, 479

	corpora 480

	data 510

	node in a graph 743

	NodeJS 20

	nodes in a cluster 755

	None value 121

	evaluates to False in conditions 121

	nonexistent element in a sequence 158

	nonfatal logic error 84

	nonfatal runtime error 24

	nonsequence collections 210

	normalization 491

	normalized data 681

	NoSQL database 560, 725, 741

	column based 741

	columnar database 741, 742

	Couchbase 742

	CouchDB 742

	document database 741, 742

	DynamoDB 742

	Google Cloud Datastore 742

	graph database 741, 743

	HBase 742

	key–value 741

	MariaDB ColumnStore 729, 743

	Microsoft Azure Cosmos DB 742

	MongoDB 742

	Redis 742

	not Boolean operator 106, 108

	truth table 108

	not in operator 130, 222

	NOT SQL clause 740

	not_equal universal function (NumPy) 254

	notebook

	terminate execution 677

	not-equal-to operator (!=) 62

	noun phrase 484

	extraction 479

	noun_phrases property of a TextBlob 484

	null in JSON 327

	number systems

	appendix (online) 285

	binary 285

	hexadecimal 285

	octal 285

	numbers

	format with their signs (+ 287

	numbers in JSON 327

	numerical data 353

	NumPy

	convert array to floating-point values 681

	NumPy (Numerical Python) 240

	add universal function 253

	arange function 244

	array function 241, 242

	broadcasting 249, 253

	full function 244

	hstack function 261

	linspace function 245

	multiply universal function 253

	numpy module 241

	ones function 244

	sqrt universal function 252

	transpose rows and columns 260

	type bool 242

	type float64 242, 243

	type int64 242, 243

	type object 242

	universal functions 252

	vstack function 261

	zeros function 244

	NumPy (Numerical Python) library 19, 193, 200

	preinstalled in Anaconda 240

	statistics functions 193

	unique function 193

	numpy module 193

	numpy.random module 247

	choice function 679

	randint function 247

	NVIDIA GPU 671

	NVIDIA Volta Tensor Cores 675

O

	O(1) 442

	O(2n) 475

	O(log n) 448

	O(n log n) 459

	O(n) 442

	O(n2) 443

	OAuth 2.0 521

	OAuth dance 521

	OAuthHandler class (Tweepy) 526

	set_access_token method 526

	object 2, 10, 66, 67

	identity 143

	namespace 414

	type 51, 66

	value 66

	object-based programming (OBP) 120, 357, 392

	object class 361, 386

	__add__ special method 394, 396

	__format__ special method 376, 378

	__iadd__ special method 396

	__mul__ special method 394

	__repr__ special method 364, 368, 376

	__str__ special method 365, 369, 376

	special methods for operator overloading 394

	object detection 718

	object NumPy type 242

	object-oriented analysis and design (OOAD) 12

	object-oriented language 12

	object-oriented programming (OOP) 2, 12, 14, 391, 392

	object recognition 684

	object serialization 350

	Objective-C 14

	object-oriented programming xxii

	OBP (object-based programming) 357, 392

	observations in a time series 414, 415

	octa-core processor 5

	octal number system 285

	off-by-one error 88

	ON clause 737

	on_connect method of class StreamListener 543, 544

	on_delete method of class StreamListener 547

	on_error method of class StreamListener 543

	on_limit method of class StreamListener 543

	on_status method of class StreamListener 543, 544

	on_warning method of class StreamListener 543

	one-hot encoding 605, 681, 693, 706

	one-to-many relationship 732, 733

	ones function (NumPy) 244

	OOAD (object-oriented analysis and design) 12

	OOP (object-oriented programming) 12, 391, 392

	open a file 321

	for reading 323

	for writing 322

	open built-in function 322

	open-data principles xxix

	open method 323

	of the class PyAudio 586

	open source 13, 14

	open-source libraries 40, 357

	OpenAI 14

	Gym Retro 720

	OpenAI Gym 19, 713, 720

	Atari video-game environments 720

	OpenCV 14, 718

	OpenMapQuest

	API key 552

	OpenMapQuest (geopy)

	geocode method 558

	OpenMapQuest class (geopy) 557, 558

	OpenMapQuest geocoding service 551

	OpenML 14

	open-source libraries xxv

	open-source software 40

	OpenStreetMap.org 552

	operand 50, 55

	operating system 13, 14

	operator 50

	grouping 55, 108, 394

	precedence chart 66

	precedence rules 54

	operator module 147, 204, 498

	operator overloading 393

	@total_ordering decorator 428

	special method 394

	optimizer

	’adam’ 689

	deep learning 677

	Keras 689

	or Boolean operator 106, 107

	Oracle Corporation 729

	ord built-in function 71, 185

	ORDER BY SQL clause 734, 736, 737

	order in which actions should execute 74, 90

	order of evaluation 54

	ordered collections 156

	OrderedDict class from the module collections 399

	ordering of records 734

	ordinary least squares 417

	orientation information 4

	os module 18, 132, 326

	remove function 326

	rename function 326

	OS X 14

	outer for statement 189

	outliers 117, 149, 300

	output device 4

	output layer 677, 682

	output unit 4

	oval symbol 76

	overfitting 624, 685, 707

	overriding a method 543

	overriding base-class methods in a derived class 386

	OWASP Python Security Project xxviii

P

	π 114

	package 131

	package manager

	conda xlvii

	pip xlvii

	packing a tuple 130, 161

	pad_sequences function of the tensorflow.keras.preprocessing.sequence module 705

	pairplot function (Seaborn visualization library) 647

	palindrome 470

	exercise 470

	pandas xxiv, 19, 240, 262, 320, 342, 497

	Boolean indexing 270

	DataFrame 284, 308, 310, 311

	DataFrame collection 262, 267

	in place sort 273

	list indexing 269

	MultiIndex collection 262

	read_csv function 345

	reductions 264

	selecting portions of a DataFrame 268

	Series 262, 284, 308, 309

	set_option function 271

	slice indexing 269

	visualization 348, 497

	pandas module

	GroupBy 751

	read_sql function 731

	panning a map 551

	parallel processing 771

	parallelism xxix

	parameter 121, 122

	parameter list 121

	parentheses

	() 54

	nested 54

	redundant 54

	parentheses metacharacters, (and) 306

	partition step in quicksort 473, 474

	partition string method 295

	parts-of-speech (POS) tagging 479, 482, 483

	adjectives 482

	adverbs 482

	conjunctions 482

	interjections 482

	nouns 482

	prepositions 482

	pronouns 482

	tags list 483

	verbs 482

	pass-by-object-reference 142

	pass-by-reference 142

	pass-by-value 142

	Password Format Validator exercise 315

	patch in a convolutional layer 683

	Path class 491

	joinpath method 379

	read_text method 492

	resolve method 379

	Path class from module pathlib 379

	pathlib module 491

	Path class 379

	pattern matching 18, 132, 735

	pattern NLP library 19, 479, 483

	pattern of 1s and 0s 7

	PCA estimator 658

	fit method 653

	fit_transform method 653

	sklearn.decomposition module 652

	transform method 653

	percent (%) SQL wildcard character 735

	performance xxix, xxxviii

	performance tuning 11

	PermissionsError 332

	permutations 475

	persistent 5, 320

	persistent connection 543, 547

	personal assistants 40

	Personality Insights service (IBM Watson) 570

	personality theory 570

	personality traits 570

	personalized medicine 40

	personalized shopping 40

	personally identifiable information (PII) xxviii, 803

	petabytes (PB) 34

	petaflops 3, 36

	phishing elimination 40

	“pick off” each digit 72

	pickle module 330, 350

	dump function 350

	load function 350

	picture xxiv

	Pig 757

	Pig Latin 757

	Pig Latin exercise 313

	pip package manager xlvii

	pitch, voice 569, 571

	pixel intensity (grayscale) 604

	placeholder in a format string 288

	Platform as a Service (PaaS) 726

	play function of module pydub.playback 586

	plot function of the matplotlib.pylot module 623, 624

	plot method of a class DataFrame 415

	plot property of a DataFrame 499

	plot_model function of the tensorflow.keras.utils.vis_utils module 688

	pluralizing words 479, 484

	PNG (Portable Network Graphics) 376

	poker 206

	five-card hand 381

	polarity of Sentiment named tuple 485

	pollution reduction 40

	polymorphism 357, 391

	pooling layer 686

	pop method of dictionary built-in type 213

	pop method of list 178, 205

	pop method of set 227

	pop off a stack 145

	Popular Python Data-Science Libraries 19

	Popularity of Programming Languages (PYPL) Index 2

	population 148

	population standard deviation 149

	population variance 149

	Popup class (folium) 555

	position number 157

	positive reward 712

	positive sentiment 484

	possessive pronoun 483

	PostgreSQL 729

	pow (power) function of module math 133

	power universal function (NumPy) 254

	%pprint magic 703

	precedence 54

	precedence not changed by overloading 394

	precedence rules 62, 65

	precise monetary calculations 102, 104

	Decimal type 102, 104

	precision in a scikit-learn classification report 614

	%precision magic 248, 485

	precision medicine 40

	predefined word embeddings 707

	predicate 734

	predict method of a scikit-learn estimator 610, 635

	predict method of class Sequential 693

	predicted value in simple linear regression 416

	predicting

	best answers to questions 702

	cancer survival 40

	disease outbreaks 40

	student enrollments 40

	weather-sensitive product sales 40

	prediction

	accuracy 612

	predictive analytics 40

	predictive text input 701, 704

	prepare data 352

	for machine learning 605

	preposition 483

	presentation type (string formatting) 285

	c 285, 314

	d 285

	e (or E) 286

	f 286

	integers in binary, octal or hexadecimal number systems 285

	pretrained convnet models 711, 718

	pretrained deep neural network models 711

	pretrained machine learning models 484

	preventative medicine 40

	preventing

	disease outbreaks 40

	opioid abuse 40

	Pride and Prejudice 351

	primary key 729, 731, 732, 733

	composite 733

	primary memory 5

	prime number 202

	principal 72, 104

	principal components analysis (PCA) 640, 652

	principal diagonal 613

	principle of least privilege 146, 323

	print built-in function 56

	privacy xxviii, 47, 803

	laws 724

	private 371

	attribute 372

	data 364

	probabilistic classification 676

	probability 125, 228

	problem solving xxii, 90, 93, 97

	create an algorithm that solves a problem 90

	implement a solution to a problem 90

	technique 93

	procedural programming xxii

	procedure for solving a problem 74

	process dictionary keys in sorted order 215

	processing phase 91

	processing unit 3

	profile module 132

	profiling 18

	program 3, 21, 62

	program “in the general” 357

	program “in the specific” 357

	program control 74

	program development 90, 93, 97

	ProgrammableWeb 31

	programmer 3

	Project Gutenberg 350, 480

	prompt 60

	proper singular noun 483

	proper subset 223

	proper superset 224

	property

	getter method 367

	name 367

	of a class 365, 367

	read-only 367

	read-write 367

	setter method 367

	@property decorator 367

	@propertyname.setter decorator 367

	Prospector xlvii

	prospector static code analysis tool 427

	protecting the environment 40

	pseudocode 75, 76, 78, 97

	if statement 78

	if…else statement 80

	pseudorandom numbers 127

	pstats module 132

	pstdev function (statistics module) 149

	pub/sub system 788

	channel 788

	topic 788

	public attribute 372

	public domain

	card images 373

	images 378

	public interface of a class 370

	publicly accessible attributes 364

	publish/subscribe model 725, 787

	publisher of a message 788

	pubnub module 794

	punishment 712

	Punkt 480

	pure function 147, 148

	push onto a stack 145

	pushed tweets from the Twitter Streaming API 543, 547

	pvariance function (statistics module) 149

	.py extension 23

	PyAudio class

	get_sample_size method 586

	open method 586

	terminate method 586

	PyAudio class from module pyaudio 586

	pyaudio module 578, 585

	PyAudio class 586

	Stream class 586

	PyCharm 23

	pydataset module 345

	PyDealer library 428

	pydub module 579, 586

	pydub.playback module 579, 586

	play function 586

	pylinguistics library 503

	PyMob 15, 47

	PyMongo 560

	pymongo library 745

	pymongo module

	Collection 749

	Database 747

	MongoClient 747

	PyNLPl 509

	Pysine module 460

	pysine module

	sine function 468

	PySpark 766

	pyspark module

	SparkConf class 771

	pyspark.sql module 781, 783

	Row class 783

	pyspark.streaming module

	DStream class 782

	StreamingContext class 784

	Python 16

	Python and data science libraries xlvi

	Python for introductory course sequences xx

	Python libraries xxiv

	Python SDK (IBM Watson) 567

	Python Software Foundation 13

	Python Standard Library 18, 102, 103, 131, 132

	calendar module 132

	collections module 18, 132

	copy module 258

	cryptographic modules module 132

	csv module 18, 132

	datetime module 18, 132

	decimal module 18, 132

	doctest module 18, 132

	gettext module 132

	json module 18, 132

	locale module 132

	math module 18, 132

	os module 18, 132

	profile module 132

	pstats module 132

	queue module 18

	random module 18, 132, 193

	re module 18, 132

	secrets module 127

	socket module 778

	sqlite3 module 18, 132, 730

	statistics module 18, 110, 132

	string module 18, 132

	sys module 18, 132, 198

	time module 18, 132

	timeit module 18, 132

	tkinter module 132

	turtle module 132

	webbrowser module 132

	Pythonista 15, 48

	PyTorch NLP 509

Q

	quad-core processor 5

	quadratic run time 443

	qualified name 738

	Quandl financial time series 662

	quantifier

	? 302

	{n,} 302

	{n,m} 302

	* 301

	+ 302

	greedy 302

	in regular expressions 301

	quantum computers 36

	quartiles 264

	query 729

	query string 534

	question mark (?) to access help in IPython 122

	questions

	getting answered xxxix

	queue data structure 179, 205

	queue module 18

	quicksort algorithm 473

	quotes

	double 56, 57

	single 56, 57

	triple-quoted string 58

R

	'r' file-open mode 323, 331

	R programming language xx, 16, 20

	'r+' file-open mode 331

	R2 score (coefficient of determination) 637

	r2_score function (sklearn.metrics module) 637

	radians 133

	raise an exception 332, 339

	raise point 334, 340

	raise statement 339

	raise to a power 133

	RAM (Random Access Memory) 5

	randint function from the numpy.random module 247

	random module 18, 125, 132, 193

	randrange function 125

	seed function 125, 127

	shuffle function 206

	random number 125

	generation 18, 132, 591

	generation to create sentences 313

	random sampling 308

	Random Sentences exercise 313

	RandomizedSearchCV 661

	randomness source 127

	random-number generation 193

	randrange function of module random 125

	range built-in function 88, 101, 244

	range statistic 68

	Raspberry Pi 801

	rate limit (Twitter API) 518, 526

	ratio of successive Fibonacci numbers 436

	ravel method of a NumPy array 607

	ravel method of ndarray 259

	raw data 325

	raw string 298

	Rdatasets repository 352

	CSV files 344

	RDD 781

	RDD (resilient distributed dataset) 771, 782

	RDD class 772

	RDD class

	filter method 772

	flatMap method 772

	map method 772

	reduceByKey method 772

	re module 18, 132, 284, 300

	findall function 305

	finditer function 306

	fullmatch function 300

	match function 305

	search function 304

	split function 304

	sub function 303

	read a file into a program 324

	read method of a file object 331

	read method of the class Stream 586

	read_csv function (pandas) 345

	read_sql function from the pandas module 731

	read_text method of class Path 492

	readability 503

	readability assessment 64, 98, 503, 513

	readability assessment libraries

	pylinguistics 513

	readability 513

	readability library 503

	readability-score 513

	readability-score library 503

	spacy-readability 513

	textstat 513

	readability formulas 503

	Dale-Chall 503, 504, 505

	Flesch Reading Ease 503, 504

	Flesch-Kincaid 503, 505

	Gunning Fog 503, 505

	Simple Measure of Gobbledygook (SMOG) 503, 505

	reader function of the csv module 343

	reading sign language 40

	readline method of a file object 331

	readlines method of a file object 324

	read-only property 367, 424

	read-only propery

	exercise 423

	read-write property 367

	definition 367

	real part of a complex number 394

	real time 30

	reasonable value 309

	recall in a scikit-learn classification report 614

	%recall magic 196

	%save magic 197

	“receiving” section of the computer 4

	recognition of handwritten digits 658

	recognize method of class SpeechToTextV1 581

	recommendation engines 719

	recommender systems 40, 510

	record 7, 321

	record key 321

	rectangle symbol 76

	recurrent neural network (RNN) 414, 560, 668, 701, 701

	time step 701

	recursion 472

	overhead 439

	quicksort 473

	recursion step 433, 437

	recursive binary search algorithm 473

	recursive call 433, 436, 438

	recursive factorial function 434

	Recursive power Method exercise 470

	recursive step 473

	recursively generating Fibonacci numbers 438

	visualizing 434

	Recursion Exercises

	binary search 473

	Eight Queens 470

	Greatest Common Divisor 470

	Palindromes 470

	quicksort 473

	Recursive power Method 470

	Visualizing Recursion 470

	recursive call 435

	recursive function 151, 432

	Redis 742

	reduce dimensionality 686, 706

	reduce function 147

	of the functools module 184

	reduceByKey method of class RDD 772

	reducer in Hadoop MapReduce 756, 760

	reducing carbon emissions 40

	reducing program development time 124

	reduction 147, 182, 184

	in functional-style programming 69, 110, 110, 185

	pandas 264

	redundant parentheses 54, 55, 106

	refactoring 32

	refer to an object 67

	refinement process 93

	regplot function of the Seaborn visualization library 420

	regression xxiv, 596

	regression line 415, 417, 420

	slope 421

	regular expression 299, 304

	^ metacharacter 305

	? quantifier 302

	(metacharacter 306

) metacharacter 306

	[] character class 301

	{n,} quantifier 302

	{n,m} quantifier 302

	* quantifier 301

	\ metacharacter 300

	\d character clas 301

	\D character class 301

	\d character class 301

	\S character class 301

	\s character class 301

	\W character class 301

	\w character class 301

	+ quantifier 302

	$ metacharacter 305

	anchor 305

	caret (^) metacharacter 301

	character class 300, 301

	escape sequence 301

	flags keyword argument 305

	group method of a match object 306

	groups method of a match object 304, 306

	IGNORECASE regular expression flag 305

	match object 304

	metacharacter 300

	parentheses metacharacters, (and) 306

	search pattern 299

	validating data 299

	Regular expressions 18, 132

	regularization 685

	reinforcement learning 43, 712, 713, 720

	agent 712

	computing resource management 721

	delivery route optimization 721

	dynamic product pricing 721

	negative reward 712

	optimizing debt collection 720

	optimizing warehouse space management 721

	personalized shopping experiences 721

	positive reward 712

	punishment 712

	reward 712

	self-training robots 721

	stock trading 721

	traffic light systems 721

	reinventing the wheel 131

	relational database 724, 729

	relational database management system (RDBMS) 560, 728

	release resources 322

	’relu’ (Rectified Linear Unit) activation function 685

	remainder (in arithmetic) 53

	remainder operator (%) 52, 53, 54, 65

	remainder universal function (NumPy) 254

	remove function of the os module 326

	remove method of list 177

	remove method of set 227

	removing whitespace 290

	rename function of the os module 326

	repeat a string with multiplication 165

	repeat keyword argument of FuncAnimation 233

	repetition statement 76, 77

	repetition terminates 85

	replace method 294

	replacement text 92, 96

	repr built-in function 368

	__repr__ special method of class object 364, 368, 376

	reproducibility xxviii, xxxv, xxxvi, 24, 46, 125, 609, 616, 630, 670, 768, 769

	in Keras 676

	Jupyter Notebooks 25

	requests library 511

	get function 511

	Response class 511

	requirements statement 12, 75, 90, 93, 97

	analyzing exam results 97

	class average for 10 students 90

	compound interest 104

	craps dice game 128

	simulate coin flips 128

	reshape method of ndarray 245, 259, 621

	resilient distributed dataset (RDD) 767, 771, 781, 782

	resize method of ndarray 259

	resolve method of class Path 379

	resource

	acquire 322

	release 322

	resource leak 336

	Response class

	content property 511

	Response class of the requests library 511

	Return (or Enter) key 56

	return statement 60, 121

	return_counts keyword argument of NumPy unique function 193

	reusable componentry 357

	reusable software components 10

	reuse 11

	reverse keyword argument of list method sort 172

	reverse method of list 177

	reversed built-in function (reversing sequences) 186

	Reversing a Sentence exercise 314

	reward in reinforcement learning 712

	rfind string method 293

	ride sharing 40

	Ridge estimator from sklearn.linear_model 638

	right align > (string formatting) 105, 286, 287

	right_shift universal function (NumPy) 254

	right-to-left evaluation 65

	rindex string method 293

	rise-and-shine algorithm 74

	risk minimization 40

	risk monitoring and minimization 40

	Ritchie, Dennis 20

	robo advisers 40

	robust application 320

	rolling a six-sided die 125

	rolling two dice 128, 130

	Romeo and Juliet 500

	round floating-point numbers for output 96

	rounding integers 133

	Row class from the pyspark.sql module 783

	row in a database table 729, 729, 733, 734, 735, 738

	row of a two-dimensional list 187

	rpartition string method 296

	rsplit string method 295

	rstrip string method 291

	Rule of Entity Integrity 733

	Rule of Referential Integrity 732

	%run magic 248

	running property of class Stream 546

	running total 94

	runtime error 24

S

	SalariedCommissionEmployee class 387

	sample method of a DataFrame 630

	sample of a population 148

	sample standard deviation 150

	sample variance 149, 150

	samples (in machine learning) 604, 627

	sampling data 308

	sarcasm detection 510

	%save magic 248

	save method of class Map 555

	save method of class Sequential 696

	scalar 249

	scalar value 674

	scanning images 4

	scatter function (Matplotlib) 640

	scatter plot 420, 630

	3D 658

	scattergram 420

	scatterplot function (Seaborn) 623, 630

	scientific computing xx, 16

	scientific notation 286

	scikit-learn (sklearn) machine-learning library 19, 414, 573, 600, 602, 625, 667

	estimator (model) 602, 621

	fit method of an estimator 610, 634

	GaussianNB estimator 661

	LogisticRegression estimator 661

	predict method of an estimator 610, 635

	score method of a classification estimator 612

	sklearn.linear_model module 621

	sklearn.metrics module 612

	sklearn.model_selection module 608

	sklearn.preprocessing module 605

	SciPy 19

	scipy 417

	SciPy (Scientific Python) library 417, 419

	linregress function of the stats module 417, 419

	scipy.stats module 417

	stats module 419

	scipy.stats module 417

	scope 138, 411

	global 138

	local 138

	score method of a classification estimator in scikit-learn 612

	Scramble exercise 315

	scraping 300

	screen 3, 4

	screen_name property of a User (Twitter) 527

	script 21, 62

	script mode (IPython) 21

	script with command-line arguments 198

	SDK (Software Development Kit) 33

	sea level time series 660

	Seaborn visualization library xxiv, 19, 41, 191, 193, 228, 231, 233, 234, 630

	bar plot 460

	barplot function 194

	heatmap function 615

	module 193

	pairplot function 647

	predefined color palettes 194

	regplot function 420

	scatterplot function 623, 630

	search a sequence 174

	search function of the module re 304

	search key 440

	search method of class API 534

	search pattern (regular expressions) 299

	searching algorithms

	binary search 444

	linear search 441

	recursive binary search 473

	searching data 440

	seasonality 415

	second refinement 94, 99

	secondary storage 4

	unit 5

	secondary storage device 320

	secrets module 127

	secure password validation 315

	secure random numbers 127

	security xxviii, 47

	security breach detection 719

	security enhancements 40

	seed function of module random 125, 127

	seed the random-number generator 127

	seek method of a file object 324

	SELECT SQL keyword 731

	selection criteria 734

	selection sort algorithm 448, 451

	selection statement 76

	self in a method’s parameter list 361

	self-driving cars 40, 42

	semi-structured data 724, 741, 742

	send a message to an object 12

	send method of a socket 778

	sentence capitalization 291

	Sentence class (TextBlob) 482, 485

	correct method 490

	lemmatize method 491

	stem method 491

	sentence property of a TextBlob 482, 485

	sentiment 485, 535, 570

	sentiment analysis xxvi, 40, 314, 351, 479, 484, 547, 702

	sentiment in tweets 516

	Sentiment named tuple

	polarity 485

	subjectivity 485

	textblob module 484

	sentiment property of a TextBlob 484, 485

	sentinel-controlled repetition 93, 94

	sentinel value 93, 94

	separators

	thousands 194

	sequence 86, 156

	+ operator for concatenation 159

	concatenate 159

	length 157

	nonexistent element 158

	of bytes 321

	of characters 86, 321

	of consecutive integers 88

	sequence collections 210

	sequence type string 284

	Sequential class

	compile method 689

	evaluate method 692

	fit method 691

	predict method 693

	save method 696

	tensorflow.keras.models module 682

	sequential execution 75, 76

	serialization 350

	serializing data 327

	Series collection (pandas) 262, 284, 308, 309

	astype method 747

	built-in attributes 265

	contains method 309

	custom indices 264

	describe method 264

	descriptive statistics 263

	dictionary initializer 264

	dtype attribute 265

	index keyword argument 264

	integer indices 262

	map method 310

	match method 309

	square brackets 265

	str attribute 265, 309

	string indices 264

	unique method 353

	values attribute 265

	server in a client/server app 777

	service documentation (IBM Watson) 587

	service-oriented architecture (SOA) 726

	set built-in type 210, 221

	add 227

	clear 227

	difference 225

	difference_update 227

	discard 227

	disjoint 226

	empty set 222

	improper subset 223

	improper superset 224

	intersection 225

	intersection_update 227

	isdisjoint 226

	issubset method 224

	issuperset method 224

	mathematical operators 225

	pop 227

	proper subset 223

	proper superset 224

	remove 227

	set built-in function 222

	symmetric_difference 225

	symmetric_difference_update 227

	union 225

	update 227

	set comprehensions 147

	set method of Axes (Matplotlib) 195

	SET SQL clause 739

	set_access_token method of class OAuthHandler 526

	set_option function (pandas) 271

	set_options function (tweet-preprocessor library) 542

	set_ylim method of Axes (Matplotlib) 196

	setAppName method of class SparkConf 771

	setMaster method of class SparkConf 771

	sets of synonyms (synset) 493

	setter method

	decorator 367

	of a property 367

	shadow

	a built-in identifier 412

	a built-in or imported function 139

	shadow a function name 140

	Shakespeare 480, 491, 507, 513

	shallow copy 167, 256

	shape attribute of ndarray 242

	Shape class hierarchy 383

	sharing economy 40

	shell short 474

	“shipping” section of the computer 4

	short-circuit evaluation 107

	show function of Matplotlib 198

	shuffle function of the random module 206

	ShuffleSplit class from sklearn.model_selection 608

	side effects 147, 148

	Sieve of Eratosthenes 202

	sigmoid activation function 708

	signal value 93

	signature of a function 122

	similarity detection 40, 507

	similarity method of class Doc 508

	simple condition 107

	simple linear regression 415, 560, 620, 621, 659, 661

	Simple Measure of Gobbledygook (SMOG) readability formula 503, 505

	Simple Sentiment Analysis exercise 314

	simplified Chinese 488

	simulate an Internet-connected device 725, 787

	simulation 125

	Simulation: Tortoise and the Hare exercise 152

	sin (sine) function of module math 133

	sin universal function (NumPy) 254

	sine function of the module pysine 468

	single-entry/single-exit statement 77

	single inheritance 383, 386, 387

	single leading underscore naming convention 367

	single quote (') 56, 57

	single-selection if statement 77

	singleton tuple 161

	singular noun 483

	singularizing words 479, 484

	six degrees of separation 514

	size attribute of ndarray 243

	sklearn (scikit-learn) 595, 625

	sklearn.cluster module

	KMeansClassifier estimator 650

	sklearn.datasets module 602, 626

	fetch_california_housing function 626

	load_digits function 602

	load_iris function 644

	sklearn.decomposition module

	PCA estimator 652

	sklearn.linear_model module 621

	ElasticNet estimator 638

	Lasso estimator 638

	LinearRegression estimator 621, 634

	Ridge estimator 638

	sklearn.manifold module

	TSNE estimator 639

	sklearn.metrics module 612

	classification_report function 613

	confusion_matrix function 612

	r2_score function 637

	sklearn.model_selection module 608

	cross_val_score function 616, 618, 638

	cross_validate function 660

	GridSearchCV class 661

	KFold class 616, 618, 638

	ShuffleSplit class 608

	train_test_split function 608, 634, 705

	sklearn.naive_bayes module

	GaussianNB estimator 617

	sklearn.neighbors module 609, 650

	KNeighborsClassifier estimator 609

	sklearn.preprocessing module 605

	sklearn.svm module

	SVC estimator 617

	sklearn.utils module

	Bunch class 626

	slice 166

	end index 167

	indexing in pandas 269

	ndarray 254

	start index 167

	step 167

	slope 416, 419

	smart cities 40

	smart homes 40

	smart thermostats 40

	smart traffic control 40

	smartmeters 40

	smartphone 15

	smiley face emoji 314

	snippet

	navigate backward and forward in IPython 81

	snippet in IPython 21

	SnowNLP 509

	social analytics 40

	social graph 743

	social graph analysis 40

	socket 777, 778

	accept method 780

	bind method 780

	close method 780

	listen method 780

	send method 778

	socket function 779

	socket module 778

	socketTextStream method of class StreamingContext 784

	softmax activation function 687

	software 2

	Software as a Service (SaaS) 726

	Software Development Kit (SDK) 33

	software engineering observations xxxix

	software reuse 120

	solid-state drive 3, 4, 320

	solve mazes 720

	sort 172

	ascending order 172, 219

	descending order 172, 173

	key 440

	sort method of a list 172

	sort_index method of a pandas DataFrame 272

	sort_values method of a pandas DataFrame 273

	sorted built-in function 172, 215, 530

	sorted function 110

	sorting algorithms

	bucket sort 473

	insertion sort 451

	merge sort 454

	quicksort 473

	selection sort 448

	sorting data 440, 448

	source code 10, 23

	SourceForge 357

	spacy module load function 506

	spaCy NLP library 505

	Doc class 506

	ents property 506

	label_ property of a Span 506

	load function of the spacy module 506

	similarity method 508

	Span class 506

	spam detection 40

	Spam Detector 719

	SPAM email detection 719

	Spam Scanner exercise 316

	Spambase Dataset 719

	Span class (spaCy) 506

	label_ property 506

	text property 506

	Spark (Apache) xxiii, 725, 755

	as a Service (SaaS) 726

	batches of streaming data 784

	checkpointing 784

	fault-tolerance in streaming 784

	PySpark library 766

	Spark MLlib (Spark Machine Learning Library) 767, 801

	Spark SQL 725, 740, 741, 781, 783

	query 783

	stateful transformations in streaming 784

	streaming 725, 767, 801

	streaming batch interval 784

	table view of a DataFrame 783

	SparkConf class from the pyspark module 771

	setAppName method 771

	setMaster method 771

	SparkContext class 771

	textFile method 772

	sparkline 790

	SparkSession class from the pyspark.sql module 781

	spatial data analysis 40

	speaking to a computer 4

	special method 361, 394

	special methods

	__eq__ 400

	__init__ 400

	__ne__ 400

	__repr__ 400

	Special Section: Advanced String-Manipulation Exercises 316

	special symbol 7

	speech recognition xxxii, 41, 509

	speech synthesis xxxii, 41, 509

	Speech Synthesis Markup Language (SSML) 569

	Speech to Text service (IBM Watson) 569, 575, 576, 577, 578, 579, 581, 584

	speech-to-text 509

	SpeechToTextV1 class

	recognize method 581

	SpeechToTextV1 class from the watson_developer_cloud module 578, 581

	spell checking 479

	spellcheck method of class Word 490

	spelling correction 479

	spiral 436

	split

	function of module re 304

	method 324

	method of string 218

	string method 295

	split the array in merge sort 454

	splitlines string method 296

	sports recruiting and coaching 40

	spread 149

	Spyder IDE 23

	Spyder Integrated Development Environment xlvi

	SQL (Structured Query Language) 728, 729, 730, 733, 738

	DELETE FROM statement 734, 739

	FROM clause 733

	GROUP BY clause 734

	INNER JOIN clause 734, 737

	INSERT INTO statement 734, 738

	keyword 733

	NOT clause 740

	ON clause 737

	ORDER BY clause 734, 736, 737

	percent (%) wildcard character 735

	query 731

	SELECT query 731

	SET clause 739

	SQL on Hadoop 741

	UPDATE statement 734

	VALUES clause 738

	WHERE clause 734

	SQLite database management system 729, 730

	sqlite3 command (to create a database) 730

	sqlite3 module 18, 132, 730

	connect function 730

	Connection class 730, 738

	Sqoop 757

	sqrt (square root) function of module math 133

	sqrt universal function (NumPy) 252, 254

	square brackets 265

	Square Class (exercise) 425

	SRE_Match object 304

	SSML (Speech Synthesis Markup Language) 591

	stack 145, 178

	frame 145, 439

	overflow 146, 435

	unwinding 334, 341

	stacking 77

	standard deviation 68, 247, 264

	standard deviation statistic 149

	standard error file object 321

	standard file objects 321

	standard input file object 321

	standard input stream 760

	standard output file object 321

	standard output stream 760

	StandardError class of exceptions 398

	standardized reusable component 357

	Stanford CoreNLP 509, 513

	Named Entity Tagger demo 512

	start index of a slice 166, 167

	start method of a StreamingContext 785

	startswith string method 293

	stateful transformations (Spark streaming) 784

	statement 50

	statement spread over several lines 64

	statements

	break 105

	continue 106

	control statement 74

	del 169

	for 77, 86, 87, 88

	from…import 141

	goto 76

	if 77, 79

	if…elif…else 77, 83

	if…else 77, 80, 81, 98

	import 103, 132

	import…as 141

	nested 126

	nesting 77

	return 121

	stacking 77

	while 77, 85, 86, 87

	with 322

	yield 462

	yield from 462, 467

	static bar chart 156

	static code analysis tools 116, 406

	MyPy 427

	prospector 427

	static visualization 191

	statistics

	count 68, 110

	maximum 68

	mean 109

	measures of central tendency 109

	measures of dispersion 68

	measures of dispersion (spread) 148

	measures of variability 68, 148

	median 109

	minimum 68

	mode 109

	range 68

	standard deviation 68, 149

	sum 68, 110

	variance 68, 149

	statistics module 18, 110, 132

	mean function 110

	median function 110

	mode function 110

	pstdev function 149

	pvariance function 149

	stats 419

	Statsmodels 19

	Status class (Twitter API)

	extended_tweet property 528

	text property 528

	status property of a User (Twitter) 528

	status update (Twitter) 522

	std method of ndarray 251

	Steganography 514

	stem method of class Sentence 491

	stem method of class Word 491

	stemming 479, 484, 490

	step in a slice 167

	step in function range 101

	stock market forecasting 40

	stop word 501

	elimination 479

	stop words 494, 509

	stop_stream method of the class Stream 586

	Storage as a Service (SaaS) 726

	Storm 757

	str (string) type 57, 66, 103

	str attribute of a pandas Series 265, 309

	str built-in function 369, 446, 450

	__str__ special method of class object 365, 369, 376

	straight-line form 54

	Stream class

	close method 586

	read method 586

	stop_stream method 586

	Stream class (Tweepy) 546

	filter method 546

	running property 546

	Stream class from module pyaudio 586

	StreamingContext class

	checkpoint method 784

	pyspark.streaming module 784

	socketTextStream method 784

	start method 785

	StreamListener class (Tweepy) 543

	on_connect method 543, 544

	on_delete method 547

	on_error method 543

	on_limit method 543

	on_status method 543, 544

	on_warning method 543

	stride 683, 686

	string built-in type

	* string repetition operator 289

	+ concatenation operator 289

	byte string 586

	capitalize method 291

	concatenation 60

	count method 292

	encode as bytes 778

	endswith method 293

	find method 293

	format method 288, 776

	in JSON 327

	index method 293

	isdigit method 297

	join method 295

	lower method 138, 186, 291

	lstrip 290

	of characters 56

	partition method 295

	repeat with multiplication 165

	replace method 294

	rfind method 293

	rindex method 293

	rpartition method 296

	rsplit method 295

	rstrip 291

	split method 218, 295

	splitlines method 296

	startswith method 293

	strip 290

	title method 291

	triple quoted 58

	upper method 138, 291

	string formatting

	fill character 313

	fill with 0s 287

	left align (<) 286, 287

	numbers with their signs (+) 287

	presentation type 285

	right align (>) 286, 287

	string module 18, 132

	string sequence type 284

	strip string method 290

	strip_punc function of the module textblob.utils 512

	stripping whitespace 290

	structured data 724, 741

	structured programming 76

	Structured Query Language (SQL) 724, 728, 729, 733

	student performance assessment 40

	Style Guide for Python Code

	blank lines above and below control statements 92

	class names 134, 360

	constants 134

	docstring for a function 121

	naming constants 375

	no spaces around = in keyword arguments 87

	spaces around binary operators 51, 64

	split long line of code 64

	suite indentation 65

	triple-quoted strings 58

	sub function of module re 303

	subclass 12, 357

	subjectivity of Sentiment named tuple 485

	subordinating conjunction 483

	subplots function of module matplotlib.pyplot 379

	subscribe to messages 788

	subscription operator ([]) 157, 159

	substring 292

	subtract universal function (NumPy) 254

	subtraction 5, 52, 54

	suite 65

	indentation 65

	suite vs. block 121, 139

	sum built-in function 109, 130, 137

	sum method of a DataFrame 751

	sum method of ndarray 251

	sum statistic 68, 110

	summarizing documents 509

	summarizing text 40, 514

	summary method of a Keras model 687

	super built-in function 389

	superclass 12, 357

	supercomputing 36

	supervised 672

	supervised deep learning 672

	supervised machine learning 596, 599

	support in a scikit-learn classification report 614

	Support Vector Machines 663

	SVC estimator from sklearn.svm 617

	swapping values 448, 451

	Swift programming language 14, 20

	Sybase 729

	symbol 76

	symbols 522

	symmetric difference augmented assignment 227

	symmetric_difference method of set 225

	symmetric_difference_update method of set 227

	synapse in biology 672

	synapses 672

	synchronous 571

	synchronous tweet stream 546

	synonym chains 514

	synonyms 479, 492, 493

	synset (set of synonyms) 493

	Synset class lemmas method 493

	synsets property of class Word 493

	syntax error 58

	SyntaxError 58, 61

	synthesize method of class TextToSpeechV1 585

	sys module 18, 132, 198

	stderr file stream 321

	stdin file stream 321

	stdout file stream 321

	SystemExit exception 398

T

	T attribute of a NumPy ndarray 260

	T attribute of a pandas DataFrame 272

	tab completion 133

	tab escape sequence \t 57

	tab stop 57

	table 187

	in a database 728

	table view of a Spark DataFrame 783

	tables 728

	tablet computer 15

	tabnanny indentation validator 116

	tags property of a TextBlob 482

	tail method of a DataFrame 346

	tail of a queue 205

	tan (tangent) function of module math 133

	tan universal function (NumPy) 254

	target attribute of a Bunch 604, 627

	target in a for statement 87

	target values (in machine learning) 627

	TCP (Transmission Control Protocol) 29

	TCP/IP 30

	t-distributed Stochastic Neighbor Embedding (t-SNE) 639

	telemedicine 40

	Telephone-Number Word Generator exercise 203

	temperature conversion 152

	Temperature Conversion exercise 152

	tensor 240, 674

	0D 674

	1D 674

	2D 674

	3D 674

	4D 674

	5D 674

	Tensor Processing Unit (TPU) 675

	TensorBoard 692

	dashboard 697

	TensorBoard class from the tensorflow.keras.callbacks module 699

	TensorBoard for neural network visualization 697

	TensorFlow 573

	TensorFlow deep learning library 19, 666, 677

	tensorflow.keras.callbacks module

	TensorBoard class 699

	tensorflow.keras.datasets module 669, 677, 702

	tensorflow.keras.datasets.imdb module 702

	get_word_index function 704

	tensorflow.keras.datasets.mnist module 677

	load_data function 678, 702

	tensorflow.keras.layers module 682, 707

	Conv2D class 684

	Dense class 687

	Embedding class 707

	Flatten class 687

	MaxPooling2D class 686

	tensorflow.keras.layers.embeddings module 707

	Dropout class 707

	tensorflow.keras.models module 682

	load_model method 696

	Sequential class 682

	tensorflow.keras.preprocessing.sequence module 705

	pad_sequences function 705

	tensorflow.keras.utils module 681, 688

	terabytes (TB) 5, 34

	teraflop 36

	term projects xxiii

	Terminal

	macOS xlvi

	or shell Linux xlvi

	Terminal window in JupyterLab 768

	terminate a loop 94

	terminate method of the class PyAudio 586

	terminate notebook execution 677

	termination phase 91

	termination test 439

	terrorist attack prevention 40

	testing 11

	unit test 407

	unit testing 406

	testing set 608, 634

	testmod function of module doctest 407

	verbose output 408

	text classification 510

	text editor 56

	text file 320, 321

	text index 749

	text method of Axes (Matplotlib) 195, 196

	text property of a spaCy Span 506

	text property of a Status (Twitter) 528

	text search 749

	text simplification 510

	Text to Speech service (IBM Watson) 569, 575, 576, 577, 578

	Text Visualization Browser 513

	Textacy NLP library 505

	textatistic module 504

	dict method of the Textatistic class 504

	readability assessment 503

	Textatistic class 504

	TextBlob 19

	TextBlob NLP library 479

	BaseBlob class 481

	compare TextBlobs to strings 481

	correct method of the TextBlob class 490

	detect_language method of the TextBlob class 487

	inflection 479

	inter-language translation 479

	language detection 479

	lemmatization 479

	n-gram 479

	ngrams method of the TextBlob class 496

	noun phrase extraction 479

	noun_phrases property of the TextBlob class 484

	parts-of-speech (POS) tagging 479

	pluralizing words 479

	Sentence class 482, 485

	sentence property of the TextBlob class 482, 485

	sentiment analysis 479

	Sentiment named tuple 484

	sentiment property of the TextBlob class 484, 485

	singularizing words 479

	spell checking 479

	spelling correction 479

	stemming 479

	stop word elimination 479

	string methods of the TextBlob class 481

	tags property of the TextBlob class 482

	TextBlob class 481

	textblob module 481

	tokenization 479

	translate method of the TextBlob class 487

	Word class 482, 484

	word frequencies 479

	word_counts dictionary of the TextBlob class 492

	WordList class 482, 484

	WordNet antonyms 479

	WordNet integration 479, 492

	WordNet synonyms 479

	WordNet word definitions 479

	words property of the TextBlob class 482

	textblob.sentiments module 486

	textblob.utils Utility Functions 512

	text-classification algorithm 486

	textFile method of the SparkContext class 772

	TextRazor 509, 512

	textstat library 503

	text-to-speech 509

	TextToSpeechV1 class

	from module watson_developer_cloud 578, 584, 585

	synthesize method 585

	Tez 800

	the cloud 30

	The Jupyter Notebook 26

	The Zen of Python 17

	Theano 666, 670

	Theano deep learning library 19

	theft prevention 40

	theoretical science 308

	thesis topics xxiii

	third person singular present verb 483

	thousands separator 194, 288

	thread 341, 771

	three-dimensional graph 641

	three-dimensional scatter plot 658

	tight_layout method of a Matplotlib figure 499

	tight_layout method of class Figure 380

	Time class 364, 366

	time module 18, 132

	time series 414, 415, 560

	analysis 415

	financial applications 414

	forecasting 415

	Internet of Things (IoT) 414

	observations 414, 415

	Quandl 662

	sea levels 660

	time step in a recurrent neural network 701

	%timeit magic 246

	timeit module 18, 132

	timeit profiling tool xxix

	timeline (Twitter) 529, 532

	Titanic disaster dataset 320, 345, 346, 664

	title method of a string 291

	titles table of books database 730

	tkinter module 132

	to_categorical function 681

	of the tensorflow.keras.utils module 681

	to_csv method of a DataFrame 345

	to_file method of class WordCloud 501

	today method of type datetime 152

	token 294

	tokenization 294, 479

	tokenize a string 218, 304

	Tokenizing and Comparing Strings exercise 314

	tokens 479

	Tone Analyzer service (IBM Watson) 570

	emotion 570

	language style 570

	social propensities 570

	top-down, stepwise refinement 93

	top 93

	topic in pub/sub systems 788

	topic modeling 510

	topical xxii

	Tortoise and the Hare simulation exercise 152

	total 94

	@total_ordering decorator 428

	Towers of Hanoi 471, 475

	TPU (Tensor Processing Unit) 667, 675, 685

	traceback 53, 84, 340

	trailing zero 96

	train_test_split function from sklearn.model_selection 608, 634, 705

	training accuracy 710

	training set 608, 634

	tranlation services

	Microsoft Bing Translator 487

	transcriptions of audio 569

	transfer learning 667, 688, 696, 711, 718

	transfer of control 75

	transform method of the PCA estimator 653

	transform method of the TSNE estimator 640

	transforming data 300, 307

	translate method of a TextBlob 487

	translate method of class LanguageTranslatorV3 583

	translate speech 42

	translating text between languages 569

	translation 9

	translation services

	487

	Bing Microsoft Translator 317

	Google Translate 317

	translator program 9

	Transmission Control Protocol (TCP) 29

	transparency xxix

	transpose rows and columns in a pandas DataFrame 272

	transpose rows and columns of an ndarray 260

	travel recommendations 40

	traveler’s companion app 574

	Trend spotting 40

	trending topics (Twitter) 517, 536

	Trends API (Twitter) 518

	trends_available method of class API 536

	trends_closest method of class API 537

	trends_place method of class API 537

	trigonometric cosine 133

	trigonometric sine 133

	trigonometric tangent 133

	trigrams 496

	triple-quoted string 58

	True 76, 77

	True Boolean value 61

	true division operator (/) 52, 55, 65

	trunc universal function (NumPy) 254

	truncate 52

	truth table 107

	try clause 333

	try statement 333

	TSNE estimator 658

	fit method 640

	fit_transform method 640

	sklearn.manifold module 639

	transform method 640

	tuple 130, 156, 161

	arbitrary argument list 136

	one-element 161

	tuple built-in function 164

	unpack with * 370

	Turing Machine 76

	Turtle graphics

	turtle module 132

	Tweepy library 518, 525

	API class 525, 526

	Cursor 529

	install 525, 542

	OAuthHandler class 526

	Stream class 546

	StreamListener class 543

	wait_on_rate_limit 526

	wait_on_rate_limit_notify 526, 527

	tweepy module 526

	tweepy.models.Status object 528

	tweepy.models.User object 527, 530

	tweet 522

	coordinates 522

	created_at 522

	entities 522

	extended_tweet 522

	favorite_count 522

	id 522

	id_str 522

	lang 522

	place 522

	retweet_count 522

	text 522

	user 522

	tweet object JSON (Twitter) 528

	tweet-preprocessor library 541

	set_options function 542

	Tweets API (Twitter) 518

	24-hour clock format 364

	Twitter 517

	data mining 516

	history 517

	rate limits 518

	Streaming API 542, 543, 547

	timeline 529, 532

	trending topics 536

	Trends API 516

	Twitter API 518

	access token 520, 526

	access token secret 520, 526

	Accounts and Users API 518

	API key 520, 526, 527

	API secret key 520, 526, 527

	app (for managing credentials) 520, 521

	app rate limit 518

	Authentication API 518

	Consumer API keys 520

	credentials 520, 521

	fire hose 543

	rate limit 518, 526

	Trends API 518

	tweet object JSON 528

	Tweets API 518

	user object JSON 527

	user rate limit 518

	Twitter Python libraries

	Birdy 525

	Python Twitter Tools 525

	python-twitter 525

	TweetPony 525

	TwitterAPI 525

	twitter-gobject 525

	TwitterSearch 525

	twython 525

	Twitter search

	operators 535

	Twitter Trends API 536

	Twittersphere 517

	Twitterverse 517

	two-dimensional list 187

	two largest values 114

	two levels of refinement 95

	.txt file extension 322

	type dependent formatting 285

	type function 51

	type hint 402

	type of an object 66

	TypeError 158, 162

	types

	float 51, 66

	int 51, 66

	str 66

	strlstring

	type str 57

	typing module 401

	ClassVar type annotation 401, 402

	List type annotation 401, 402

U

	UCI ML hand-written digits dataset 602

	ufuncs (universal functions in NumPy) 252

	unary operator 108

	unbalanced classes 717

	uncaught exception 341

	Underfitting 624

	underscore

	_ SQL wildcard character 735

	underscore character (_) 51

	understand information in image and video scenes 569

	Unicode character set 7

	union augmented assignment 226

	union method of set 225

	unique function (NumPy) 193

	return_counts keyword argument 193

	unique method of a pandas Series 353

	unit testing xxviii, 18, 132, 406, 407, 408

	United States

	geographic center 555

	univariate time series 415

	universal functions (NumPy) 252

	add 254

	arccos 254

	arcsin 254

	arctan 254

	bitwise_and 254

	bitwise_or 254

	bitwise_xor 254

	ceil 254

	cos 254

	divide 254

	equal 254

	exp 254

	fabs 254

	floor 254

	greater 254

	greater_equal 254

	hypot 254

	invert 254

	isinf 254

	isnan 254

	left_shift 254

	less 254

	less_equal 254

	log 254

	logical_and 254

	logical_not 254

	logical_or 254

	logical_xor 254

	maximum 254

	minimum 254

	multiply 254

	not_equal 254

	power 254

	remainder 254

	right_shift 254

	sin 254

	sqrt 254

	subtract 254

	tan 254

	trunc 254

	ufuncs 252

	unlabeled data 596

	unordered collection 211

	unpack a tuple 130

	unpack a tuple with * 370

	unpacking a tuple 130, 163

	unpacking an iterable into function arguments 137

	unpacking operator * 370

	unstructured data 724, 741

	unsupervised deep learning 672

	unsupervised machine learning 596, 639

	update 213

	update Anaconda xlvi

	update method of a dictionary 220

	update method of set 227

	UPDATE SQL statement 734, 739

	updateStateByKey method of a DStream 785

	upper method of a string 138, 291

	uppercase characters 298

	uppercase letter 51

	use cases 39

	IBM Watson 566, 567

	User class (Twitter API)

	description property 527

	followers_count property 528

	friends_count property 528

	id property 527

	name property 527

	screen_name property 527

	status property 528

	user object JSON (Twitter) 527

	user rate limit (Twitter API) 518

	user_timeline method of class API 532

	UTC (Coordinated Universal Time) 522

	UTF-8 encoding 7

	utility method 371

V

	V’s of big data 38

	valid Python identifier 298

	validate a first name 301

	validate data 365

	validating data (regular expressions) 299

	validation accuracy 709

	validation_data argument to a Keras model’s fit method 705

	validation_split argument to a Keras model’s fit method 691, 705

	value of a variable 50

	value of an object 66

	ValueError 163

	ValueError exception 293

	values attribute of a pandas Series 265

	values method of dictionary 214

	VALUES SQL clause 738

	var method of ndarray 251

	variable 50

	initialize 80

	refers to an object 67

	variable annotation

	not enforced at execution time 405

	variable annotations 402

	variance 68, 149, 264

	variety (in big data) 38

	vector 674

	velocity (in big data) 38

	veracity (in big data) 38

	version control tools xxv

	vertical stacking (ndarray) 261

	vertices in a graph 743

	video 569

	video closed captioning 510

	view (shallow copy) 256

	view into a dictionary 215

	view method of ndarray 256

	view object 256

	virtual assistants 568

	Visual C++ programming language 20

	visual product search 40

	Visual Recognition service (IBM Watson) 569

	Visual Studio Code 23

	visualization xxiv, 41, 165

	die rolling 193

	dynamic 228

	Folium 552

	Matplotlib 191

	pandas 348

	Seaborn 191, 193

	visualize the data 630

	visualize word frequencies 351, 497, 500

	Visualizing 434

	visualizing recursion 434

	Visualizing Recursion exercise 470

	voice cadence 569, 571

	voice inflection 569, 571

	voice pitch 569, 571

	voice recognition 40

	voice search 40

	volatile information 5, 6

	VoltDB (NewSQL database) 744, 803

	volume (in big data) 38

	vstack function (NumPy) 261

W

	'w' file-open mode 322, 331

	'w+' file-open mode 331

	W3C (World Wide Web Consortium) 30

	wait_on_rate_limit (Tweepy) 526

	wait_on_rate_limit_notify (Tweepy) 526, 527

	“warehouse” section of the computer 5

	Watson 566, 567

	Analytics Engine 802

	dashboard 568

	lite tiers xxxvii

	Watson (IBM) xxiii, xxxvii

	Watson Assistant service 568

	Watson Developer Cloud

	Python SDK xxxvii

	Watson Developer Cloud Python SDK 567, 573, 574, 578, 588

	Watson Discovery service 570

	Watson Knowledge Catalog 573

	Watson Knowledge Studio 570

	Watson Machine Learning service 573

	Watson Studio 572

	Business Analytics project 572

	Data Engineering project 572

	Data Science project 572

	Deep Learning project 572

	Modeler project 572

	Standard project 572

	Streams Flow project 572

	Visual Recognition project 572

	watson_developer_cloud module 573, 578

	LanguageTranslatorV3 class 578, 583

	SpeechToTextV1 class 578, 581

	TextToSpeechV1 class 578, 584

	WAV (Waveform Audio File Format) 579, 581, 585, 587

	.wav file 579

	wave module 579, 586

	Waze GPS navigation app 40

	Weather Forecasting 40

	web scraping 511

	web service 30, 327, 518, 566

	endpoint 518

	IBM Watson 566

	webbrowser module 132

	Websterian Synonym Chains 514

	weighted inputs 673

	weights in a neural network 673

	WHERE SQL clause 734, 737, 739, 740

	while statement 77, 85, 86, 87

	else clause 106, 115

	whitespace 64

	removing 290

	whitespace character 294, 298

	whitespace character class 304

	Wikimedia Commons (public domain images, audio and video) 378

	Wikipedia 510, 513

	wildcard import 141

	wildcard specifier ($**) 749

	Windows Anaconda Prompt xlvi

	Windows Azure Storage Blob (WASB) 776

	Windows operating system 13

	with statement 322

	as clause 322

	WOEID (Yahoo! Where on Earth ID) 537, 538

	word character 301

	Word class

	correct method 490

	define method 493

	definitions property 493

	get_synsets method 493

	lemmatize method 491

	spellcheck method 490

	stem method 491

	synsets property 493

	textblob module 482, 484

	word cloud 351, 497

	word definitions 479, 492

	word embeddings 707

	GloVe 707

	Word2Vec 707

	word frequencies 479, 492

	visualization 497

	word_counts dictionary of a TextBlob 492

	Word2Vec 716

	Word2Vec word embeddings 707

	WordCloud class 351, 500

	fit_words method 502

	generate method 501

	to_file method 501

	wordcloud module 351, 500

	WordList class 482

	count method 492

	from the textblob module 482, 484

	WordNet 492, 493

	antonyms 479

	synonyms 479

	synset 493

	Textblob integration 479

	word definitions 479

	words property of class TextBlob 482

	workbenches 664

	Google Cloud AI Platform 664

	IBM Watson Studio 664

	KNIME Analytics Platform 664

	Microsoft Azure Learning Studio 664

	World Population Growth exercise 116

	World Wide Web 30

	worst-case run time for an algorithm 442

	Wozniak, Steve 14

	write method of a file object 322

	writelines method of a file object 331

	writer function of the csv module 342

	writerow method of a CSV writer 342

	writerows method of a CSV writer 342

X

	Xerox PARC (Palo Alto Research Center) 14

	XML 724, 742

Y

	Yahoo! 756

	Yahoo! Where on Earth ID (WOEID) 537, 538

	YARN (Yet Another Resource Negotiator) 756, 763

	yarn command (Hadoop) 763

	yield 460

	yield from 460

	yield from statement 462, 467

	yield keyword 462

	yield statement 462

Z

	Zen 17

	Zen of Python 17

	import this 17

	ZeroDivisionError 53, 332, 334

	zeros function (NumPy) 244

	zettabytes (ZB) 34

	zip built-in function 186, 196

	ZooKeeper 757

	zoom a map 551

Contents

	Intro to Python® for Computer Science and Data Science

	Deitel® Series Page

	Intro to Python® for Computer Science and Data Science

	Intro to Python® for Computer Science and Data Science

	Contents

	Preface	Python for Computer Science and Data Science Education

	Modular Architecture

	Audiences for the Book

	Key Features

	Chapter Dependencies

	Computing and Data Science Curricula

	Data Science Overlaps with Computer Science28

	Jobs Requiring Data Science Skills

	Jupyter Notebooks

	Docker

	Class Tested

	“Flipped Classroom”

	Special Feature: IBM Watson Analytics and Cognitive Computing

	Teaching Approach

	Software Used in the Book

	Python Documentation

	Getting Your Questions Answered

	Student and Instructor Supplements

	Instructor Supplements on Pearson’s Instructor Resource Center

	Instructor Examination Copies

	Keeping in Touch with the Authors

	Acknowledgments

	About the Authors

	About Deitel® & Associates, Inc.

	Before You Begin

	1 Introduction to Computers and Python	Objectives

	Outline

	1.1 Introduction

	1.2 Hardware and Software	1.2.1 Moore’s Law

	1.2.2 Computer Organization	Input Unit

	Output Unit

	Memory Unit

	Arithmetic and Logic Unit (ALU)

	Central Processing Unit (CPU)

	Secondary Storage Unit

	 Self Check for Section 1.2

	1.3 Data Hierarchy	 Self Check

	1.4 Machine Languages, Assembly Languages and High-Level Languages	 Self Check

	1.5 Introduction to Object Technology	 Self Check for Section 1.5

	1.6 Operating Systems	 Self Check for Section 1.6

	1.7 Python	 Self Check

	1.8 It’s the Libraries!	1.8.1 Python Standard Library

	1.8.2 Data-Science Libraries

	 Self Check for Section 1.8

	1.9 Other Popular Programming Languages	 Self Check

	1.10 Test-Drive: Using IPython and Jupyter Notebooks	1.10.1 Using IPython Interactive Mode as a Calculator	Entering IPython in Interactive Mode

	Evaluating Expressions

	Exiting Interactive Mode

	 Self Check

	1.10.2 Executing a Python Program Using the IPython Interpreter	Changing to This Chapter’s Examples Folder

	Executing the Script

	Creating Scripts

	Problems That May Occur at Execution Time

	 Self Check

	1.10.3 Writing and Executing Code in a Jupyter Notebook	Opening JupyterLab in Your Browser

	Creating a New Jupyter Notebook

	Renaming the Notebook

	Evaluating an Expression

	Adding and Executing Another Cell

	Saving the Notebook

	Notebooks Provided with Each Chapter’s Examples

	Opening and Executing an Existing Notebook

	Closing JupyterLab

	JupyterLab Tips

	More Information on Working with JupyterLab

	 Self Check

	1.11 Internet and World Wide Web	1.11.1 Internet: A Network of Networks

	1.11.2 World Wide Web: Making the Internet User-Friendly

	1.11.3 The Cloud	Mashups

	1.11.4 Internet of Things

	 Self Check for Section 1.11

	1.12 Software Technologies	 Self Check

	1.13 How Big Is Big Data?	 Self Check

	1.13.1 Big Data Analytics

	1.13.2 Data Science and Big Data Are Making a Difference: Use Cases

	1.14 Case Study—A Big-Data Mobile Application

	1.15 Intro to Data Science: Artificial Intelligence—at the Intersection of CS and Data Science	 Self Check

	Exercises

	2 Introduction to Python Programming	Objectives

	Outline

	2.1 Introduction

	2.2 Variables and Assignment Statements	 Self Check

	2.3 Arithmetic	 Self Check

	2.4 Function print and an Intro to Single- and Double-Quoted Strings	 Self Check

	2.5 Triple-Quoted Strings	 Self Check

	2.6 Getting Input from the User	 Self Check

	2.7 Decision Making: The if Statement and Comparison Operators	 Self Check

	2.8 Objects and Dynamic Typing	 Self Check

	2.9 Intro to Data Science: Basic Descriptive Statistics	 Self Check

	2.10 Wrap-Up

	Exercises

	3 Control Statements and Program Development	Objectives

	Outline

	3.1 Introduction

	3.2 Algorithms	 Self Check

	3.3 Pseudocode	 Self Check

	3.4 Control Statements	 Self Check

	3.5 if Statement	 Self Check

	3.6 if…else and if…elif…else Statements	 Self Check

	3.7 while Statement	 Self Check

	3.8 for Statement	3.8.1 Iterables, Lists and Iterators

	3.8.2 Built-In range Function	Off-By-One Errors

	 Self Check

	3.9 Augmented Assignments	 Self Check

	3.10 Program Development: Sequence-Controlled Repetition	3.10.1 Requirements Statement

	3.10.2 Pseudocode for the Algorithm

	3.10.3 Coding the Algorithm in Python	Execution Phases

	Initialization Phase

	Processing Phase

	Termination Phase

	3.10.4 Introduction to Formatted Strings

	 Self Check

	3.11 Program Development: Sentinel-Controlled Repetition	 Self Check

	3.12 Program Development: Nested Control Statements	 Self Check

	3.13 Built-In Function range: A Deeper Look	 Self Check

	3.14 Using Type Decimal for Monetary Amounts	 Self Check

	3.15 break and continue Statements

	3.16 Boolean Operators and, or and not	 Self Check

	3.17 Intro to Data Science: Measures of Central Tendency—Mean, Median and Mode	 Self Check

	3.18 Wrap-Up

	Exercises

	4 Functions	Objectives

	Outline

	4.1 Introduction

	4.2 Defining Functions	 Self Check

	4.3 Functions with Multiple Parameters	 Self Check

	4.4 Random-Number Generation	 Self Check

	4.5 Case Study: A Game of Chance	 Self Check

	4.6 Python Standard Library	 Self Check

	4.7 math Module Functions

	4.8 Using IPython Tab Completion for Discovery	 Self Check

	4.9 Default Parameter Values	 Self Check

	4.10 Keyword Arguments	 Self Check

	4.11 Arbitrary Argument Lists	 Self Check

	4.12 Methods: Functions That Belong to Objects

	4.13 Scope Rules	 Self Check

	4.14 import: A Deeper Look	 Self Check

	4.15 Passing Arguments to Functions: A Deeper Look	 Self Check

	4.16 Function-Call Stack	 Self Check

	4.17 Functional-Style Programming	Pure Functions

	4.18 Intro to Data Science: Measures of Dispersion	 Self Check

	4.19 Wrap-Up

	Exercises

	5 Sequences: Lists and Tuples	Objectives

	Outline

	5.1 Introduction

	5.2 Lists	 Self Check

	5.3 Tuples	 Self Check

	5.4 Unpacking Sequences	 Self Check

	5.5 Sequence Slicing	 Self Check

	5.6 del Statement	 Self Check

	5.7 Passing Lists to Functions	 Self Check

	5.8 Sorting Lists	 Self Check

	5.9 Searching Sequences	 Self Check

	5.10 Other List Methods	 Self Check

	5.11 Simulating Stacks with Lists	 Self Check

	5.12 List Comprehensions	 Self Check

	5.13 Generator Expressions	 Self Check

	5.14 Filter, Map and Reduce	 Self Check

	5.15 Other Sequence Processing Functions	 Self Check

	5.16 Two-Dimensional Lists	 Self Check

	5.17 Intro to Data Science: Simulation and Static Visualizations	5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls

	 Self Check

	5.17.2 Visualizing Die-Roll Frequencies and Percentages	Launching IPython for Interactive Matplotlib Development

	Importing the Libraries

	Rolling the Die and Calculating Die Frequencies

	Creating the Initial Bar Plot

	Setting the Window Title and Labeling the x- and y-Axes

	Finalizing the Bar Plot

	Rolling Again and Updating the Bar Plot—Introducing IPython Magics

	Saving Snippets to a File with the %save Magic

	Command-Line Arguments; Displaying a Plot from a Script

	 Self Check

	5.18 Wrap-Up

	Exercises	Exercises 5.24 through 5.26 are reasonably challenging. Once you’ve done them, you ought to be able to implement many popular card games.

	6 Dictionaries and Sets	Objectives

	Outline

	6.1 Introduction

	6.2 Dictionaries	6.2.1 Creating a Dictionary	Determining if a Dictionary Is Empty

	 Self Check

	6.2.2 Iterating through a Dictionary

	 Self Check

	6.2.3 Basic Dictionary Operations	Accessing the Value Associated with a Key

	Updating the Value of an Existing Key–Value Pair

	Adding a New Key–Value Pair

	Removing a Key–Value Pair

	Attempting to Access a Nonexistent Key

	Testing Whether a Dictionary Contains a Specified Key

	 Self Check

	6.2.4 Dictionary Methods keys and values 	Dictionary Views

	Converting Dictionary Keys, Values and Key–Value Pairs to Lists

	Processing Keys in Sorted Order

	 Self Check

	6.2.5 Dictionary Comparisons

	 Self Check

	6.2.6 Example: Dictionary of Student Grades

	6.2.7 Example: Word Counts2 	Python Standard Library Module collections

	 Self Check

	6.2.8 Dictionary Method update	6.2.9 Dictionary Comprehensions

	 Self Check

	6.3 Sets	 Self Check

	6.3.1 Comparing Sets

	 Self Check

	6.3.2 Mathematical Set Operations	Union

	Intersection

	Difference

	Symmetric Difference

	Disjoint

	 Self Check

	6.3.3 Mutable Set Operators and Methods	Mutable Mathematical Set Operations

	Methods for Adding and Removing Elements

	 Self Check

	6.3.4 Set Comprehensions

	6.4 Intro to Data Science: Dynamic Visualizations	 Self Check

	6.4.1 How Dynamic Visualization Works 	Animation Frames

	Running RollDieDynamic.py

	Sample Executions

	 Self Check

	6.4.2 Implementing a Dynamic Visualization 	Importing the Matplotlib animation Module

	Function update

	Function update: Rolling the Die and Updating the frequencies List

	Function update: Configuring the Bar Plot and Text

	Variables Used to Configure the Graph and Maintain State

	Calling the animation Module’s FuncAnimation Function

	 Self Check

	6.5 Wrap-Up

	Exercises

	7 Array-Oriented Programming with NumPy	Objectives

	Outline

	7.1 Introduction	 Self Check

	7.2 Creating arrays from Existing Data	 Self Check

	7.3 array Attributes	 Self Check

	7.4 Filling arrays with Specific Values

	7.5 Creating arrays from Ranges

	7.6 List vs. array Performance: Introducing %timeit

	7.7 array Operators

	7.8 NumPy Calculation Methods

	7.9 Universal Functions

	7.10 Indexing and Slicing

	7.11 Views: Shallow Copies

	7.12 Deep Copies

	7.13 Reshaping and Transposing

	7.14 Intro to Data Science: pandas Series and DataFrames	7.14.1 pandas Series	Creating a Series with Default Indices

	Displaying a Series

	Creating a Series with All Elements Having the Same Value

	Accessing a Series’ Elements

	Producing Descriptive Statistics for a Series

	Creating a Series with Custom Indices

	Dictionary Initializers

	Accessing Elements of a Series Via Custom Indices

	Creating a Series of Strings

	 Self Check

	7.14.2 DataFrames	Creating a DataFrame from a Dictionary

	Customizing a DataFrame’s Indices with the index Attribute

	Accessing a DataFrame’s Columns

	Selecting Rows via the loc and iloc Attributes

	Selecting Rows via Slices and Lists with the loc and iloc Attributes

	Selecting Subsets of the Rows and Columns

	Boolean Indexing

	Accessing a Specific DataFrame Cell by Row and Column

	Descriptive Statistics

	Transposing the DataFrame with the T Attribute

	Sorting by Rows by Their Indices

	Sorting by Column Indices

	Sorting by Column Values

	Copy vs. In-Place Sorting

	 Self Check

	7.15 Wrap-Up

	Exercises

	8 Strings: A Deeper Look	Objectives

	Outline

	8.1 Introduction

	8.2 Formatting Strings	8.2.1 Presentation Types

	Integers

	Characters

	Strings

	Floating-Point and Decimal Values

	 Self Check

	8.2.2 Field Widths and Alignment

	Explicitly Specifying Left and Right Alignment in a Field

	Centering a Value in a Field

	 Self Check

	8.2.3Numeric Formatting

	Formatting Positive Numbers with Signs

	Using a Space Where a + Sign Would Appear in a Positive Value

	Grouping Digits

	 Self Check

	8.2.4String’s format Method

	Multiple Placeholders

	Referencing Arguments By Position Number

	Referencing Keyword Arguments

	 Self Check

	8.3 Concatenating and Repeating Strings

	8.4 Stripping Whitespace from Strings

	8.5 Changing Character Case

	8.6 Comparison Operators for Strings

	8.7 Searching for Substrings

	8.8 Replacing Substrings

	8.9 Splitting and Joining Strings

	8.10 Characters and Character-Testing Methods

	8.11 Raw Strings

	8.12 Introduction to Regular Expressions	8.12.1 re Module and Function fullmatch	Matching Literal Characters

	Metacharacters, Character Classes and Quantifiers

	Other Predefined Character Classes

	Custom Character Classes

	* vs. + Quantifier

	Other Quantifiers

	 Self Check

	8.12.2 Replacing Substrings and Splitting Strings	Function sub—Replacing Patterns

	Function split

	 Self Check

	8.12.3 Other Search Functions; Accessing Matches	Function search—Finding the First Match Anywhere in a String

	Ignoring Case with the Optional flags Keyword Argument

	Metacharacters That Restrict Matches to the Beginning or End of a String

	Function findall and finditer—Finding All Matches in a String

	Capturing Substrings in a Match

	 Self Check

	8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging	 Self Check

	8.14 Wrap-Up

	Exercises	Regular Expression Exercises

	More Challenging String-Manipulation Exercises

	9 Files and Exceptions	Objectives

	Outline

	9.1 Introduction

	9.2 Files

	9.3 Text-File Processing	9.3.1 Writing to a Text File: Introducing the with Statement

	The with Statement

	Built-In Function open

	Writing to the File

	Contents of accounts.txt File

	 Self Check

	9.3.2 Reading Data from a Text File	File Method readlines

	Seeking to a Specific File Position

	 Self Check

	9.4 Updating Text Files	 Self Check

	9.5 Serialization with JSON	 Self Check

	9.6 Focus on Security: pickle Serialization and Deserialization

	9.7 Additional Notes Regarding Files	 Self Check

	9.8 Handling Exceptions	9.8.1 Division by Zero and Invalid Input	Division By Zero

	Invalid Input

	9.8.2 try Statements	try Clause

	except Clause

	else Clause

	Flow of Control for a ZeroDivisionError

	Flow of Control for a ValueError

	Flow of Control for a Successful Division

	 Self Check

	9.8.3 Catching Multiple Exceptions in One except Clause

	9.8.4 What Exceptions Does a Function or Method Raise?

	9.8.5 What Code Should Be Placed in a try Suite?

	9.9 finally Clause	 Self Check

	9.10 Explicitly Raising an Exception	 Self Check

	9.11 (Optional) Stack Unwinding and Tracebacks	 Self Check

	9.12 Intro to Data Science: Working with CSV Files	9.12.1 Python Standard Library Module csv	Writing to a CSV File

	Reading from a CSV File

	Caution: Commas in CSV Data Fields

	Caution: Missing Commas and Extra Commas in CSV Files

	 Self Check

	9.12.2 Reading CSV Files into Pandas DataFrames	Datasets

	Working with Locally Stored CSV Files

	9.12.3 Reading the Titanic Disaster Dataset	Loading the Titanic Dataset via a URL

	Viewing Some of the Rows in the Titanic Dataset

	Customizing the Column Names

	9.12.4 Simple Data Analysis with the Titanic Disaster Dataset

	9.12.5 Passenger Age Histogram

	 Self Check

	9.13 Wrap-Up

	Exercises

	10 Object-Oriented Programming	Objectives

	Outline

	10.1 Introduction

	10.2 Custom Class Account	10.2.1 Test-Driving Class Account	Importing Classes Account and Decimal

	Create an Account Object with a Constructor Expression

	Getting an Account’s Name and Balance

	Depositing Money into an Account

	Account Methods Perform Validation

	 Self Check

	10.2.2 Account Class Definition	Defining a Class

	Initializing Account Objects: Method __init__

	Method deposit

	10.2.3 Composition: Object References as Members of Classes

	 Self Check

	10.3 Controlling Access to Attributes	 Self Check

	10.4 Properties for Data Access	10.4.1 Test-Driving Class Time	Creating a Time Object

	Displaying a Time Object

	Getting an Attribute Via a Property

	Setting the Time

	Setting an Attribute via a Property

	Attempting to Set an Invalid Value

	 Self Check

	10.4.2 Class Time Definition	Class Time: __init__ Method with Default Parameter Values

	Class Time: hour Read-Write Property

	Class Time: minute and second Read-Write Properties

	Class Time: Method set_time

	Class Time: Special Method __repr__

	Class Time: Special Method __str__

	 Self Check

	10.4.3 Class Time Definition Design Notes	Interface of a Class

	Attributes Are Always Accessible

	Internal Data Representation

	Evolving a Class’s Implementation Details

	Properties

	Utility Methods

	Module datetime

	 Self Check

	10.5 Simulating “Private” Attributes	 Self Check

	10.6 Case Study: Card Shuffling and Dealing Simulation	10.6.1 Test-Driving Classes Card and DeckOfCards	Creating, Shuffling and Dealing the Cards

	Dealing Cards

	Class Card’s Other Features

	10.6.2 Class Card—Introducing Class Attributes	Class Attributes FACES and SUITS

	Card Method __init__

	Read-Only Properties face, suit and image_name

	Methods That Return String Representations of a Card

	10.6.3 Class DeckOfCards	Method __init__

	Method shuffle

	Method deal_card

	Method __str__

	10.6.4 Displaying Card Images with Matplotlib	Enable Matplotlib in IPython

	Create the Base Path for Each Image

	Import the Matplotlib Features

	Create the Figure and Axes Objects

	Configure the Axes Objects and Display the Images

	Maximize the Image Sizes

	Shuffle and Re-Deal the Deck

	 Self Check

	10.7 Inheritance: Base Classes and Subclasses	 Self Check

	10.8 Building an Inheritance Hierarchy; Introducing Polymorphism	10.8.1 Base Class CommissionEmployee	All Classes Inherit Directly or Indirectly from Class object

	Testing Class CommissionEmployee

	 Self Check

	10.8.2 Subclass SalariedCommissionEmployee	Declaring Class SalariedCommissionEmployee

	Inheriting from Class CommissionEmployee

	Method __init__ and Built-In Function super

	Overriding Method earnings

	Overriding Method __repr__

	Testing Class SalariedCommissionEmployee

	Testing the “is a” Relationship

	 Self Check

	10.8.3 Processing CommissionEmployees and SalariedCommissionEmployees Polymorphically

	 Self Check

	10.8.4A Note About Object-Based and Object-Oriented Programming

	10.9 Duck Typing and Polymorphism

	10.10 Operator Overloading	Operator Overloading Restrictions

	Complex Numbers

	10.10.1 Test-Driving Class Complex

	10.10.2 Class Complex Definition

	Method __init__

	Overloaded + Operator

	Overloaded += Augmented Assignment

	Method __repr__

	 Self Check

	10.11 Exception Class Hierarchy and Custom Exceptions

	10.12 Named Tuples	 Self Check

	10.13 A Brief Intro to Python 3.7’s New Data Classes	10.13.1 Creating a Card Data Class	Importing from the dataclasses and typing Modules

	Using the @dataclass Decorator

	Variable Annotations: Class Attributes

	Variable Annotations: Data Attributes

	Defining a Property and Other Methods

	Variable Annotation Notes

	 Self Check

	10.13.2 Using the Card Data Class

	 Self Check

	10.13.3 Data Class Advantages over Named Tuples

	10.13.4 Data Class Advantages over Traditional Classes	More Information

	10.14 Unit Testing with Docstrings and doctest	 Self Check

	10.15 Namespaces and Scopes

	10.16 Intro to Data Science: Time Series and Simple Linear Regression	 Self Check

	10.17 Wrap-Up

	Exercises

	11 Computer Science Thinking: Recursion, Searching, Sorting and Big O	Objectives

	Outline

	11.1 Introduction

	11.2 Factorials

	11.3 Recursive Factorial Example	 Self Check

	11.4 Recursive Fibonacci Series Example	 Self Check

	11.5 Recursion vs. Iteration

	11.6 Self Check

	11.6 Searching and Sorting

	11.7 Linear Search	 Self Check

	11.8 Efficiency of Algorithms: Big O	 Self Check

	11.9 Binary Search	 Self Check

	11.9.1 Binary Search Implementation	Function binary_search

	Function remaining_elements

	Function main

	11.9.2 Big O of the Binary Search

	11.10 Sorting Algorithms

	11.11 Selection Sort	11.11.1 Selection Sort Implementation	Function selection_sort

	Function main

	11.11.2 Utility Function print_pass

	11.11.3 Big O of the Selection Sort

	 Self Check

	11.12 Insertion Sort	11.12.1 Insertion Sort Implementation	Function insertion_sort

	11.12.2 Big O of the Insertion Sort

	 Self Check

	11.13 Merge Sort	11.13.1 Merge Sort Implementation	Function merge_sort

	Recursive Function sort_array

	Function merge

	Function subarray_string

	Function main

	11.13.2 Big O of the Merge Sort

	 Self Check

	11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms

	11.15 Visualizing Algorithms	11.15.1 Generator Functions	yield Statements

	11.15.2 Implementing the Selection Sort Animation	import Statements

	update Function That Displays Each Animation Frame

	flash_bars Function That Flashes the Bars About to Be Swapped

	selection_sort Generator Function

	main Function That Launches the Animation

	Sound Utility Functions

	11.16 Wrap-Up

	Exercises

	12 Natural Language Processing (NLP)	Objectives

	Outline

	12.1 Introduction

	12.2 TextBlob1	 Self Check

	12.2.1 Create a TextBlob

	 Self Check

	12.2.2 Tokenizing Text into Sentences and Words

	 Self Check

	12.2.3 Parts-of-Speech Tagging

	 Self Check

	12.2.4 Extracting Noun Phrases

	 Self Check

	12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer	Getting the Sentiment of a TextBlob

	Getting the polarity and subjectivity from the Sentiment Object

	Getting the Sentiment of a Sentence

	 Self Check

	12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer

	 Self Check

	12.2.7 Language Detection and Translation

	 Self Check

	12.2.8 Inflection: Pluralization and Singularization

	 Self Check

	12.2.9 Spell Checking and Correction

	 Self Check

	12.2.10 Normalization: Stemming and Lemmatization

	 Self Check

	12.2.11 Word Frequencies

	 Self Check

	12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet	Getting Definitions

	Getting Synonyms

	Getting Antonyms

	 Self Check

	12.2.13 Deleting Stop Words

	 Self Check

	12.2.14 n-grams

	 Self Check

	12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds	12.3.1 Visualizing Word Frequencies with Pandas	Loading the Data

	Getting the Word Frequencies

	Eliminating the Stop Words

	Sorting the Words by Frequency

	Getting the Top 20 Words

	Convert top20 to a DataFrame

	Visualizing the DataFrame

	12.3.2 Visualizing Word Frequencies with Word Clouds	Installing the wordcloud Module

	Loading the Text

	Loading the Mask Image that Specifies the Word Cloud’s Shape

	Configuring the WordCloud Object

	Generating the Word Cloud

	Saving the Word Cloud as an Image File

	Generating a Word Cloud from a Dictionary

	Displaying the Image with Matplotlib

	 Self Check

	12.4 Readability Assessment with Textatistic	 Self Check

	12.5 Named Entity Recognition with spaCy	 Self Check

	12.6 Similarity Detection with spaCy	 Self Check

	12.7 Other NLP Libraries and Tools

	12.8 Machine Learning and Deep Learning Natural Language Applications

	12.9 Natural Language Datasets

	12.10 Wrap-Up

	Exercises

	13 Data Mining Twitter	Objectives

	Outline

	13.1 Introduction	 Self Check

	13.2 Overview of the Twitter APIs	 Self Check

	13.3 Creating a Twitter Account

	13.4 Getting Twitter Credentials—Creating an App	 Self Check

	13.5 What’s in a Tweet?	Key Properties of a Tweet Object

	Sample Tweet JSON

	Twitter JSON Object Resources

	 Self Check

	13.6 Tweepy

	13.7 Authenticating with Twitter Via Tweepy 	 Self Check

	13.8 Getting Information About a Twitter Account	 Self Check

	13.9 Introduction to Tweepy Cursors: Getting an Account’s Followers and Friends	13.9.1 Determining an Account’s Followers 	Creating a Cursor

	Getting Results

	Automatic Paging

	Getting Follower IDs Rather Than Followers

	 Self Check

	13.9.2 Determining Whom an Account Follows 	 Self Check

	13.9.3 Getting a User’s Recent Tweets	Grabbing Recent Tweets from Your Own Timeline

	 Self Check

	13.10 Searching Recent Tweets

	13.11 Spotting Trends: Twitter Trends API	13.11.1 Places with Trending Topics

	 Self Check

	13.11.2 Getting a List of Trending Topics	Worldwide Trending Topics

	New York City Trending Topics

	 Self Check

	13.11.3 Create a Word Cloud from Trending Topics

	 Self Check

	13.12 Cleaning/Preprocessing Tweets for Analysis	 Self Check

	13.13 Twitter Streaming API	13.13.1 Creating a Subclass of StreamListener 	Class TweetListener

	Class TweetListener: __init__ Method

	Class TweetListener: on_connect Method

	Class TweetListener: on_status Method

	13.13.2 Initiating Stream Processing	Authenticating

	Creating a TweetListener

	Creating a Stream

	Starting the Tweet Stream

	Asynchronous vs. Synchronous Streams

	Other filter Method Parameters

	Twitter Restrictions Note

	 Self Check

	13.14 Tweet Sentiment Analysis

	13.15 Geocoding and Mapping	 Self Check

	13.15.1 Getting and Mapping the Tweets	Get the API Object

	Collections Required By LocationListener

	Creating the LocationListener

	Configure and Start the Stream of Tweets

	Displaying the Location Statistics

	Geocoding the Locations

	Displaying the Bad Location Statistics

	Cleaning the Data

	Creating a Map with Folium

	Creating Popup Markers for the Tweet Locations

	Saving the Map

	 Self Check

	13.15.2 Utility Functions in tweetutilities.py 	get_tweet_content Utility Function

	get_geocodes Utility Function

	 Self Check

	13.15.3 Class LocationListener

	13.16 Ways to Store Tweets

	13.17 Twitter and Time Series

	13.18 Wrap-Up

	Exercises

	14 IBM Watson and Cognitive Computing	Outline

	14.1 Introduction: IBM Watson and Cognitive Computing	 Self Check

	14.2 IBM Cloud Account and Cloud Console	 Self Check

	14.3 Watson Services	Watson Assistant

	Visual Recognition

	Speech to Text

	Text to Speech

	Language Translator

	Natural Language Understanding

	Discovery

	Personality Insights

	Tone Analyzer

	Natural Language Classifier

	Synchronous and Asynchronous Capabilities

	 Self Check

	14.4 Additional Services and Tools	Watson Studio

	Knowledge Studio

	Machine Learning

	Knowledge Catalog

	Cognos Analytics

	 Self Check

	14.5 Watson Developer Cloud Python SDK	Modules We’ll Need for Audio Recording and Playback

	SDK Examples

	 Self Check

	14.6 Case Study: Traveler’s Companion Translation App	 Self Check	14.6.1 Before You Run the App

	Registering for the Speech to Text Service

	Registering for the Text to Speech Service

	Registering for the Language Translator Service

	Retrieving Your Credentials

	 Self Check

	14.6.2 Test-Driving the App	Processing the Question

	Processing the Response

	 Self Check

	14.6.3 SimpleLanguageTranslator.py Script Walkthrough	Importing Watson SDK Classes

	Other Imported Modules

	Main Program: Function run_translator

	Function speech_to_text

	Function translate

	Function text_to_speech

	Function record_audio

	Function play_audio

	Executing the run_translator Function

	 Self Check

	14.7 Watson Resources	 Self Check

	14.8 Wrap-Up

	Exercises

	15 Machine Learning: Classification, Regression and Clustering	Outline

	15.1 Introduction to Machine Learning	15.1.1 Scikit-Learn	Which Scikit-Learn Estimator Should You Choose for Your Project

	15.1.2 Types of Machine Learning	Supervised Machine Learning

	Datasets

	Classification

	Regression

	Unsupervised Machine Learning

	K-Means Clustering and the Iris Dataset

	Big Data and Big Computer Processing Power

	15.1.3 Datasets Bundled with Scikit-Learn

	15.1.4 Steps in a Typical Data Science Study

	 Self Check

	15.2 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 1	 Self Check

	15.2.1 k-Nearest Neighbors Algorithm	Hyperparameters and Hyperparameter Tuning

	 Self Check

	15.2.2 Loading the Dataset	Displaying the Description

	Checking the Sample and Target Sizes

	A Sample Digit Image

	Preparing the Data for Use with Scikit-Learn

	 Self Check

	15.2.3 Visualizing the Data	Creating the Diagram

	Displaying Each Image and Removing the Axes Labels

	 Self Check

	15.2.4 Splitting the Data for Training and Testing	Training and Testing Set Sizes

	 Self Check

	15.2.5 Creating the Model

	15.2.6 Training the Model

	 Self Check

	15.2.7 Predicting Digit Classes

	 Self Check

	15.3 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 2	15.3.1 Metrics for Model Accuracy	Estimator Method score

	Confusion Matrix

	Classification Report

	Visualizing the Confusion Matrix

	 Self Check

	15.3.2 K-Fold Cross-Validation	KFold Class

	Using the KFold Object with Function cross_val_score

	 Self Check

	15.3.3 Running Multiple Models to Find the Best One	Scikit-Learn Estimator Diagram

	 Self Check

	15.3.4 Hyperparameter Tuning

	 Self Check

	15.4 Case Study: Time Series and Simple Linear Regression 	 Self Check

	15.5 Case Study: Multiple Linear Regression with the California Housing Dataset	15.5.1 Loading the Dataset	Loading the Data

	Displaying the Dataset’s Description

	15.5.2 Exploring the Data with Pandas

	 Self Check

	15.5.3 Visualizing the Features

	 Self Check

	15.5.4 Splitting the Data for Training and Testing

	15.5.5 Training the Model

	 Self Check

	15.5.6 Testing the Model

	15.5.7 Visualizing the Expected vs. Predicted Prices

	15.5.8 Regression Model Metrics

	 Self Check

	15.5.9 Choosing the Best Model

	15.6 Case Study: Unsupervised Machine Learning, Part 1—Dimensionality Reduction	Loading the Digits Dataset

	Creating a TSNE Estimator for Dimensionality Reduction

	Transforming the Digits Dataset’s Features into Two Dimensions

	Visualizing the Reduced Data

	Visualizing the Reduced Data with Different Colors for Each Digit

	 Self Check

	15.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering	 Self Check

	15.7.1 Loading the Iris Dataset	Checking the Numbers of Samples, Features and Targets

	15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas

	15.7.3 Visualizing the Dataset with a Seaborn pairplot	Displaying the pairplot in One Color

	 Self Check

	15.7.4 Using a KMeans Estimator	Creating the Estimator

	Fitting the Model

	Comparing the Computer Cluster Labels to the Iris Dataset’s Target Values

	 Self Check

	15.7.5 Dimensionality Reduction with Principal Component Analysis	Creating the PCA Object

	Transforming the Iris Dataset’s Features into Two Dimensions

	Visualizing the Reduced Data

	 Self Check

	15.7.6 Choosing the Best Clustering Estimator

	15.8 Wrap-Up

	Exercises

	16 Deep Learning	Objectives

	Outline

	16.1 Introduction	 Self Check

	16.1.1 Deep Learning Applications

	16.1.2 Deep Learning Demos

	16.1.3 Keras Resources

	16.2 Keras Built-In Datasets

	16.3 Custom Anaconda Environments	 Self Check

	16.4 Neural Networks	 Self Check

	16.5 Tensors	 Self Check

	16.6 Convolutional Neural Networks for Vision; Multi-Classification with the MNIST Dataset	 Self Check

	16.6.1 Loading the MNIST Dataset

	 Self Check

	16.6.2 Data Exploration	Visualizing Digits

	16.6.3 Data Preparation	Reshaping the Image Data

	Normalizing the Image Data

	One-Hot Encoding: Converting the Labels From Integers to Categorical Data

	 Self Check

	16.6.4 Creating the Neural Network	Adding Layers to the Network

	Convolution

	Adding a Convolution Layer

	Dimensionality of the First Convolution Layer’s Output

	Overfitting

	Adding a Pooling Layer

	Adding Another Convolutional Layer and Pooling Layer

	Flattening the Results

	Adding a Dense Layer to Reduce the Number of Features

	Adding Another Dense Layer to Produce the Final Output

	Printing the Model’s Summary

	Visualizing a Model’s Structure

	Compiling the Model

	 Self Check

	16.6.5 Training and Evaluating the Model	Evaluating the Model

	Making Predictions

	Locating the Incorrect Predictions

	Visualizing Incorrect Predictions

	Displaying the Probabilities for Several Incorrect Predictions

	 Self Check

	16.6.6 Saving and Loading a Model

	 Self Check

	16.7 Visualizing Neural Network Training with TensorBoard	 Self Check

	16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization

	16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis with the IMDb Dataset	 Self Check

	16.9.1 Loading the IMDb Movie Reviews Dataset

	 Self Check

	16.9.2 Data Exploration	Movie Review Encodings

	Decoding a Movie Review

	16.9.3 Data Preparation	Splitting the Test Data into Validation and Test Data

	 Self Check

	16.9.4 Creating the Neural Network	Adding an Embedding Layer

	Adding an LSTM Layer

	Adding a Dense Output Layer

	Compiling the Model and Displaying the Summary

	 Self Check

	16.9.5 Training and Evaluating the Model

	16.10 Tuning Deep Learning Models	 Self Check

	16.11 Convnet Models Pretrained on ImageNet

	16.12 Reinforcement Learning	16.12.1 Deep Q-Learning

	16.12.2 OpenAI Gym

	16.13 Wrap-Up

	Exercises	Convolutional Neural Networks

	Recurrent Neural Networks

	ConvnetJS Visualization

	Convolutional Neural Network Projects and Research

	Recurrent Neural Network Projects and Research

	Automated Deep Learning Project

	Reinforcement Learning Projects and Research

	Generative Deep Learning

	Deep Fakes

	Additional Research

	17 Big Data: Hadoop, Spark, NoSQL and IoT	Objectives

	Outline

	17.1 Introduction	 Self Check for Section 17.1

	17.2 Relational Databases and Structured Query Language (SQL)	 Self Check

	17.2.1 A books Database

	 Self Check

	17.2.2 SELECT Queries

	17.2.3 WHERE Clause	Pattern Matching: Zero or More Characters

	Pattern Matching: Any Character

	 Self Check

	17.2.4 ORDER BY Clause	Sorting By Multiple Columns

	Combining the WHERE and ORDER BY Clauses

	 Self Check

	17.2.5 Merging Data from Multiple Tables: INNER JOIN

	 Self Check

	17.2.6 INSERT INTO Statement	Note Regarding Strings That Contain Single Quotes

	17.2.7 UPDATE Statement

	17.2.8 DELETE FROM Statement	 Self Check for Section 17.2

	17.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour	17.3.1 NoSQL Key–Value Databases

	17.3.2 NoSQL Document Databases

	17.3.3 NoSQL Columnar Databases

	17.3.4 NoSQL Graph Databases

	17.3.5 NewSQL Databases

	 Self Check for Section 17.3

	17.4 Case Study: A MongoDB JSON Document Database	17.4.1 Creating the MongoDB Atlas Cluster	Creating Your First Database User

	Whitelist Your IP Address

	Connect to Your Cluster

	17.4.2 Streaming Tweets into MongoDB	Use Tweepy to Authenticate with Twitter

	Loading the Senators’ Data

	Configuring the MongoClient

	Setting up Tweet Stream

	Starting the Tweet Stream

	Class TweetListener

	Counting Tweets for Each Senator

	Show Tweet Counts for Each Senator

	Get the State Locations for Plotting Markers

	Grouping the Tweet Counts by State

	Creating the Map

	Creating a Choropleth to Color the Map

	Creating the Map Markers for Each State

	Displaying the Map

	 Self Check for Section 17.4

	17.5 Hadoop	17.5.1 Hadoop Overview	HDFS, MapReduce and YARN

	Hadoop Ecosystem

	Hadoop Providers

	Hadoop 3

	17.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce

	17.5.3 Creating an Apache Hadoop Cluster in Microsoft Azure HDInsight	Creating an HDInsight Hadoop Cluster

	17.5.4 Hadoop Streaming

	17.5.5 Implementing the Mapper

	 17.5.6 Implementing the Reducer

	17.5.7 Preparing to Run the MapReduce Example	Copying the Script Files to the HDInsight Hadoop Cluster

	Copying RomeoAndJuliet into the Hadoop File System

	17.5.8 Running the MapReduce Job	Viewing the Word Counts

	Deleting Your Cluster So You Do Not Incur Charges

	 Self Check for Section 17.5

	17.6 Spark	17.6.1 Spark Overview	History

	Architecture and Components

	Providers

	17.6.2 Docker and the Jupyter Docker Stacks	Docker

	Installing Docker

	Jupyter Docker Stacks

	Run Jupyter Docker Stack

	Opening JupyterLab in Your Browser

	Accessing the Docker Container’s Command Line

	Stopping and Restarting a Docker Container

	17.6.3 Word Count with Spark	Loading the NLTK Stop Words

	Configuring a SparkContext

	Reading the Text File and Mapping It to Words

	Removing the Stop Words

	Counting Each Remaining Word

	Locating Words with Counts Greater Than or Equal to 60

	Sorting and Displaying the Results

	17.6.4 Spark Word Count on Microsoft Azure	Create an Apache Spark Cluster in HDInsight Using the Azure Portal

	Install Libraries into a Cluster

	Copying RomeoAndJuliet.txt to the HDInsight Cluster

	Accessing Jupyter Notebooks in HDInsight

	Uploading the RomeoAndJulietCounter.ipynb Notebook

	Modifying the Notebook to Work with Azure

	 Self Check for Section 17.6

	17.7 Spark Streaming: Counting Twitter Hashtags Using the pyspark-notebook Docker Stack	17.7.1 Streaming Tweets to a Socket	Executing the Script in the Docker Container

	starttweetstream.py import Statements

	Class TweetListener

	Main Application

	17.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL	Importing the Libraries

	Utility Function to Get the SparkSession

	Utility Function to Display a Barchart Based on a Spark DataFrame

	Utility Function to Summarize the Top-20 Hashtags So Far

	Getting the SparkContext

	Getting the StreamingContext

	Setting Up a Checkpoint for Maintaining State

	Connecting to the Stream via a Socket

	Tokenizing the Lines of Hashtags

	Mapping the Hashtags to Tuples of Hashtag-Count Pairs

	Totaling the Hashtag Counts So Far

	Specifying the Method to Call for Every RDD

	Starting the Spark Stream

	 Self Check for Section 17.7

	17.8 Internet of Things and Dashboards	17.8.1 Publish and Subscribe

	17.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard Dashboard	Signing up for Freeboard.io

	Creating a New Dashboard

	Adding a Data Source

	Adding a Pane for the Humidity Sensor

	Adding a Gauge to the Humidity Pane

	Adding a Sparkline to the Humidity Pane

	Completing the Dashboard

	17.8.3 Simulating an Internet-Connected Thermostat in Python	Installing Dweepy

	Invoking the simulator.py Script

	Sending Dweets

	17.8.4 Creating the Dashboard with Freeboard.io

	17.8.5 Creating a Python PubNub Subscriber	Message Format

	Importing the Libraries

	List and DataFrame Used for Storing Company Names and Prices

	Class SensorSubscriberCallback

	Function Update

	Configuring the Figure

	Configuring the FuncAnimation and Displaying the Window

	Configuring the PubNub Client

	Subscribing to the Channel

	Ensuring the Figure Remains on the Screen

	 Self Check for Section 17.8

	17.9 Wrap-Up

	Exercises	SQL and RDBMS Exercises

	NoSQL Database Exercises

	Hadoop Exercises

	Spark Exercises

	IoT and Pub/Sub Exercises

	Platform Exercises

	Other Exercises

	Index

Landmarks

	

	 Frontmatter

	Start of Content

	

		backmatter

	i

	ii

	iii

	iv

	v

	vi

	vii

	viii

	ix

	x

	xi

	xii

	xiii

	xiv

	xv

	xvi

	xvii

	xviii

	xix

	xx

	xxi

	xxii

	xxiii

	xxiv

	xxv

	xxvi

	xxvii

	xxviii

	xxix

	xxx

	xxxi

	xxxii

	xxxiii

	xxxiv

	xxxv

	xxxvi

	xxxvii

	xxxviii

	xxxix

	xl

	xli

	xlii

	xliii

	xliv

	xlv

	xlvi

	xlvii

	xlviii

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	267

	268

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	318

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

	335

	336

	337

	338

	339

	340

	341

	342

	343

	344

	345

	346

	347

	348

	349

	350

	351

	352

	353

	354

	355

	356

	357

	358

	359

	360

	361

	362

	363

	364

	365

	366

	367

	368

	369

	370

	371

	372

	373

	374

	375

	376

	377

	378

	379

	380

	381

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	404

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	417

	418

	419

	420

	421

	422

	423

	424

	425

	426

	427

	428

	429

	430

	431

	432

	433

	434

	435

	436

	437

	438

	439

	440

	441

	442

	443

	444

	445

	446

	447

	448

	449

	450

	451

	452

	453

	454

	455

	456

	457

	458

	459

	460

	461

	462

	463

	464

	465

	466

	467

	468

	469

	470

	471

	472

	473

	474

	475

	476

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	488

	489

	490

	491

	492

	493

	494

	495

	496

	497

	498

	499

	500

	501

	502

	503

	504

	505

	506

	507

	508

	509

	510

	511

	512

	513

	514

	515

	516

	517

	518

	519

	520

	521

	522

	523

	524

	525

	526

	527

	528

	529

	530

	531

	532

	533

	534

	535

	536

	537

	538

	539

	540

	541

	542

	543

	544

	545

	546

	547

	548

	549

	550

	551

	552

	553

	554

	555

	556

	557

	558

	559

	560

	561

	562

	563

	564

	565

	566

	567

	568

	569

	570

	571

	572

	573

	574

	575

	576

	577

	578

	579

	580

	581

	582

	583

	584

	585

	586

	587

	588

	589

	590

	591

	592

	593

	594

	595

	596

	597

	598

	599

	600

	601

	602

	603

	604

	605

	606

	607

	608

	609

	610

	611

	612

	613

	614

	615

	616

	617

	618

	619

	620

	621

	622

	623

	624

	625

	626

	627

	628

	629

	630

	631

	632

	633

	634

	635

	636

	637

	638

	639

	640

	641

	642

	643

	644

	645

	646

	647

	648

	649

	650

	651

	652

	653

	654

	655

	656

	657

	658

	659

	660

	661

	662

	663

	664

	665

	666

	667

	668

	669

	670

	671

	672

	673

	674

	675

	676

	677

	678

	679

	680

	681

	682

	683

	684

	685

	686

	687

	688

	689

	690

	691

	692

	693

	694

	695

	696

	697

	698

	699

	700

	701

	702

	703

	704

	705

	706

	707

	708

	709

	710

	711

	712

	713

	714

	715

	716

	717

	718

	719

	720

	721

	722

	723

	724

	725

	726

	727

	728

	729

	730

	731

	732

	733

	734

	735

	736

	737

	738

	739

	740

	741

	742

	743

	744

	745

	746

	747

	748

	749

	750

	751

	752

	753

	754

	755

	756

	757

	758

	759

	760

	761

	762

	763

	764

	765

	766

	767

	768

	769

	770

	771

	772

	773

	774

	775

	776

	777

	778

	779

	780

	781

	782

	783

	784

	785

	786

	787

	788

	789

	790

	791

	792

	793

	794

	795

	796

	797

	798

	799

	800

	801

	802

	803

	804

	805

	806

	807

	808

	809

	810

	811

	812

	813

	814

	815

	816

	817

	818

	819

	820

	821

	822

	823

	824

	825

	826

	827

	828

	829

	830

	831

	832

Long description
A data hierarchy shows 5 rows and 2 columns with a bracket that reads, file. From top to bottom, Sally, Black. Tom, Blue. Judy, Green. Iris, Orange. Randy, Red. Under the 5 rows is a record row for Judy, Green, with an arrow back to the chart. Under the chart an arrow points from Judy to Judy with the word field to the right. Binary code reads 0 1 0 0 1 0 1 0 Character 3. 1 bit.

Long description
A 3 column, 7 row table shows common byte measurements. From left to right column headings are Unit, Bytes, which is approximately. Row 1, 1 kilobyte K B, 1024 bytes, 10 cubed 1024 bytes exactly. Row 2, 1 megabyte M B, 1024 kilobytes, 10 to the sixth power 1 million bytes. Row 3, 1 gigabyte G B, 1024 megabytes, 10 to the ninth power 1,000,000,000 bytes. Row 4, 1 terabyte T B, 1024 gigabytes, 10 to the twelfth power 1,000,000,000,000 bytes. Row 5, 1 petabyte P B, 1024 terabytes, 10 to the fifteenth power 1,000,000,000,000,000 bytes

Long description
The bar graph to the left shows Die Values from 1 to 6 horizontally and the frequency from 1 to 12 vertically for 51 rolls as follows. Bar 1, 11, 21.569 percent. Bar 2, 6, 11.765 percent. Bar 3, 9, 17.647 percent. Bar 4, 7, 13.725 percent. Bar 5, 8, 15.686 percent. Bar 6, 10, 19.608 percent. The bar graph to the right shows the horizontal die values from 1 to 6 and vertical frequency from 0 to 700 in increments of 100 for 4 thousand 207 rolls as follows. Bar 1, 685, 16.282 percent. Bar 2, 705, 16.758 percent. Bar 3, 669, 15.902 percent. Bar 4, 715, 16.995 percent. Bar 5, 714, 16.972 percent. Bar 6, 719, 17.091 percent.

Long description
A computer screen shot of the Jupyter Lab interface. Across the top of the screen are the following tabs: File, Edit, View, Run, Kernel, Tabs, Settings, Help. To the left of the screen shows document name, Roll Die Dynamic dot py and last modified 7 months ago. To the right shows images of Launcher with Notebook, Python 3, Console, Python 3 and Other with Terminal and Text File.

Long description
A 4 column Table shows symbols not used in algebra. From Left to Right, Column 1 Python Operation, Column 2 Arithmetic Operator, Column 3 Algebraic Expression and Column 4 Python expression. Row 1, Addition, + , F + 7, F + 7. Row 2, Subtraction, minus, p minus c, p minus c. Row 3, Multiplication, asterisk, b times m, b times m. Row 4, Exponentiation asterisk asterisk, X to the power of y, x asterisk asterisk y. Row 5, True division, slash, x slash y or x over y or x divided by y, x slash y. Row 6, Floor division slash slash, left bracket x slash y right bracket or left bracket x over y right bracket or left bracket x divided by y right bracket, x slash slash y. Row 7, Remainder left parenthesis modulo right parenthesis, percentage, r mod s, R percentage s.

Long description
A 2 column table shows common escape sequences. From left to Right, Column 1 Escape Sequence. Column 2 Description. Row 1, back slash n. Insert a newline character in a string. When the string is displayed, for each newline, move the screen cursor to the beginning of the next line. Row 2, back slash t. Insert a horizontal tab. When the string is displayed, for each tab, move the screen cursor to the next tab stop. Row 3, back slash back slash. Insert a backslash character in a string. Row 4 back slash quote. Insert a double quote character in a string. Row 5 back slash apostrophe. Insert a single quote character in a string.

Long description
A 4 column table shows comparison operators. The Columns left to right are Algebraic operator, Python operator, Sample Condition and Meaning. Row 1, Greater than, Greater than, x greater than y, x is greater than y. Row 2, less than, less than, x less than y, x is less than y. Row 3, Greater than or equal to, Greater than equal, x Greater than or equal to y, X Greater than or equal to y. Row 4, less than or equal to, Less than equal, x less than or equal to y, X Less than or equal to y. Straight line all the way across. Row 5, = , = = , x = = y, x is equal to y. Row 6, does not equal, Exclamation point = , x Exclamation point = y, x is not equal to y.

Long description
A 3 Column table shows precedence of the operators. Columns from Left to Right include Operators, Grouping and Type. Row 1, left parentheses right parentheses, left to right, parentheses. Row 2, asterisk asterisk, right to left, exponentiation. Row 3, Asterisk forward slash double forward slash percentage, left to right, multiplication true division floor division remainder. Row 4, Plus minus, left to right, addition subtraction. Row 5, greater than less than or equal to less than greater than equal to, left to right, less than less than or equal greater than greater than or equal. Row 6, double equal exclamation equal, left to right, equal not equal.

Long description
A 3 column output table shows from left to right 3 columns Number, square and cube. Row 1, 0, 0, 0. Row 2, 1, 1, 1. Row 3, 2, 4, 8. Row 4, 3, 9, 27. Row 5, 4, 16, 64. Row 6, 5, 25, 125.

Long description
A 3 column output table shows from left to right 3 columns Number, square and cube. Row 1, 0, 0, 0. Row 2, 1, 1, 1. Row 3, 2, 4, 8. Row 4, 3, 9, 27. Row 5, 4, 16, 64. Row 6, 5, 25, 125.

Long description
A partial flowchart starts with a circle and a down arrow to a rectangle that reads add grade to total. To the right of the rectangle is total = total + grade. Under the top rectangle is an arrow pointing to a second rectangle that reads add 1 to counter. To the right of the second rectangle reads Counter = Counter + 1. An arrow points down from the rectangle to a circle.

Long description
A flow chart for the if statement starts at the top with a circle and a down arrow that points to a diamond shape with grade is greater than or equal to 60. An arrow to the right is true and points to the rectangle with print left parenthesis apostrophe passed apostrophe right parenthesis. An arrow drops down from the diamond reads false and goes to a circle. A line drops down from the rectangle with an arrow to the circle.

Long description
A partial flow chart image for an if else statement starts with a circle at the top and a downward arrow to a diamond that reads grade is greater than or equal to 60. An arrow marked true exits the right and flows to a rectangle that reads print left parenthesis passed right parenthesis. To the left of the previous diamond an arrow marked false flows left to a rectangle that reads print left parenthesis failed right parenthesis. Both rectangles have arrows that drop down and flow to the same circle. An arrow from the circle flows down to another circle.

Long description
An image titled control statements and program development shows a partial flowchart for an if else statement. It shows that after any suite executes, control immediately exits the statement. The words to the left are not part of the flowchart but are used to show how the flowchart corresponds to Python code. From the top a circle with a down arrow. The word If is to the left. The arrow flows to a diamond with condition a. An arrow flows right if true to a rectangle if suite and an arrow flows right. If false an arrow flows down from the diamond to the next diamond. The words to the left are first elif. The next diamond is condition b. An arrow for true flows right to a rectangle that reads first elif suite and an arrow flows right. If false an arrow flows down from diamond b to 3 dots and another down arrow to a diamond marked condition z. The words to the left of condition z are last elif. If true an arrow flows right from the condition z diamond to a rectangle that reads last elif suite. If false an arrow flows down from the diamond to a rectangle that reads Else suite. The word to the left of the rectangle is Else. All right arrows exiting the suites flow down to a downward arrow that lead to a circle.

Long description
An image of a partial flowchart that shows a while statement’s flow of control with a true and false result. From the top a circle has a down arrow to a diamond with product is less than or equal to 50. If false an arrow flows down from the bottom of the diamond to a circle. If true an arrow flows right to a rectangle that reads product = product times 3. An arrow flows from the top of the rectangle back to the arrow leaving the top circle.

Long description
An image of a partial flowchart that shows a while statement’s flow of control with a true and false result. From the top a circle has a down arrow to a diamond with more items to process. If false an arrow flows down from the bottom of the diamond to a circle. If true an arrow flows right to a rectangle that reads assign next item to target. An arrow flows from the right of the rectangle to a rectangle that says suite. An arrow leaves the top of the suite and back to the arrow leaving the top circle.

Long description
A table shows 4 columns left to right augmented assignments, sample expression, explanation and assigns. Key Assume c = 3, d = 5, e = 4, f = 2, g = 9, h = 12. There are 7 rows as follows. Row 1, + = , C + = 7, C = C + 7, 10 to c. Row 2, minus = , d minus = 4, d = d minus 4, 1 to d. Row 3, asterisk = , 3 asterisk = 5, e = e asterisk t, 20 to e. Row 4, Asterisk asterisk = , f asterisk asterisk = 3, f = f asterisk asterisk three, 8 to f. Row 5, forward slash = , g forward slash = 2, g = g forward slash 2, to g. Row 6, forward slash, forward slash = , g forward slash forward slash = 2, g = g forward slash forward slash 2, 4 to g. Row 7 percentage = , h percentage = 9, h = h percentage 9, 3 to h.

Long description
The truth table has 3 columns from left to right: Expression 1, Expression 2 and Expression1 and expression 2. Row 1, False, False, False. Row 2, False, true, false. Row 3, True, False, False. Row 4, True, True, True.

Long description
The truth table has 3 columns from left to right: Expression 1, Expression 2 and Expression 1 and expression 2. Row 1, False, False, False. Row 2, False, true, True. Row 3, True, False, True. Row 4, True, True, True.

Long description
A 2 column table shows Operators and Grouping, Row 1 left parenthesis right parenthesis, left to right. Row 2 asterisk asterisk, right to left. Row 3 asterisk slash double slash percentage, left to right. Row 4 + minus, left to right. Row 5 less than less than or equal to greater than greater than or equal to = = exclamation point = , left to right. Row 6 not, left to right. Row 7 and, left to right. Row 8 or, left to right.

Long description
A table that shows Python standard library modules. The table reads as follows: collections—Data structures beyond lists, tuples, dictionaries and sets. Cryptography modules—Encrypting data for secure transmission. csv—Processing comma-separated value files (like those in Excel). datetime—Date and time manipulations. Also modules time and calendar. decimal—Fixed-point and floating-point arithmetic, including monetary calculations. doc test—Embed validation tests and expected results in docstrings for simple unit testing. get text and locale—Internationalization and localization modules. j son—JavaScript Object Notation (JSON) processing used with web services and NoSQL document databases.
math—Common math constants and operations. os—Interacting with the operating system. profile, pstats, timeit—Performance analysis. random—Pseudorandom numbers. re—Regular expressions for pattern matching. sqlite3—SQLite relational database access. statistics—Mathematical statistics functions such as mean, median, mode and variance. string—String processing. sys—Command-line argument processing; standard input, standard output and standard error streams. tkinter—Graphical user interfaces (GUIs) and canvas-based graphics. turtle—Turtle graphics. Web browser—For conveniently displaying web pages in Python apps.

Long description
A table shows calculations to use in a simulation for the Tortoise and the Hare problem. The Table has 4 columns left to right. Animal, Move type, Percentage of the time, Actual move. Top section is the Tortoise, Fast plod 50% 3 squares to the right. Slip 20% 6 squares to the left. Slow plod 30% 1 square to the right. Bottom section is the Hare, Sleep 20% No move at all. Big hop 20% 9 squares to the right. Big slip 10% 12 squares to the left. Small hop 30% 1 square to the right. Small slip 20% 2 squares to the left.

Long description
An image shows a list element by writing the list’s name followed by the element’s index position number enclosed in square brackets. The sample reads as follows: Names of the list’s elements with an arrow to c 0 enclosed in square brackets over negative 45. C 1 enclosed in square brackets over 6. Position number 2 of this element within the sequence with an arrow pointing to c 2 enclosed in square brackets over 0. C 3 enclosed in square brackets over 72. C 4 enclosed in square brackets over 1543 with an arrow values of the list’s elements.

Long description
An image shows lists also can be accessed from the end by using negative indices. Element names with positive indices with an arrow to c 0 enclosed in square brackets over negative 45 over c negative 5 enclosed in square brackets. C 1 enclosed in square brackets over 6 over c negative 4 enclosed in square brackets. C 2 enclosed in square brackets over 0 over c negative 3 enclosed in square brackets. C 3 enclosed in square brackets over 72 over c negative 2 enclosed in square brackets. C 4 enclosed in square brackets over 1543 over negative 1 enclosed in square brackets with an arrow element names with negative indices.

Long description
A diagram of a 2 dimensional list with rows and columns for exam grades. 4 columns from left to right are as follows: Column 0, Column 1, Column 2, Column 3. 3 Rows with values as follow: Row 0. 77, 68, 86, 73. Row 1. 96, 87, 89, 81, Row 2. 70, 90, 86, 81.

Long description
A diagram of a 2 dimensional list with rows and columns for identifying elements. 4 columns from left to right are as follows: Column 0, Column 1, Column 2, Column 3. 3 Rows with values as follow: Row 0. a 0 enclosed in square brackets 0 enclosed in square brackets, a 0 enclosed in square brackets 1 enclosed in square brackets, a 0 enclosed in square brackets 2 enclosed in square brackets, a 0 enclosed in square brackets 3 enclosed in square brackets. Row 1. a 1 enclosed in square brackets 0 enclosed in square brackets, a 1 enclosed in square brackets 1 enclosed in square brackets, a 1 enclosed in square brackets 2 enclosed in square brackets, a 1 enclosed in square brackets 3 enclosed in square brackets. Row 2. a 2 enclosed in square brackets 0 enclosed in square brackets, a 2 enclosed in square brackets 1 enclosed in square brackets, a 2 enclosed in square brackets 2 enclosed in square brackets, a 2 enclosed in square brackets 3 enclosed in square brackets. An arrow point to a and identifies the list name. An arrow points to the row index which is the first number in square brackets. An arrow points to the column index which is the second square bracket number.

Long description
Bar graph shows Die Values from 1 to 6 horizontally and the frequency from 0 to 120 in increments of 20 for rolls as follows. Bar 1, 103, 17.167 percent. Bar 2, 112, 18.667 percent. Bar 3, 99, 16.500 percent. Bar 4, 92, 15.333 percent. Bar 5, 89, 14.833 percent. Bar 6, 105, 17.500 percent.

Long description
Bar graph to the left shows Die Values from 1 to 6 horizontally and the frequency from 0 to 10 thousand vertically in increments of 2000. Bar 1, 9982, 16.637 percent. Bar 2, 9896, 16.493 percent. Bar 3, 10103, 16.883 percent. Bar 4, 10045, 16.742 percent. Bar 5, 9929, 16.548 percent. Bar 6, 10018, 16.697 percent. The Bar graph to the right shows the horizontal die values from 1 to 6 and vertical frequency from 0 to 10 million in increments of 20 million as follows. Bar 1, 1000061, 16.668 percent. Bar 2, 1000444, 16.674 percent. Bar 3, 999753, 16.663 percent. Bar 4, 999.703, 16.662 percent. Bar 5, 999115, 16.652 percent. Bar 6, 1000924, 16.682 percent.

Long description
The snippet bar graph shows approximate measurements of the bars as follows 1 with a frequency of 100. Bar 2 at 90. Bar 3 at 95. 4 at 93. Bar 6 at 80. Bar 6 at 100.

Long description
The final bar plot has a titled centered across the top reads Rolling a 6 sided die 600 times. Frequency is centered on the vertical axis from 0 to 120 in increments of 20. Die value is centered on the horizontal axis from 1 to 6. There are 6 bars from left to right. Bar 1 107, 17.833%. Bar 2 97, 16.167%. Bar 3 100, 16.667%. Bar 4 99, 16.500%. Bar 5 86, 14.333%. Bar 6 111, 18.500%.

Long description
The Bar graph shows the horizontal die values from 1 to 6 and vertical frequency from 0 to 10 thousand in increments of 2 thousand as follows. Bar 1, 10,054, 16.757 percent. Bar 2, 9,951, 16.585 percent. Bar 3, 9,981, 16.635 percent. Bar 4, 9,959, 16.598 percent. Bar 5, 10,002, 16.670 percent. Bar 6, 10,053, 16.755 percent.

Long description
The Bar graph shows the horizontal die values from 1 to 6 and vertical frequency from 0 to 10 million in increments of 20 million as follows. Bar 1, 1000076, 16.668 percent. Bar 2, 999,987, 16.665 percent. Bar 3, 999544, 16.659 percent. Bar 4, 1,001,105, 16.685 percent. Bar 5, 999,364, 16.656 percent. Bar 6, 1,000,014, 16.667 percent.

Long description
A table shows lists and tuples sequences with four columns of data left to right, part number, part description, quantity and price. The table data is as follows Row 1, 83, electric sander, 7, 57.98. Row 2, 24, Power saw, 18, 99.99. Row 3, 7, Sledge hammer, 11, 21.50. Row 4, 77, Hammer, 76, 11.99. Row 5, 39, Jig saw, 3, 79.50.

Long description
An image of a 4 column format of shuffled cards is as follows. Column 1 6 of Spades, Queen of Hearts, 3 of diamonds, 4 of spades, 3 of clubs, king of clubs, Queen of Clubs, 3 of Spades, Ace of Spades, Deuce of Spades, Jack of Hearts, Ace of Diamonds, 5 of Diamonds. Column 2 8 of spades, 7 of Clubs, 2 of clubs, Ace of clubs, 2 of hearts, 10 of hearts, 8 of diamonds, King of diamonds, 4 of diamonds, 8 of hearts, 7 of spades, queen of diamonds, 10 of clubs. Column 3, 6 of clubs, 9 of spades, ace of hearts, 7 of diamonds, 5 of spades, 3 of hearts, 2 of diamonds, 9 of clubs, 7 of hearts, 4 of clubs, 5 of clubs, jack of spades. Column 4 9 of hearts, king of hearts, 10 of spades, 4 of hearts, jack of diamonds, 6 of diamonds, 10 of diamonds, 6 of hearts, 8 of clubs, queen of spades, 9 of diamonds, king of spades, jack of clubs.

Long description
The diagram is set up like a table and shows the numbers 1 through 6 across the top and 1 through 6 down the side representing the 2 dice. From left to right to right and top to bottom the numbers are Row 1, 2 3 4 5 6 7. Row 2, 3 4 5 6 7 8, Row 3, 4 5 6 7 8 9. Row 4, 5 6 7 8 9 10, Row 5, 6 7 8 9 10 11. Row 6, 7 8 9 10 11 12.

Long description
The dictionary is arranged as a table, with 4 columns from left to right: keys, key types, values and value types. The rows read as follows. Row 1, Country names, s t r, Internet country codes, s t r. Row 2, Decimal numbers, i n t, Roman numerals, s t r. Row 3, States, s t r, Agricultural products, list of s t r. Row 4, Hospital patients, s t r, Vital signs, tuple of i n t’s and floats. Row 5, Baseball players, s t r, Batting averages, float. Row 6, Metric measurements, s t r, Abbreviations, s t r. Row 7, Inventory codes, s t r, Quantity in stock, i n t.

Long description
As the number of rolls increases, so does the percentage of frequency for each value. Additionally, by 166,200 the percentages for each value are nearly identical.

Long description
As the number of rolls increases, so does the percentage of frequency for each value. Additionally, by 166,200 the percentages for each value are nearly identical.

Long description
A table lists the number of values and the corresponding list of average execution time and array of average execution time. Rows read as follows. Row 1, 1, 1.56 microseconds plus or minus 25.2 nanoseconds, and 1.89 microseconds plus or minus 24.4 nanoseconds. Row 2, 10, 11.6 microseconds plus or minus 59.6 nanoseconds, and 1.96 microseconds plus or minus 27.6 nanoseconds. Row 3, 100, 109 milliseconds plus or minus 8.59 microseconds, and 3 microseconds plus or minus 147 nanoseconds. Row 4, 1000, 1.09 milliseconds plus or minus 8.59 microseconds, and 12.3 microseconds plus or minus 419 nanoseconds. Row 5, 10,000, 11.1 milliseconds plus or minus 210 microseconds, and 102 microseconds plus or minus 669 nanoseconds. Row 6, 100,000, 111 milliseconds plus or minus 1.77 milliseconds, and 1.02 milliseconds plus or minus 32.9 microseconds. Row 7, 1,000,000, 1.1 seconds plus or minus 8.47 milliseconds, and 10.1 milliseconds plus or minus 250 microseconds.

Long description
Positions on the board are noted by the left side number followed by the top number. The knight, denoted by the letter K, is positioned at space 3, 4. The knight, which moves in l shaped moves of 2 spaces in one direction and one space in a perpendicular direction, has 8 different choices. Choice 0 is at space 2, 6. Choice 1 is at space 1, 5. Choice 2 is at space 1, 3. Choice 3 is at space 2, 2. Choice 4 is at space 4, 2. Choice 5 is at space 5, 3. Choice 6 is at space 5, 5. Choice 7 is at space 4, 6.

Long description
The table lists pairs of string methods and the corresponding description of the method, as follows. I s a l n u m left parenthesis right parenthesis: returns true if the string contains only alphanumeric characters, such as digits and letters. I s a l p h a left parenthesis right parenthesis: returns true if the string contains only alphabetic characters like letters. i s decimal left parenthesis right parenthesis: returns true if the string contains only decimal integer characters, that is base 10 integers, and does not contain a plus or minus sign. I s digit left parenthesis right parenthesis: returns true if the string contains only digits like 0, 1, or 2. I s identifier left parenthesis right parenthesis: returns true if the string represents a valid identifier. I s lower left parenthesis right parenthesis: returns true if all alphabetic characters in the string are lower case characters like lowercase a, b or c. I s numeric left parenthesis right parenthesis: returns true if the characters in the string represent a numeric value without a plus or minus sign and without a decimal point. I s s space left parenthesis right parenthesis: returns true if the string includes only whitespace characters. I s title left parenthesis right parenthesis: returns true if the first character of each word in the strings is the only uppercase character in the word. I supper left parenthesis right parenthesis: returns true if all alphabetic characters in the string are uppercase characters such as uppercase a, b, or c.

Long description
The table lists the character classes and their matches, as follows. Backward slash d: any digit 0 through 9. Backward slash capital D: any character that is not a digit. Backward slash s: any whitespace character, such as spaces, tabs, and new lines. Backward slash capital S: any character that is not a whitespace character. Backward slash w: any word character, also called an alphanumeric character, that is any uppercase or lowercase letter, any digit or an underscore. Backward slash capital w: any character that is not a word character.

Long description
In a conceptual view of a file, a horizontal bar is broken into 10 equal boxes, numbered 0 through 9, from left to right. To the right of box 9 is a lager box labelled with 3 dots arranged horizontally. A box to the right of that is labelled n minus 1. To the right is the end of the bar, or the end of file marker.

Long description
The table lists each mode and a corresponding description, as follows. Mode r: Open a text file for reading. This is the default if you do not specify the file-open mode when you call open. Mode w: Open a text file for writing. Existing file contents are deleted. Mode a: Open a text file for appending at the end, creating the file if it does not exist. New data is written at the end of the file. Mode r plus: Open a text file reading and writing. Mode w plus: Open a text file reading and writing. Existing file contents are deleted. Mode a plus: Open a text file reading and appending at the end. New data is written at the end of the file. If the file does not exist, it is created.

Long description
The 2 5 card hands as are follows. Hand 1, 10 of clubs, 7 of diamonds, king of diamonds, 9 of spades, and 8 of diamonds. Hand 2, 5 of clubs, 5 of spades, queen of hearts, 4 of diamonds, and ace of hearts.

Long description
The table lists the base classes and their corresponding subclasses, as follows. Student: graduate student, undergraduate student. Shape: circle, triangle, rectangle, sphere, cube. Loan: car loan, home improvement loan, mortgage loan. Employee: faculty, staff. Bank account: checking account, savings account.

Long description
The hierarchy proceeds as follows, from the bottom to the top. An administrator or a teacher is a faculty member. A faculty or staff member is an employee. An employee, student or alum is a community member.

Long description
The diagram proceeds as follows, from the bottom to the top. On the left, circle, square, or triangle are two dimensional shapes, which are a shape. On the right, a sphere, cube, and tetrahedron are three dimensional shapes, which are a shape.

Long description
A graph depicts the temperature recorded on specific dates. A sloping line depicts the rise in temperature from about 36.5 degrees in 1900 to about 42 degrees in 2000. Points are plotted above and below the sloping line, connected by vertical lines to the sloping line. For example, point (1960, 37) is plotted above the line and connected to it by a vertical line.

Long description
The sample evaluations of 5 are as follows. Example A, a sequence of recursive calls, as follows from top to bottom. 5 exclamation point, to 5 asterisk 4 exclamation point, to 4 asterisk 3 exclamation point, to 3 asterisk 2 exclamation point, to 2 asterisk 1 exclamation point, to 1. Example B contains values returned from each recursive call as follows from bottom to top. 1, from 1 at the end of sample A, 1 returned, to 2 asterisk 1 exclamation point, 2 exclamation point = 2 asterisk 1 = 2 is returned, to 3 asterisk 2 exclamation point, 3 exclamation point = 3 asterisk 2 = 6 is returned, to 4 asterisk 3 exclamation point, 4 exclamation point = 4 asterisk 6 = 24 is returned, to 5 asterisk 4 exclamation point, 5 exclamation point = 5 asterisk 24 = 120 is returned, to 5 exclamation point, final value = 120.

Long description
The diagram of the calls to function Fibonacci proceeds as follows, from the top down, in a pyramid shape. Fibonacci 3 to return of Fibonacci 2 and Fibonacci 1. Fibonacci 2 to return of Fibonacci 1 and Fibonacci 0. Fibonacci 1 to return 1. Return Fibonacci 1 plus Fibonacci 0, Fibonacci 1 to return 1, and Fibonacci 0 to return 0.

Long description
The table lists the chapter, algorithms, and locations, as follows. Searching algorithms, functions and methods. Chapter 5, list method index, section 5.9. Chapter 8, string methods count, index and rindex, Section 8.7. Chapter 8, Linear search, Section 11.7. Chapter 15, binary search, Section 11.9. Chapter 15, recursive binary search, exercise 11.18. Sorting algorithms, functions and methods. Chapter 5, list method sort, section 5.8. Chapter 5, built in function, sorted. Chapter 5, built in function sorted with a key, exercise 5.15. Chapter 7, data frame methods sort underscore index and sort values, section 7.14. Chapter 15, selection sort, section 11.11. Chapter 15, insertion sort, Section 11.12. Chapter 15, recursive merge sort, section 11.13. Chapter 15, bucket sort, exercise 11.17. Chapter 15, recursive quicksort, exercise 11.19.

Long description
The table lists the searching and sorting algorithms followed by their location and the big O. Searching algorithms. Linear search, section 11.7, O left parenthesis n right parenthesis. Binary search, section 11.9, O left parenthesis log n right parenthesis. Recursive binary search, exercise 11.18, O left parenthesis log n right parenthesis. Sorting algorithms. Selection sort, section 11.11, O left parenthesis n squared right parenthesis. Insertion sort, section 11.12, O left parenthesis n squared right parenthesis. Merge sort, section 11.13, O left parenthesis n log n right parenthesis.

Long description
The table lists the n equals values, followed by the O log n, O n, O n log n, and O n squared. The rows read as follows. Row 1, n = 1, O log n = 0, O n = 1, O n log n = 0, O n squared = 1. Row 2, n = 2, O log n = 1, O n = 2, O n log n = 2, O n squared = 4. Row 3, n = 3, O log n = 1, O n = 3, O n log n = 3, O n squared = 9. Row 4, n = 4, O log n = 1, O n = 4, O n log n = 4, O n squared = 16. Row 5, n = 5, O log n = 1, O n = 5, O n log n = 5, O n squared = 25. Row 6, n = 10, O log n = 1, O n = 10, O n log n = 10, O n squared = 100. Row 7, n = 100, O log n = 2, O n = 100, O n log n = 200, O n squared = 10,000. Row 8, n = 1000, O log n = 3, O n = 1000, O n log n = 3000, O n squared = 10 to the sixth power. Row 9, n = 1,000,000, O log n = 6, O n = 1,000,000, O n log n = 6,000,000, O n squared = 10 to the twelfth power. Row 10, n = 1,000,000,000, O log n = 9, O n = 1,000,000,000, O n log n = 9,000,000,000, O n squared = 10 to the eighteenth power.

Long description
The bar graph depicts the number of occurrences for several specific words used in the play, Romeo and Juliet. Words include Romeo, friar, good, and night. Each word is represented by a differently colored bar, and the words are arranged along the horizontal axis from most to least prevalent.

Long description
The table describes the attributes as follows. Created underscore at: The creation date and time in U T C, or Coordinated Universal Time, format. Entities: Twitter extracts hash tags, u r l’s, user underscore mentions, that is, at symbol user name mentions, media such as images and videos, symbols and polls from tweets and places them into the entities dictionary as lists that you can access with these keys. Extended underscore tweet: For tweets over 140 characters, contains details such as the tweet’s full underscore text and entities. Favorite underscore count: Number of times other users favorite the tweet. Coordinates: The coordinates, latitude and longitude, from which the tweet was sent. This is often null, or none in Python, because many users disable sending location data. Place: Users can associate a place with a tweet. If they do, this will be a place object, such as h t t p s colon back slash back slash developer dot twitter dot com back slash en back slash docs back slash tweets back slash data-dictionary back slash overview back slash geo-objects hash tag place-dictionary, otherwise, it’ll be null, or None in Python. I D: The integer I D of the tweet. Twitter recommends using I d underscore s t r for portability. I D underscore S T R: The string representation of the tweet’s integer I D. Lang: Language of the tweet, such as e n for English or f r for French. Retweet underscore count: Number of times other users retweeted the tweet. Text: The text of the tweet. If the tweet uses the new 280-character limit and contains more than 140 characters, this property will be truncated and the truncated property will be set to true. This might also occur if a 140-character tweet was retweeted and became more than 140 characters as a result. User: The User object representing the user that posted the tweet. For the User object J SON properties, see: h t t p s colon back slash back slash developer dot twitter dot com back slash en back slash docs back slash tweets back slash data dictionary back slash overview back slash user-object.

Long description
The Twitter search operators and the tweets they help find are as follows. Python Twitter: Implicit logical and operator, finds tweets containing python and Twitter. Python or Twitter: Logical or operator, finds tweets containing python or twitter or both. Python question mark: Question mark, finds tweets asking questions about python. Planets minus sign mars: minus sign, finds tweets containing planets but not mars. Python colon right parenthesis: happy face emoticon, finds positive sentiment tweets containing python. Python colon left parenthesis: sad face emoticon, finds negative sentiment tweets containing python. Since colon 2018 dash 0 9 dash 0 1: finds tweets on or after the specified date which must be in the form Y Y Y Y dash M M dash D D. Near colon quotation marks New York City quotation marks: finds tweets that were sent near New York City. From colon Nasa: finds tweets from the account at Nasa. To colon Nasa: finds tweets to the account at Nasa.

Long description
The places and their corresponding W O E I D’s are listed as follows. Statue of Liberty, 2 3 6 1 7 0 5 0. Los Angeles, California, 2 4 4 2 0 4 7. Washington D C, 2 5 1 4 8 1 5. Paris, France, 6 1 5 7 0 2. Iguazu Falls, 4 6 8 7 8 5. United States, 2 3 4 2 4 9 7 7. North America, 2 4 8 6 5 6 7 2. Europe, 2 4 8 6 5 6 7 5.

Long description
The options and their corresponding option constants are as follows. At mentions, such as at Nasa: opt dot mention. Emoji: opt dot emoji. Hash tag such as hash tag mars: opt dot hash tag. Number: opt dot number. Reserved words, such as R T and F A V: opt dot reserved. Smiley: opt dot smiley. U R L: opt dot U R L.

Long description
The table lists the methods as follows. On underscore connect left parenthesis self-right parenthesis: Called when you successfully connect to the Twitter stream. This is for statements that should execute only if your app is connected to the stream. On underscore status left parenthesis self-coma status right parenthesis: Called when a tweet arrives, status is an object of Teepee’s Status. On underscore limit left parenthesis self-comma track right parenthesis: Called when a limit notice arrives. This occurs if your search matches more tweets than Twitter can deliver based on its current streaming rate limits. In this case, the limit notice contains the number of matching tweets that could not be delivered. On underscore error left parenthesis self-comma status underscore code right parenthesis: Called in response to error codes sent by Twitter. On underscore timeout left parenthesis self right parenthesis: Called if the connection times out, that is, the Twitter server is not responding. On underscore warning left parenthesis self comma notice right parenthesis: Called if Twitter sends a disconnect warning to indicate that the connection might be closed. For example, Twitter maintains a queue of the tweets it’s pushing to your app. If the app does not read the tweets fast enough, on underscore warning’s notice argument will contain a warning message indicating that the connection will terminate if the queue becomes full.

Long description
The J son is positioned over two concentric blue rectangles with a horizontal blue box at the center, and begins with a left brace. Lines are indented gradually toward Line 85, and then return gradually to the original margin by the J Son’s end. Line 70, in the top side of the outer rectangle, quotation marks results quotation marks left bracket. Line 73, between the rectangles, left brace. Line 78, in the top side of the inner rectangle, quotation marks alternatives quotation marks colon left bracket. Line 81, between the inner rectangle and the horizontal box, left brace. Above the horizontal box, quotation marks confidence quotation marks colon 0.983 comma. Line 85, within the horizontal box, quotation marks transcript quotation marks colon quotation marks where is the closest bathroom quotation marks. Below the horizontal box, right brace. Bottom side of the inner rectangle, right bracket comma. Below the bottom side of the inner rectangle, quotation marks final quotation marks colon true. Above the bottom side of the outer rectangle, right brace. Bottom side of the outer rectangle, right bracket comma. Below the bottom side of the outer rectangle, quotation marks result underscore index quotation marks colon 0. Below the rectangles, right brace.

Long description
The sample J Son is positioned over a rectangle with a larger bottom side and a narrow horizontal box just above center. It reads as follows. Above the rectangle, left brace. The lines gradually indent toward the center and line 109, and then gradually return to the original margin by the end. Line 103, in the top side of the rectangle, quotation marks translations quotation marks colon left bracket. Line 106, above horizontal box, left brace. Line 109, within the horizontal box, quotation marks translation quotation marks colon quotation marks upside down question mark donde esta el bano mas cercano question mark quotation marks. Below the horizontal box, right brace. Top of the bottom side of the rectangle right bracket coma. Middle of the bottom side of the rectangle, quotation marks word underscore count quotation marks colon 5 comma. Bottom of the bottom side of the rectangle, quotation marks character underscore count quotation marks colon 30. Below the rectangle, right brace.

Long description
Toy datasets: Boston house prices, iris plants, diabetes, optical recognition of handwritten digits, linnerrud, wine recognition, breast cancer Wisconsin diagnostic. Real world datasets: Olivetti faces, 20 newsgroups text, labelled faces in the Wild face recognition, forest cover types, R C V I, K D D cup 99, California Housing.

Long description
The graph depicts the nearest neighbors algorithm. The blue class is comprised of 5 dots plotted in the top left of the quadrant. The green class is comprised of 8 dots plotted around sample Y in the top right of the quadrant. The red class is comprised of 5 red dots plotted just below and to the right of the Z sample, in the bottom right of the quadrant. The purple class is comprised of 7 purple dots plotted around the X sample in the bottom left of the quadrant.

Long description
The matrix is comprised of 10 rows of 10 spaces. The rows are numbered 0 through 9 from the top to the bottom, and the columns of spaces are numbered from 0 to 9 from left to right. The principal diagonal begins with a dark blue square for 45 and extends to the bottom right as follows: dark blue 45, black 54, dark blue 42, purple 49, light blue 38, dark blue 42, dark blue 45, light blue 39, light blue 41. Incorrect predictions are marked as follows, by column and row: pink 1 at 1 8, pink 1 at 2 8, red 2 at 3 8, pink 1 at 4 9, pink 1 at 5 3, pink 1 at 7 3, pink 1 at 7 4, pink 1 at 8 9, and pink 1 at 9 8. A scale at right depicts the values of each color.

Long description
The median income graph compares median income with median house value. The scatter plots are arranged in an array from the bottom left to the top middle of the quadrant. The plotted points are the most dense at the bottom left of the quadrant. The median house age graph compares house age with the median house value. The plotted points are arranged in clear rows perpendicular to the horizontal axis.

Long description
The top graph compares average rooms to the median house value. The plotted points are arranged in a vertical swath on the left side of the quadrant. The middle graph compares average bedrooms with median house value. The plotted points are arranged in a narrow, vertical swath on the left side of the quadrant. The bottom graph compares population to the median house value. The plotted points are arranged in a vertical swath on the left side of the quadrant.

Long description
The top graph compares the average occupants with median house value. The plotted points are arranged in a wide, vertical swath on the left of the quadrant. The middle graph compares latitude with median house value. The plotted points are arranged in loose, vertical swaths in the left and middle of the quadrant with some points scattered along the length of the horizontal axis near the bottom of the quadrant. The bottom graph compares longitude with median house value. The plotted points are arranged in loose, vertical swaths in the left and middle of the quadrant with some points scattered along the length of the horizontal axis near the bottom of the quadrant.

Long description
The points are arranged in a diagonal swath from the bottom left to the top right of the quadrant. A diagonal dashed line extends through the points from the bottom left to top right of the quadrant.

Long description
The graph has a vertical axis labelled from negative 60 to 60, and a horizontal axis extending from negative 40 to 60. Clusters of points are plotted throughout the quadrant.

Long description
Colored points represent setosa in blue, versicolor in pink, and virginica in green. The horizontal axis represents component 1 and ranges from negative 3 to positive 4. The vertical axis represents component 2 and ranges from negative 1 to positive 1.5. The blue points are clustered at the left of the quadrant, the pink points are clustered near the center of the quadrant, and the green points are clustered in the right of the quadrant. 1 larger black dot is placed within each cluster.

Long description
The fully connected network has a vertical, hidden layer of 4 neurons at the center. On the right is a vertical input layer of 2 neurons, each connected by synapse to each of the neurons of the hidden layer. On the right is a vertical output layer of 3 neurons, each connected by synapse to each of the neurons of the hidden layer.

Long description
A vertical arrangement of 3 inputs is at the left of the diagram. Each input is connected by W 1, W 2, and W 3 to the neuron at the center of the diagram, which is connected to a single output at right.

Long description
On the left is a 6 by 6 grid before convolution. The kernel is a 3 by 3 grid in the top left of the 6 by 6 grid. On the left is a 4 by 4 grid after convolution containing the output from the convolutional layer. The number 1 represents the kernel in the top left space of the 4 by 4.

Long description
On the left is a 6 by 6 grid before convolution. The kernel is a 3 by 3 grid beginning in the second column of the 6 by 6 grid. On the left is a 4 by 4 grid after convolution containing the output from the convolutional layer. The number 2 represents the kernel in the second space from the left in the top box of the 4 by 4 grid.

Long description
On the left is a 6 by 6 grid before 2 by 2 max pooling. On the right is a 3 by 3 grid after 2 by 2 max pooling. The pool of 2 over 2 spaces from the top left of the 6 by 6 grid are represented by the number 9 in the top left space of the 3 by 3 grid. The pool of 2 over 2 spaces beginning in the second column of the 6 by 6 grid is represented by the number 7 in the top center space of the 3 by 3 grid.

Long description
The sample summary reads as follows. Heading: left bracket 34 right bracket colon c n n dot summary left and right parenthesis. The summary has columns for the layer or type, output shape, and parameter number. For example, layer: con v d underscore 1 left parenthesis con v 2 D right parenthesis; output shape: left parenthesis none, 26, 26, 64 right parenthesis; parameter number: 640. The summary at the bottom reads as follows. Total parameters: 485,514. Trainable parameters: 485, 514. Non-trainable parameters: 0.

Long description
The layers of the model proceed as follows. Layer 1: 1 1 2 4 3 0 0 5 7 9 6 0. Layer 2, con v 2 d underscore 1 colon con v 2 d, input: left parenthesis none, 28, 28, 1 right parenthesis, output: left parenthesis none 26, 26, 64 right parentheses. Layer 3, max underscore pooling 2 d underscore 1 colon max pooling 2 d, input: left parenthesis none, 26, 26, 64 right parenthesis, output: left parenthesis none, 13, 13, 64 right parenthesis. Layer 4, con v 2 d underscore 2 colon con v 2 d, input: left parenthesis none, 13, 13, 64 right parenthesis, output: left parenthesis none 11, 11, 128 right parenthesis. Layer 5, max underscore pooling 2 d underscore 2 colon max pooling 2 d, input: left parenthesis none, 11, 11, 128 right parenthesis, output: left parenthesis none, 3200 right parenthesis. Layer 6, flatten underscore 1 colon flatten, input: left parenthesis none, 3200 right parenthesis, output: left parenthesis none, 128 right parenthesis. Layer 7, dense underscore 1 colon dense, input: left parenthesis none, 3200 right parenthesis, output: left parenthesis none, 128 right parenthesis. Layer 8, dense underscore 2 colon dense, input: left parenthesis none, 128 right parenthesis, output: left parenthesis none, 10 right parenthesis.

Long description
In a screen shot of a tensor board, the scalaris tab is selected from the options offered across the top of the page. The check box for, ignore outliers in chart scaling is selected. The tool tip sorting method is set at default. Smoothing is set at 0. The horizontal axis selected as step. Runs is selected as m n I s t 1 5 4 7 0 6 4 7 0 0 point 4 9 3 0 0 1. 4 line graphs are arranged 2 over 2 at right. The graphs are labelled a c c, loss, val underscore a c c and val underscore loss.

Long description
The summary of the model reads as follows. Heading, left bracket 33 right bracket colon r n n dot summary left and right parenthesis. The summary has three columns labelled from left to right as layer or type, output shape, and parameter number. For example, the first row reads as follows. Layer or type: embedding underscore 1 left parenthesis embedding right parenthesis. Output shape left parenthesis none, 200, 128 right parenthesis. Parameter number: 1280000. The summary below reads: total parameters: 1,411,713, trainable parameters: 1,411,713, non-trainable parameters: 0.

Long description
The illustration at right shows the pole inserted into a base and set on the track. The pole is leaning slightly left. The illustration in the middle depicts the same set up, but the pole is perpendicular to the bas, standing up right. In the illustration at right, the pole is leaning slightly to the right.

Long description
The table has 5 vertical columns from left to right for number, name, department, salary and location. The number column is the primary key. There are 6 rows in the table. The third row from the top reads as follows. Number: 34589, name: Larson, department: 642, salary: 1800, location: Los Angeles.

Long description
The table has 2 columns; department and location. The rows read as follows. Row 1, department: 413, location: New Jersey. Row 2, department: 611, location: Orlando. Row 3, department: 642, location: Los Angeles.

Long description
The diagram is comprised of 3 boxes, arranged from left to right. The first box has 4 terms from top to bottom: authors in bold text, I d in italicized text, first and last. The second box has 3 terms from top to bottom: author underscore I S B N in bold text, I d in italicized text, and I S B N in italicized text. The third box has 5 terms from top to bottom: titles in bold text, I S B N in italicized text, title, edition, and copyright. Box 1 is connected to box 2 with a line marked with a 1 next to box 1, and an infinity symbol beside box 2. Box 2 is connected to box 3 by a stepped line marked with an infinity symbol beside box 2 and a 1 beside box 3.

Long description
The table displays the keywords and descriptions as follows. Select: retrieves data from one or more tables. From: tables involved in the query. Required in every select.
The table displays the keywords and descriptions as follows. Where: Criteria for selection that determine the rows to be retrieved, deleted or updated. Optional in a S Q L statement. Group by: Criteria for grouping rows. Optional in a select query. Order by: Criteria for ordering rows. Optional in a select query. Inner join: Merge rows from multiple tables. Insert: Insert rows into a specified table. Update: Update rows in a specified table. Delete: Delete rows from a specified table.

Long description
The bar plot displays hash tags on the horizontal axis and the total number of tweets for each on the vertical axis. The hash tags are each represented by a bar in a different shade of blue or purple, and arranged from most to least tweets from left to right. Two hash tags are grayed out.

Long description
Each visualization includes a semi-circular gauge and exact temperature reading in Celsius below the curve of the gauge. The Fahrenheit conversion is also provided, and a line tracks temperature changes over time. 2 indicator light widgets are provided for a freeze and high temperature warning.

OEBPS/Images/ch16unfig56.png
TensorBoard SCALARS IMAGES GRAPHS DISTRIGUTIONS HISTOGRAMS wevE - C & O

[0 Show data download links Qmaist
Ignore outlers inchrt scolng

g5 matching st o
TSNS gofaur
method: ™ toss
Smootning o
. o om0

oms o0
Hoonal A oms o0t
Rons
Wit egextoierne s aoss
© mnist1547064700.493001 - oo

o oo

oo
aser
o oo
oo zom amo e eom o0 20 4am a0 s
TOGGLE ALL RUNS c=EQ o=@

OEBPS/Images/ch12unfig50.png
NLTK's English stop words list

['a', 'about', 'above', 'after', 'again', 'against', 'ain', 'all’, 'am’, 'an', 'and',
‘any', ! ‘aren', "aren't", 'as', 'at', 'be', 'because', 'been', 'before', 'being',
‘below', 'between', 'both', 'but', 'by', ‘can', 'couldn', "couldn't", 'd', 'did', 'didn’,
“didn't", 'do’', 'does', 'doesn’, "doesn't", 'doing', 'don', "don't", 'down', 'during',
‘each', 'few', 'for', 'from', 'further', 'had', 'hadn', "hadn't", 'has', ‘hasn', "hasn't",
‘have', 'haven', "haven't", 'having', 'he', 'her', 'here', 'hers', 'herself', 'him', 'him-
self', 'his', 'how', 'i', 'if', 'in', 'into', 'is', 'isn', "isn't", 'it', “it's", 'its',
'itself', 'just', '11', 'm', 'ma’, 'me', 'mightn', "mightn't", 'more', 'most', 'mustn',
"mustn't", 'my’, 'myself', 'needn', "needn't", 'no', 'mor', 'not', 'now', 'o', 'of', 'off',
‘on', 'once', 'only', 'or', 'other', 'our', 'ours', 'ourselves', ‘out', 'over', ‘own',
‘re', 's', 'same', 'shan', "shan't", 'she', "she's", 'should', "should've", 'shouldn',
“"shouldn't", 'so', 'some', 'such', 't', 'than', 'that', "that'11", 'the', 'their’,
‘theirs', 'them', 'themselves', 'then', 'there', 'these', 'they', 'this', 'those',
"through', 'to', 'too’, 'under', 'until', 'up', 've', 'very', 'was', 'wasn', "wasn't",
'we', 'were', 'weren', "weren't", 'what', 'when', 'where', 'which', 'while', 'who', 'whom',
‘why', 'will', 'with', 'won', "won't", 'wouldn', "wouldn't", 'y', 'you', "you'd", "you'l1",
"you're", "you've", 'your', 'yours', 'yourself', 'yourselves']

are',

OEBPS/Images/ch16unfig47.png
index: 18
p:8e3

index: 625

pidieb

index: 1062
p:9;e:3

3

index: 1393

p:3es

index: 340
13, e 5
mdex 559

1

mdex 1152

§

index: 1414
pi4;e:9

9

index: 460
. 5

-

index: 720
p:8es

9

index: 1226
p2ed

P!

index: 1522

ey
p:0

index: 924
p:Te2

q

Index: 1530

index: 583
p:7e2

4

index: 947
p:9es

q

index: 1260
plie7

]

index: 1611
p:8e3

S

index: 619
p:g el

%

index: 1014
p:5ie:6

&’

index: 1319
p:0;e:8

©

index: 1621
p: 6;e: 0

O

OEBPS/Images/ch10unfig167.png

OEBPS/Images/ch10unfig166.png

OEBPS/Images/ch10unfig162.png
s

OEBPS/Images/ch12unfig79.png

OEBPS/Images/ch05unfig130.png
Column 0 Column 1 Column 2 Column 3

Row 0 77 68 86 73

Row | 96 87 89 81

Row 2 70 90 86 81

OEBPS/Images/ch05unfig131.png
Row 0

Row |

Row 2

Column 0
a[0][0]
a[1][0]
a[2][0]

Column | Column 2
afojr1] a[0][2]
a[1][1] a[1][2]
af2][1] a[2][2]
Column index

Row index
list name

Column 3
a[0][3]
a[1][3]
a[21[3]

OEBPS/Images/ch12unfig75.png

OEBPS/Images/ch10unfig154.png
femperature

as

a0

30

1900

1920

1940

1960
Date

1980

2000

2020

OEBPS/Images/ch10unfig157.png
lemperature

n

60

20

10

1900

1920

1940

1960
Date

1980

2000

2020

OEBPS/Images/ch12unfig68.png
Figure 1

300

250

200

150

100

50

Wb

o6

FoTy
Aeaky
olonuaq
pood
2ousime|

onnosaw

B0

1Inde>
An
unf
oy

oawios

(]
+
+
v
%

OEBPS/Images/ch05unfig147.png

OEBPS/Images/ch05unfig141.png
Rnllmg a Six-Sided Die 600 Times

15607

%

16.500%

I i Mm%
3 5

Dio Valve

AT
| I

Frequency

OEBPS/Images/ch05unfig142.png
10000

a0

600

Froquency

a0
200
3

Rolling a Six-Sided Die 60,000 Times

9982 906
16637% 16:493%

1 2

1013 10085 9o 10018
16883% 16742% 15400 16.697%

3 g s g

Dlevaie.

Fraauaney

1,000,061
i5.668%

Rolling a Six-Sided Die 6,000,000 Times

1.000.444
i6675%

900753
16663%

999703
16662%

Ole Vae.

90115
16652%

1000000
%0000
00000
400000
200000
o 2 B g 5 g

1000924
66825

OEBPS/Images/ch10unfig143.png
lemperature

44

a2

40

38

36

34

1900

1920

1940

1960
Date

1980

2000

OEBPS/Images/ch10unfig142.png
Celsius

40

30

20

10

-10

-20

—— Celsius

20

40

60
Fahrenheit

80

100

OEBPS/Images/ch05unfig149.png
Roliing a Six-Sided Die 600 Times.

100
®
&
“
»
o 2 3 g s

Dlevae.

Froquency

OEBPS/Images/ch16unfig13.png
{

0 & 5§ & 7

¢ ¢ b & &

3 6 O 9 2

g

OEBPS/Images/ch09unfig80.png

OEBPS/Images/ch09unfig81.png

OEBPS/Images/ch04unfig81.png
imal Move typ: Percentage of e Actual move

Tortoise Fast plod 50% 3 squares to the right
Slip 20% 6 squares to the lefc
Slow plod 30% 1 square to the right
Hare Sleep 20% No move at all
Big hop 20% 9 squares o the right
Big slip 10% 12 squares to the left
Small hop 30% 1 square to the right

Smallslip 20% 2 squares to the left

OEBPS/Images/ch15unfig79.png
~ w IS

MedHouseValue

-

0 10 20 30 40 50 60
AveRooms

MedHouseValue
~

6 8 10 12 14
AveBedrms

IS

w

~

MedHouseValue

0 2000 4000 6000 8000 10000 12000 14000 16000
Population

OEBPS/Images/ch13unfig38.png
Place

Statue of Liberty
Los Angeles, CA

Washington, D.C.

Paris, France

23617050
2442047
2514815
615702

Iguazu Falls
United States
North America

Europe

468785

23424977
24865672
24865675

OEBPS/Images/ch16unfig33.png
L34]: cnn.summary()

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 26, 26, 64) 640

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 64) 0
conv2d_2 (Conv2D) (None, 11, 11, 128) 73856
max_pooling2d_2 (MaxPooling2 (None, 5, 5, 128) 0
flatten_1 (Flatten) (None, 3200) 0
dense_1 (Dense) (None, 128) 409728

dense_2 (Dense) (None, 10) 1290

Total params: 485,514
Trainable params: 485,514
Non-trainable params: 0

OEBPS/Images/ch16unfig35.png
112430057960

input: [(None, 28,28, 1)
output: | (None, 26,26, 64)

conv2d_I: Conv2D

input: | (None, 26,26, 64)

max_pooling2d_I: MaxPooling2D

output: | (None. 13, 13.64)

input: | (None, I3, 13.64)

conv2d_2: Conv2D
com2d.2: Con2 output: | (None, 11, 11, 128)

i i input: | (None, 11, 11,128)
‘max_pooling2d_2: MaxPool

output: | (None, 5. 5. 128)

input:_| (None. 5.5, 128)
output: | (None, 3200)

flaten_1: Flatten

input:_| (None, 3200)
ouput: | (None, 128)

input:_| (None, 128)
output: | (None. 10)

dense_2: Dense

OEBPS/Images/ch15unfig78.png
aN|eASSNOHP3W

aN|eASSNOHP3W

HouseAge

OEBPS/Images/ch13unfig32.png
Example nds tweets containing

python twitter Implicit logical and operator—Finds tweets containing python and twitter.

python OR twitter Logical 0R operator—Finds tweets containing python or twitter or both.

python ? 2 (question mark)—Finds tweets asking questions about python.

planets -mars - (minus sign)—Finds tweets containing planets but not mars.

python :) :) (happy face)—Finds positive sentiment tweets containing python.

python : (: ((sad face)—Finds negative sentiment tweets containing python.

since:2018-09-01 Finds tweets o or affer the specified date, which must be in the form
YYYY-MM-DD.

near:"New York City" Finds tweets that were sent near "New York City".

from:nasa Finds tweets from the account @nasa.

to:nasa Finds tweets to the account @nasa.

OEBPS/Images/ch15unfig80.png
o ~
BNn|eA3SNOHPaN

-

10 12 14

8

AveOccup

<«

= ~
aN|eASSNOHP3W

42

<

o ~
aN[eA3SNOHP3W

-

-120 -118 -116
Longitude

-122

-124

OEBPS/Images/ch02unfig8.png
Python Arithmetic Algebraic Python

operation operator expression expression
Addition + f+7 f+7
Subtraction - p-c p-c
Multiplication & b-m b *m
Exponentiation o3 X7 AR
True division / x/y or ; orx+y x/y
Fleor dfion /7 el oz B‘J orlxsyl x /7y

Remainder (modulo) % rmod s r%s

OEBPS/Images/ch08unfig111.png

OEBPS/Images/self.png

OEBPS/Images/ch16unfig25.png
Input to the convolutional layer QOutput from the convolutional layer
—a
—3
2
| ——

Kernel . 34

4-by-4 after convolution

6-by-6 before convolution

OEBPS/Images/ch13unfig48.png
#WednesdayW1sdom Jordan Eadwards

esdayThoughts

nPumpkmSm(eLane

Ron DeSan #earthqqakgm _—
S Emmett Tl}f K>|<_:.

o_g I Have a reamLebor DeY_F}

I D 3
#»Nauona Bowtle;ay Matt Smith Marthx M(Sally

#HappyBlrthdayLlam

'#BachelorInParadise « Times Square

OEBPS/Images/ch16unfig27.png
Input to the pooling layer Output from the pooling layer
3

ool
9
2 3
8
1 7
7
4 9 7 3 2 4
3-by-3 after 2-by-2 max pooling is applied
5 3 I 6 3 7

6-by-6 before 2-by-2 max pooling is applied

OEBPS/Images/ch16unfig24.png
Input to the convolutional layer QOutput from the convolutional layer

—
—3
—2
e
Kernel .2 34
5 6 7 8
9 0 1 12
13 14 15 16

4-by-4 after convolution

6-by-6 before convolution

OEBPS/Images/ch15unfig90.png
Predicted

«

IS

w

4
Expected

OEBPS/Images/ch13unfig56.png
Description

on_connect(self)

on_status(self, status)

on_limit(self, track)

on_error(self, status_code)
on_timeout(self)

on_warning(self, notice)

Called when you successfully connect to the Twitter stream.
This is for statements that should execute only if your app is
connected to the stream.

Called when a tweet arrives—status is an object of Tweepy's
Status.

Called when a limit notice arrives. This occurs if your search
matches more tweets than Twitter can deliver based on its cur-
rent streaming rate limits. In this case, the limit notice contains
the number of matching tweets that could not be delivered.
Called in response to error codes sent by Twitter.

Called if the connection times out—that is, the Twitter server is
not responding.

Called if Twitter sends a disconnect warning to indicate that the
connection might be closed. For example, Twitter maintains a
queue of the tweets it's pushing to your app. If the app does not
read the tweets fast enough, on_warning’s notice argument will
contain a warning message indicating that the connection will
terminate if the queue becomes full.

OEBPS/Images/ch13unfig50.png
h Alrways
[ra

Burt Reynoldsﬁ

3*

#ThursdayThoughts
Cory, Booker ¢

Melania Trump

Jair Bolsonaro

ReadABookDay

OEBPS/Images/ch17unfig3.png
Primary key

Name

Jones
Kerwin

Neumann
Stephens,

Department

Column

Location

New Jersey
New Jersey

Orlando
New Jersey
Orlando

OEBPS/Images/ch13unfig52.png
Opti Option consta

@-Mentions (e.g., @nasa) OPT.MENTTON
Emoji OPT.EMOIT
Hashtag (e.g., #mars) OPT.HASHTAG
Number OPT.NUMBER
Reserved Words (RT and FAV) ~ OPT.RESERVED
Smiley OPT. SMILEY

URL OPT.URL

OEBPS/Images/ch17unfig4.png
Department Location

413 New Jersey
611 orlando
642 Los Angeles

OEBPS/Images/ch11unfig5.png
Final value = 120

S1=5*24=120is returned

41=4*6=24is returned

j
=
E

21=2* 1 =2is returned

1 returned

(2) Sequence of recursive calls (b) Values returned from each recursive call

OEBPS/Images/ch04unfig27.png
Fun

Example

ceil () Rounds x to the smallest integer not less than ¥ cei1(9.2) is 10.0
ceil(-9.8) is -9.0
floor (x) Rounds x to the largest integer not greater than ¥~ floor(9.2) is 9.0
floor(-9.8) is -10.0
sin(x) ‘Trigonometric sine of x (x in radians) 5in(0.0) is 0.0
cos(x) Trigonometric cosine of x (v in radians) €0s(0.0) is 1.0
tan(x) Trigonometric tangent of x (x in radians) tan(0.0) is 0.0
exp(x) Exponential function ¢* exp(1.0) is 2.718282
exp(2.0) is 7.389056
Tog () Natural logarithm of x (base ¢) 10g(2.718282) is 1.0
10g(7.389056) is 2.0
10g10(x) Logarithm of x (base 10) 10910(10.0) is 1.0
10910(100.0) is 2.0
pow(x, 3) x raised to power y (x) pow(2.0, 7.0) is 128.0
pow(9.0, .5) is 3.0
sqrt(x) square root of x 5qrt(900.0) is 30.0
sqrt(9.0) is 3.0
fabs (x) Absolute value of x—always returns a float. fabs(5.1) is 5.1

Python also has the built-in function abs, which
returns an int or a float, based on its argument.

fabs(-5.1) is 5.1

frod(x, 7)

Remainder of x/y as a floating-point number

fmod(9.8, 4.0) is1.8

OEBPS/Images/ch15unfig63.png
lemperature

70

60

50

40

30

20

10

1900

1920

1940

1960
Date

1980

2000

2020

OEBPS/Images/ch04unfig56.png
Variable Object
x

OEBPS/Images/ch03unfig98.png
expression| expression2 expression| Or expression2

False False False
False True True
True False True

True True True

OEBPS/Images/ch03unfig96.png
expression | expression2 expression! and expression2

False False False
False True False
True False False

True True True

OEBPS/Images/ch16unfig5.png
Input layer Hiaden layer Output layer

o

Neuron

OEBPS/Images/ch16unfig6.png
inputs Neuron Qutput

OEBPS/Images/ch08unfig62.png
isalnum()

isalpha()
isdecimal)

isdigit(O)
isidentifier()
isTower()

isnumericO

isspace()
istitleO)

isupper()

Returns True if the string contains only alphanumeric characters (i.c., dig-
its and letcers).

Returns True if the string contains only alphabetic characters (i.c., letters).

Returns True if the string contains only decimal integer characters (that is,
base 10 integers) and does not contain a + or - sign.
.

Returns True if the string contains only digits (e.g
Returns True if the string represents a valid identifier.

Returns True if all alphabetic characters in the string are lowercase charac-
ters (e.g., 'a’, b, 'c').

Returns True if the characters in the string represent a numeric value
without a + or - sign and without a decimal point.

Returns True if the string contains only whitespace characters.

Returns True if the first character of each word in the string is the only
uppercase character in the word.

Returns True if all alphabetic characters in the string are uppercase charac-
ters (e.g, 'A", 'B', 'C').

OEBPS/Images/ch13unfig88.png
Map data © OpenStreetMap contributors.
The data is available under the Open Database License www. openstreetmap.org/copyright.

OEBPS/Images/ch05unfig6.png
Element names
with positive indices —— €101 <[] cl2] <31 <]
Element names

c[-5] c[-4] c[-3] c[-2] c[-1] Hwithnegativemdxcies

OEBPS/Images/ch15unfig40.png

OEBPS/Images/ch05unfig3.png
Position number (2) of this
element within the sequence

Names of the

ist's elements ———>€[0] c[1] c[2] c[3] c[4]

Values of the
list's elements

OEBPS/Images/ch15unfig18.png
05
05
0.0

10 10 10 10

20

OEBPS/Images/ch15unfig13.png

OEBPS/Images/ch15unfig16.png
- o
S e
1
o o -
- Y7
1 - i B

OEBPS/Images/ch03unfig88.png
field width 2
Pty

eading space —{ |1

OEBPS/Images/ch15unfig8.png
6 /7 ¢ 9 10 11 12 13 14 15 16

OEBPS/Images/ch08unfig67.png
Regular expression metacharacters

o4 o N+ a2 . |

OEBPS/Images/ch15unfig21.png

OEBPS/Images/ch08unfig69.png
haracter class Matches

\d Any digit (0-9).

) Any character that is 70¢ a digic.

\s Any whitespace character (such as spaces, tabs and newlines).

\s Any character that is 70¢ a whitespace character.

\w Any word character (also called an alphanumeric character)—that is,

any uppercase or lowercase letter, any digit or an underscore
W Any character that is #0¢ a word character.

OEBPS/Images/ch07unfig128.png
Number of values List average execution time array average execution ti
1 1.56 ps +25.2 ns 1.89 ps + 24.4 ns

10 11.6 ps 59.6 ns. 1.96 ps + 27.6 ns.

100 109 ps + 1.61 ps 3ps+ 147 ns

1000 1.09 ms £ 8.59 ps 123 ps £ 419 ns

10,000 11.1 ms £ 210 ps 102 ps + 669 ns.

100,000 111 ms + 1.77 ms 1.02 ms + 32.9 ps

1,000,000 1.1s + 8.47 ms 10.1 ms + 250 ps.

OEBPS/Images/ch03unfig90.png
field width 10
=R
[["]2]o]s[ol.[o]o]

L =
eading spaces two digits to right
decimal point of decimal point

OEBPS/Images/ch15unfig5.png
y-axis

X-axXis

OEBPS/Images/ch15unfig2.png
"Toy" datasets Real-world datasets

Boston house prices Olivet faces

Iris plants 20 newsgroups text

Diabetes Labeled Faces in the Wild face recognition
Oprical recognition of handwritten digits ~ Forest cover types

Linnerrud RCV1

‘Wine recognition Kddcup 99

Breast cancer Wisconsin (diagnostic) California Housing

OEBPS/Images/ch15unfig3.png

OEBPS/Images/ch07unfig130.png
3 4 > 6 7

<z

o e e o o e

OEBPS/Images/ch09unfig1.png
n-1

end-of-file marker

OEBPS/Images/ch13unfig4.png
Attribute

Description

created_at
entities

extended_tweet

favorite_count
coordinates

place

id
id_str

Tang
retweet_count
text

user

The creation date and time in UTC (Coordinated Universal Time) format.
“Twitter extracts hashtags, urls, user_mentions (that is, @username mentions),
media (such as images and videos), symbols and po11s from tweets and places
them into the entities dictionary as lists that you can access with these keys.
For tweets over 140 characters, contains details such as the tweet’s ful1_text
and entities

Number of times other users favorited the tweet.

The coordinates (latitude and longitude) from which the tweet was sent. This is
often nul1 (None in Python) because many users disable sending location data.
Users can associate a place with a tweet. If they do, this will be a place object:
https://developer. twitter.com/en/docs/tweets/data-dictionary/overview/
geo-objects#place-dictionary; otherwise, ill be nu11 (None in Python).

The integer ID of the tweer. Twitter recommends using id_str for portability.
The string representation of the tweet’s integer ID.

Language of the tweet, such as *en" for English or *fr for French.

Number of times other users retweeted the tweet.

The text of the tweet. If the tweet uses the new 280-character limit and contains
more than 140 characters, this property will be truncated and the truncated
property will be set to z7ue. This might also occur if a 140-character tweet was
retweeted and became more than 140 characters as a result.

The User object representing the user that posted the tweet. For the User object

JSON properties, see: https: //developer. twi tter. con/en/docs/tweets/data~
dictionary/overview/user-object.

OEBPS/Images/ch09unfig28.png
Mod: Descriptiol

s Open a text file for reading. This is the default if you do not specify the file-open
mode when you call open.

W' Open a text file for writing. Existing file contents are deleted.

‘a' Open a text file for appending at the end, creating the file if it does not exist. New
data is written at the end of the file.

et Open a text file reading and writing.

w! Open a text file reading and writing. Existing file contents are deleted.

a+! Open a text file reading and appending at the end. New data is written at the end

of the file. If the file does not exist, it is created.

OEBPS/Images/ch03unfig31.png
True

False

OEBPS/Images/ch03unfig34.png
- _—ﬁ

False

OEBPS/Images/ch01unfig3.png
nit Bytes ich is approximately

1 kilobyte (KB) 1024 bytes 10° (1024) bytes exactly

1 megabyte (MB) 1024 kilobytes 106 (1,000,000) bytes

1 gigabyte (GB) 1024 megabytes 107 (1,000,000,000) bytes

1 terabyte (TB) 1024 gigabyres 102 (1,000,000,000,000) bytes

1 petabyte (PB) 1024 terabytes 103 (1,000,000,000,000,000) bytes

1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000) bytes

1 zettabyce (ZB) 1024 exabytes 102! (1,000,000,000,000,000,000,000) byes

OEBPS/Images/ch01unfig1.png
File

Judy Field

01001010 Character J

1 Bit

OEBPS/Images/ch03unfig42.png
c+7
d-4
e+
=3
9/2
9//2
h%9

10tw0c
ltod
0w0e
8tof
4.5 09
4109
3t0h

OEBPS/Images/ch11unfig48f.png
)

AEIPQA=B

i o6 7
Comparsons:45; Swops: 9

OEBPS/Images/ch14unfig34.png
"translations": [Line 103
{ Line 106
“translation": ";Dénde estad el bafio mas cercano? " Line 109

}

1,
"word_count": 5,
"character_count": 30

OEBPS/Images/ch03unfig18.png
False True

OEBPS/Images/ch11unfig48a.png

OEBPS/Images/ch11unfig48e.png
a5 6 7
Comparisons: 45; waps: 9

OEBPS/Images/ch11unfig48d.png
s 5
Comparsons: 35; Swops: 5

)

OEBPS/Images/ch11unfig48c.png
Te 7 5 1 o5 &
Comparisons: 35; waps: 4.

OEBPS/Images/ch11unfig48b.png
T3 3

AEIPQA=N

i 5
Comparisons: 31; Swaps: 4

)

OEBPS/Images/pub01.png

OEBPS/Images/ch06unfig1.png
Keys

Country names
Decimal numbers
States

Hospital patients
Bascball players
Metric measurements
Inventory codes

Key type

str
int
str
str
str
str
str

Values

Internet country codes
Roman numerals
Agricultural products
Vital signs

Batting averages
Abbreviations
Quantity in stock

Value type

str
str

list of str

tple of ints and floats
float

str

int

OEBPS/Images/ch14unfig26.png
“results": [Line 70

{ Line 73
"alternatives": [Line 78
Line 81

"confidence": 0.983,

"transcript here is the closest bathroom " Line 85

3

]

final": true
}

1,

"result_index": 0

OEBPS/Images/ch02unfig82.png
number square cube
0 0

1 1 1

2 4 8

3 9 27

4 16 64

c S5c 196

OEBPS/Images/ch02unfig83.png
number square cube
0 o
1 1
4 8
9 27
6 64
5c 196

AR WN RO

OEBPS/Images/ch03unfig27.png
first €11

last eTif

else

False

OEBPS/Images/ch06unfig86.png
Ingred Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses or 1/4 cup agave nectar
1 cup butter 1 cup margarine or yogure

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese

or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg. 2 tablespoons cornstarch, arrowroot flour or potato starch or 2 egg
whites or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk
1 cup oil 1 cup applesauce

OEBPS/Images/ch11unfig10.png

OEBPS/Images/ch17unfig129.png
[AHE: <@i-iamal 1746110

Bumaq

leqio0jAseuey

xojuojin
aswa

@1e3solyo
|mogseweyeq
sbuajiey>Aowdm
owdm

1oMA/

I
qowniop

ynw

a100)

12
10
8
6
4
2
0

110}

hashtag

OEBPS/Images/ch11unfig12.png
hapter Algorithm

Searching Algorithms, Functions and Methods:
5 List method index

8 String methods count, index and rindex.
re module functions search, match, findal1 and finditer
Linear search

15 Binary scarch
Recursive binary search

Sorting Algorithms, Functions and Methods:
5 List method sort
Built-in function sorted
Built-in function sorted with a key
7 DataFrame methods sort_index and sort_values
15 Selection sort
Insertion sort
Recursive merge sort
Bucket sort
Recursive quicksore

Location

Section 5.9
Section 8.7
Section 8.12
Section 11.7
Section 11.9
Exercise 11.18

Section 5.8
Section 5.8
Exercise 5.15
Section 7.14
Section 11.11
Section 11.12
Section 11.13
Exercise 11.17
Exercise 11.19

OEBPS/Images/ch02unfig70.png
Operators. Groupi

[¢] left to right
right to lefe
* / // % leftroright
5 = left to right

left o right

lefi to right

Type

parentheses
exponentiation

multiplication, true division, floor division, remainder

addition, subtraction

less than, less than or equal, greater than, greater than or equal

equal, not equal

OEBPS/Images/ch03unfig3.png
total = total + grade

counter = counter + 1

OEBPS/Images/ch17unfig138.png
Bespin Gas Elerium Google Linen Cloth
Company

OEBPS/Images/ch02unfig61.png
Algebraic

operator

NNV AV

Python Sample
operator condition

x is greater than y

xis less than y

X is greater than or equal to y
x is less than or equal to0 y

*

xis equal to y
x is not equal to y

OEBPS/Images/ch17unfig137.png
Temperature

o

8 Fahrenheight

Froee Warang
@ Lov enperuTuE wARNING

High Temperature Warning

Temperature

82.6 Fanenheit

Freeze Warning

High Temperature Warning

Temperature

39 'm

oo

102,2 Fahenheit

Freoze Warning

High Tamperatrs Warig
@ o revpersTUR wARNING

OEBPS/Images/ch17unfig132.png
HUMIDITY + + @ RADIATION LEVEL + + @ AMBIENTTEMPERATURE + /

OEBPS/Images/ch03unfig9.png
True

False

OEBPS/Images/ch10unfig73.png
+
+
+
4
v
LY

> > < >
o o] |2
« 3 >> 3 [»> <
- > <
< > 2> < (2> <
RS Tl (e« F] [+ 4 ¥
g S « > +
< s e (44

+
+
AR
*
*
L

“!ﬁ

*

e e

+
+ ¢

OEBPS/Images/ch10unfig71.png
«
seE [ce3] [+aF] [ee5
2o < se o] mew| sen
s F| [+ 3| [« _% [«_5
> - .
2T e T st e
> = [+ 3| [+ % [« %
= <l s e lx v le =
s eeel 1an ees
B D I P L
> . .

OEBPS/Images/ch15unfig142.png

OEBPS/Images/ch10unfig78.png
Shape

AN

TwoDimensionalShape ThreeDimensionalShape

A X A AN

Circle Square Triangle Sphere Cube Tetrahedron

OEBPS/Images/ch10unfig76.png
Base class Subclasses

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarlLoan, HomeImprovementLoan, MortgageLoan
Employee Faculty, Staff

BankAccount CheckingAccount, SavingsAccount

OEBPS/Images/ch10unfig77.png

OEBPS/Images/ch10unfig75.png

OEBPS/Images/ch15unfig124.png
®

petal length (cm) sepal width (cm) sepal length (cm)
= o

petal width (cm)

6
sepal length (cm)

sepal width (cm)

25 5.0
petal length (cm)

0

1 2
petal width (cm)

OEBPS/Images/ch12unfig141.png

OEBPS/Images/ch15unfig122.png
4 6 8
sepal length (cm)

OEBPS/Images/ch15unfig121.png
petal length (cm) sepal width (cm) sepal length (cm)

petal width (cm)

species
o« setosa
« versicolor

4 6 8 2 4 25 50 15 0 2
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

OEBPS/Images/ch17unfig56.png

OEBPS/Images/ch02unfig34.png
Escape sequence

Description

\n

\t

\\

\

Insert a newline character in a string. When the string is displayed,
for cach newline, move the screen cursor to the beginning of the
next line.

Insert a horizontal tab. When the string is displayed, for each tab,
move the screen cursor to the next tab stop.

Insert a backslash character in a string.
Insert a double quote character in a string.
Insert a single quote character in a string.

OEBPS/Images/ch11unfig65.png

OEBPS/Images/ch15unfig137.png
Component2

1.5

1.0

0.5

-3

-2

-1

0 1
Componentl

species
setosa
versicolor
virginica

3 4

OEBPS/Images/ch11unfig66.png

OEBPS/Images/ch02unfig22.png
= &

OEBPS/Images/fm-unfig1.png
CS: Python
Fundamentals Quickstart

CS: Python Data Structures,
Strings and Files

CS: Python
High-End Topics

Al, Big Data and Cloud
Case Studies

CS 1. Introduction to
Computers and Python

DS Intro: Al—at the
Intersection of CS and DS
CS 2. Introduction to
Python Programming
DS Intro: Basic Descriptive Stats
CS 3. Control Statements and
Program Development
DS Intro: Measures of Central
Tendency—Mean, Median, Mode
CS 4. Functions
DS Intro: Basic Statistics—
Measures of Dispersion
CS 5. Lists and Tuples

DS Intro: Simulation and
Static Visualization

CS 6. Dictionaries and Sets

DS Intro: Simulation and
Dynamic Visualization

CS 7. Array-Oriented
Programming with NumPy
High-Performance NumPy Arrays
DS Intro:

Pandas Series and DataFrames

CS 10. Object-Oriented
Programming

DS Intro: Time Series and
Simple Linear Regression

CS 11. Computer Science
Thinking: Recursion,
Searching, Sorting and Big O

CS and DS Other Topics Blog

DS 12. Natural Language
Processing (NLP)
‘Web Scraping in the Exercises

DS 13. Data Mining Twitter®
Sentiment Analysis, JSON and
Web Services

DS 14. IBM Watson® and
Cognitive Computing

CS 8. Strings: A Deeper Look
Includes Regular Expressions

DS Intro: Pandas,
Regular Expressions and
Data Wrangling

€S 9. Files and
Exceptions

DS Intro: Loading Datasets from

CSV Files into Pandas DataFrames

d

. Chapters I-11 marked CS are

traditional Python programming
and computer-science topics.

. Light-tinted bottom boxes in

Chapters 1-10 marked DS Intro
are brief, friendly introductions
to data-science topics.

3. Chapters 12-17 marked DS are
Python-based, Al, big data and
cloud chapters, each containing
several full-implementation
studies.

ES

Functional-style programming
is integrated book wide.

python

Intro to Python

for Compu

ience and Data Science

"~

-~

3

PAUL DEITEL
HARVEY DEITEL

Learning
to Program

5. Preface explains the dependen-
cies among the chapters.
6. Visualizations throughout.

DS 15. Machine Learning:
Classification, Regression
and Clustering

DS 16. Deep Learning
Convolutional and Recurrent
Neural Networks; Reinforcement
Learning in the Exercises

DS 17. Big Data: Hadoop®,
Spark™, NoSQL and loT

~

. CS courses may cover more of
the Python chapters and less
of the DS content. Vice versa for
Data Science courses.

8. We put Chapter 5 in Part I. It's

also a natural fit with Part 2

Questions? deitel@deitel.com

OEBPS/Images/ch15unfig101.png
ooooooo
444444

OEBPS/Images/ch17unfig149.png
South Carolina

Lindsey Graham (R) Tweets: 1405
Tim Scot (); Tweets: 11

OEBPS/Images/ch03unfig121.png

OEBPS/Images/ch03unfig120.png

OEBPS/Images/ch15unfig106.png

OEBPS/Images/ch15unfig105.png
60

40

20

OEBPS/Images/ch15unfig108.png

OEBPS/Images/ch15unfig107.png

OEBPS/Images/ch11unfig44.png
Algorithm

Searching Algorithms:
Linear search

Binary search
Recursive binary search
Sorting Algorithms:
Selection sort

Insertion sort

Merge sort

Section 11.7
Section 11.9
Exercise 11.18

Section 11.11
Section 11.12
Section 11.13

Big O

om
Ollog 7)
Ollog 7)

00?)
00?)
Ol log)

OEBPS/Images/ch11unfig45.png
1
2
3
4

5

10

100

1000
1,000,000
1,000,000,000

O(log n)

0
1
1
1
1
1
2
3
6
9

o(n)

1

2

3

4

5

10
100
1000

1,000,000
1,000,000,000

O(n log n)

= v e w o

0

200

3000
6,000,000
9,000,000,000

o(n

1
4

9

16

25

100
10,000
106
10”‘
10[8

OEBPS/Images/cover.jpg
@ python®

Intro to Python'

for Computer Science and Data Science

Learning

to Program
with Al, Big Data %o PAULDEITEL
and the Cloud HARVEY DEITEL

OEBPS/Images/ch03unfig116.png
number square cube

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
g 25 12§

OEBPS/Images/ch05unfig156.png
Froquency

.

000

000

0000
0
0
o

Roling a Six-Sided Die 60,000 Times.
10058 9951 9981 959 10002 10053
16757% 16585% 16535% 1650% 16670% 16755%

1 2 3 g s g

DleVaie.

OEBPS/Images/ch17unfig12.png
SELECT
FROM
WHERE

GROUP BY
ORDER BY
INNER JOIN
INSERT
UPDATE
DELETE

keyword Des:

Retrieves data from one or more tables.
Tables involved in the query. Required in every SELECT.

Criteria for selection that determine the rows to be retrieved, deleted or
updated. Optional in a SQL statement.

Criteria for grouping rows. Optional in a SELECT query.
Criteria for ordering rows. Optional in a SELECT query.
Merge rows from multiple tables.

Insert rows into a specified table.

Update rows in a specified table.

Delete rows from a specified table.

OEBPS/Images/ch17unfig11.png
authors
id
first
last

author_ISBN
id

isbn

- [

titles
isbn
title
edition

copyright

OEBPS/Images/ch05unfig151.png
Rolling a Six-Sided Die 600 Times.
120

e

Froqueney
g &

B

K

o

100 %
165 J8557% 16.500%
3
14.335%
3 g s

DleVaie.

OEBPS/Images/ch03unfig104.png
Operators uping

(0] left to right
o right to left
*/ left to right
T o= left to right
< <= left o right
not left to right
and left to right
or left to right

OEBPS/Images/ch03unfig103.png
expression 0t expression

False True
True False

OEBPS/Images/ch05unfig162.png
Roling a Six-Sided Die 6,000,000 Times

1000076 999897 999544 1001105 999364 1000014
ioese 1666% 16650% 16685% 16656% 16667%

oo
snon
b oo
£
00
200
o 1 2 3 4 5 O

DleVaie.

OEBPS/Images/ch16unfig85.png
L33]: rnn.summary()

Layer (type)

Output Shape

Param #

1280000

embedding_1 (Embedding) (None, 200, 128)
Tstm_1 (LSTM) (None, 128) 131584
dense_1 (Dense) 129

(None, 1)

Total params: 1,411,713
Trainable params: 1,411,713
Non-trainable params: 0

OEBPS/Images/ch16unfig90.png
LIl

OEBPS/Images/ch06unfig70.png
Execute 6000 animation frames rolling the die once per irame:
ipython Ro11DieDynamic.py 6000 1

o

"
17 158

Die Frequencies for 64 Rolls

18
” 21575
20312%

8
12500

Die Vaiue

2

Die Frequencies for 604 Rolls

1630 18

* ovave

@
155675 o
14073%

B

2

OEBPS/Images/ch06unfig71.png
Execute 10.000 animation Irames rolling the die 600 times per frame:
ipython Ro11DieDynamic.py 10000 600

Frequency

Die Frequencies for 7,200 Rolls

1204
(a2, ar2re

108 1200
10 18508 sgsor 16722%

.“I

0

* e vaoe

18
1504%

g

Frequency

0000

2500

g

208

g

15000

o

Die Frequencies for 166,200 Rolls

o615 e a8 21 arent
DO R ot Mo dars ik

* devabe

OEBPS/Images/ch05unfig177.png
Letters Digit Letters Digit Letters

2 ABC 5 JKL 8 TUV
3 DEF 6 MN O 9 WXY
4 GHI 7 PRS

OEBPS/Images/ch05unfig178.png
umber

83
24

77
39

Parf

scription

Electric sander
Power saw
Sledge hammer
Hammer

Jig saw

18
1
76

Price

57.98
99.99
21.50
11.99
79.50

OEBPS/Images/ch01unfig17.png

OEBPS/Images/ch01unfig15.png
Roll the dice 6000 times and roll | die each time:
ipython Rol1DieDynamic.py 6000 1

Frequency

12

Die Frequencies for 51 Rolls

00

10
10.608%

9
6i7%

s
15.686%

7
13.725%
5
1765%

Frequency

300

o
2 3 0 s
Die Value

Die Frequencies for 4,207 Rolls

705 s

65 6 s 16556 1080w

i 15902% I
’ vt

o
17.091%

OEBPS/Images/ch01unfig19.png
Z File Edit View Run Kemel Tabs Settings Help

- + B K3 c 3 Launcher X | TestDrive.pynb

" B+ X000 » = C Cde ~ Python3 O
Name - LastModified
* .
2rinues oo |l BRE
@ % RolDicDynamicpy 7 months ago

OEBPS/Images/ch01unfig18.png
 File Edit View Run Kemel Tabs Settings Help

- L] B c 5 Launcher
R
A T
© rolbcoymamiany 7maniaseo] Notabook
@
o e

Python 3

B console
e

Python 3

Other

Terminal TextFile

OEBPS/Images/ch05unfig183.png
>1x of Spades
Queen of Hearts
Three of Diamonds
Four of Spades
Three of Clubs
King of Clubs
Queen of Clubs
Three of Spades
Ace of Spades
Deuce of Spades
Jack of Hearts
Ace of Diamonds
Five of Diamonds

Eight of Spades
Seven of Clubs
Deuce of Clubs
Ace of Clubs
Deuce of Hearts
Ten of Hearts
Eight of Diamonds
King of Diamonds
Four of Diamonds
Eight of Hearts
Seven of Spades
Queen of Diamonds
Ten of Clubs

S1x of Clubs

Nine

of Spades

Ace of Hearts

Seven of Diamonds

Five

Three of Hearts
Deuce of Diamonds

Nine

Seven of Hearts

Five
Four
Five
Jack

of Spades

of Clubs

of Hearts
of Clubs
of Clubs
of Spades

Nine of Hearts
King of Hearts
Ten of Spades
Four of Hearts
Jack of Diamonds
Six of Diamonds
Ten of Diamonds
Six of Hearts
Eight of Clubs
Queen of Spades
Nine of Diamonds
King of Spades
Jack of Clubs

OEBPS/Images/ch01unfig24.png
Edit View Run Kernel Tabs Settings Help

+ B c £ Launcher X % TestDriveipynb X |
" 8+ X0OO » = C Code - Python3 O
Name - LastModified
seconds ago 72
2 RolDieDynamic.py 7 months ago 17

| @sxazr-a/2
I 2): 21.75

OEBPS/Images/ch01unfig22.png
ipynb.
@ @ RolDieDynamic.py

Q

ile Edit View Run Kernel

c

Last Modified
2 minutes ago
7 months ago

Tabs Settings Help

3 Launcher

B+ X0DO0O

45472

17

[EE

X | TestDrive.ipynb

= C Code

.
Python3 O

OEBPS/Images/ch01unfig21.png
Edit View Run

@ @ RolDieDynamic.py

Kernel

* c

Last Modified
aminute ago

7 months ago

Tabs Settings Help

2 Launcher
B+ X000

| o

| oo

45472

>

X | TestDrive.ipynb

= C Code

.
Python3 O

OEBPS/Images/ch05unfig185.png
2z 3 4 5 06

OEBPS/Images/ch05unfig186.png
Frequencies for 360 Rolls Frequencies for 36,000 Rolls

u
FEees

Dievalue

Frequency Frequency
Frequencies for 36,000,000 Rolls
o 2008000 008000 06000
Frequency

OEBPS/Images/ch01unfig26.png
ile Edit View Run

@ @ RolDieDynamicpy

Kernel

B

c

Last Modified
2 minute ago
5 months ago

Tabs Settings Help

% TestDrive.ipynb. °
B+ XMB O » = C Code

45472
17

5% (12.7-4) /2

2175

5% (3+4)
35

5%x3+4

Python3 O

OEBPS/Images/ch01unfig25.png
. + B B c £ Launcher x | Testorive.ipynb x

3 B+ X DO » = C Cde v Python3 O
Name - Last Modified
45+ 72
[TestDrive.ipynb a minute ago

@ @ roeDmanicsy 7monnago | |

5% (12.7-4) /2

OEBPS/Images/ch01unfig29.png

